Equazioni differenziali ordinarie

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equazioni differenziali ordinarie"

Transcript

1 Equazioni differenziali ordinarie Denis Nardin January 2, Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà il seguente problema di Cauchy: u (t) = f(t, u(t)) u( ) = u 0 Dove f è una funzione almeno continua da Ω aperto di R n+1 a R n e R, u 0 R n. Si cercano come soluzioni funzioni u che vanno da un aperto A di R contenente a R n. 1.1 Proprietà delle soluzioni Teorema 1.1: (dell asintoto) Sia f : [a, + ) R derivabile tale che esistano i limiti per t + di f(x) e di f (x). Allora lim t + f (t) = 0. Dim: Consideriamo il limite f(x) + x lim t + x Questo limite vale uno (infatti è uguale al limite di 1 + f(x)/x e il secondo addendo tende a zero. Ma è anche il limite di un rapporto in cui numeratore e denominatore tendono a infinito, per cui si applica il teorema dell Hôpital e otteniamo f(x) + x 1 = lim = lim t + x f (x) + 1 t + Da cui la tesi. Teorema 1.2: (di regolarità) Sia u una soluzione di (PC) con f C. Allora anche u è C. Dim: Dimostriamo per induzione che u è C n per ogni n. u è derivabile per ipotesi (è una soluzione di (PC)). Inoltre è C 1 perchè la sua derivata è u (t) = f(t, u(t)) 1

2 che è composizione di funzioni continue. Sia ora u C n. Allora anche la sua derivata è C n perchè composizione di funzioni C n. Quindi u è C n Esistenza e unicità Teorema 1.3: (di esistenza e unicità locale) Sia (PC) un problema di Cauchy con f : Ω R n è una funzione da un aperto di R n+1 continua. Supponiamo che esistano ρ 1, ρ 2 > 0 tali che posto I = B(, ρ 1 ) e J = B(u 0, ρ 2 ), f sia lipschitziana nella seconda variabile uniformemente alla prima su I J, cioè tale che esista un L > 0 tale che u, u J, t I f(t, u) f(t, u ) L u u Allora esiste un intorno di U e un intorno di u 0 V tali che U V Ω e che esiste una ed una sola u : U V che risolve (PC). Dim: Notiamo che richiedere che u sia soluzione di (PC) è completamente equivalente a chiedere che sia soluzione di questa equazione integrale Pongo u(t) = u 0 + L la costante di Lipschitz di f M = maxf(x, y) x I, y J} ρ 0 < minρ 1, ρ1 M, 1 L }. U = [x 0 ρ 0, x 0 + ρ 0 ] f(s, u(s))ds V = B(u 0, ρ 1 ) = y R n y u 0 ρ 1 } J E dimostriamo che queste scelte di U, V vanno bene. A questo scopo consideriamo l insieme 0 X = u C (Ū) u(u) V } Questo è un sottoinsieme chiuso di C 0 (U) perchè consiste esattamente della palla chiusa centrata nella funzione che vale costantemente u 0 di raggio ρ 1 e perciò forma uno spazio metrico completo. Consideriamo quindi la funzione F : X C 0 (U) definita da F (u)(t) = u 0 + f(s, u(s))ds La nostra tesi diventa quindi dimostrare che esiste un unico punto fisso di F. Per farlo dimostreremo che F è una contrazione su X. Per cominciare dimostriamo che F (X) X. Infatti se u X per ogni t U F (u)(t) u 0 = f(s, u(s))ds f(s, u(s)) ds 2

3 Mds = M t Mρ 0 ρ 1 Quindi F manda X in se stesso. Ci manca unicamente da far vedere che F è una contrazione. Siano dunque u, v X. Allora per ogni t U F (u)(t) F (v)(t) = f(s, u(s)) f(s, v(s))ds f(s, u(s)) f(s, v(s)) ds L u(s) v(s) ds L u v ds = L t u v Lρ 0 u v e quindi F è una contrazione perchè Lρ 0 < 1. Ma questo, come già osservato, implica la tesi. Teorema 1.4: (di unicità globale) Siano u, v : I R n con I intervallo tali che sono soluzioni di (PC). Allora u = v. Dim: Consideriamo l insieme t I u(t) = v(t)}. Questo insieme è chiuso perchè u, v sono continue e aperto per l unicità locale. Infatti se u(t) = v(t) esiste un intorno di t in cui coincidono. Inoltre è non vuoto perchè ci sta. Allora è tutto I. 1.3 Soluzioni massimali e globali Definizione 1.1: Siano u, v due soluzioni di (PC). u si dice un prolungamento di v se dom u dom v. Definizione 1.2: Una soluzione u si dice massimale se non esistono suoi prolungamenti propri. Una soluzione u si dice globale se dom u = R. Osservazione 1.1: Se u è un prolungamento di v per ogni t dom v u(t) = v(t) per il teorema di unicità globale. Teorema 1.5: Esiste una soluzione massimale di (PC) Dim: Sia U = v soluzione di (PC) } l insieme delle soluzioni di (PC) e sia v U I v = dom v. Ricordiamo che due soluzioni di un problema di Cauchy coincidono sempre nell intersezione dei domini. Allora prendiamo I = v U Notiamo che I è un intervall perchè unione di intervalli non disgiunti. Definiamo ora u : I R n come u(t) = v(t) se t I v. Notiamo che u è ben definita per il teorema di unicità globale (il valore v(t) non dipende dalla particolare v scelta). Allora u è una soluzione perchè lo è localmente (se t I v allora u (t) = v (t) = f(t, v(t) = f(t, u(t))) e inoltre u(0) = u 0. Inoltre è un estensione di qualunque soluzione perchè il suo dominio contiene il dominio di qualunque altra soluzione. Quindi è una soluzione massimale. I v 3

4 Per analizzare i comportamenti della soluzione massimale agli estremi del dominio abbiamo bisogno di un lemma preliminare Lemma 1.1: Sia u : (a, b) R una soluzione di (PC) con b < +, e sia t k una successione convergente a b tale che u(t k ) u b R n. Allora esiste lim t b u(t) = u b Dim: Intanto notiamo che è possibile scegliere i t k in modo che convergano in modo monotono (eventualmente prendendone una sottosuccessione). Supponiamo ora per assurdo che il limite di u(t) per t b non sia u b. Allora possiamo scegliere un ɛ > 0 tale che l insieme R = t (a, b) u(t) u b > ɛ} sia non vuoto e abbia b come estremo superiore (cioè ci sono punti t arbitrariamente vicini a b tali che u(t) disti più di ɛ da u b ). Poichè Ω è aperto possiamo scegliere quindi c (a, b) tale che [c, b] [ ɛ, ɛ] Ω. Sia quindi M = max f(x) x [c,b] [ ɛ,ɛ] Dove il massimo esiste perchè l insieme è compatto. Prendiamo ora N N tale che per ogni n N e inoltre t N > c. Poniamo quindi t n b ɛ/4m e u(t n ) u b ɛ/4 t = inft (t N, b) u(t) u b > ɛ} = R (t N, b) Questo estremo inferiore possiamo prenderlo perchè l insieme al secondo membro è non vuoto perchè sup R = b. Allora, per la continuità della funzione u(t) u b Ma u( t) u b = ɛ u( t) u b u( t u(t N ) + u(t N ) u b = = u (η) t t N + ɛ/4 = f(η, u(η)) t t N + ɛ/4 dove η (t N, t) e quindi (η, u(η)) [c, b] [ ɛ, ɛ]. Infine sostituendo le stime abbiamo che ɛ = u( t) u b M ɛ 4M + ɛ 4 = ɛ/2 Assurdo. Teorema 1.6: Sia u : [, l) R una soluzione massimale di (PC) con l < +. Allora per ogni compatto K contenuto in Ω esiste δ > 0 tale che t [l δ, l) (t, u(t)) K 4

5 (La soluzione scoppia quando si avvicina all estremo superiore del suo dominio). Dim: Fissiamo K Ω compatto. Per assudo esista t k successione di reali convergente a l tale che (t k, u(t k )) K. Allora posso estrarne una sottosuccessione (t nk, u(t nk )) convergente a un certo (l, ũ). Ma allora per il lemma la soluzione è estendibile su [, l] e quindi non è massimale. Assurdo. 1.4 Stime di soluzioni Lemma 1.2: (di Gronwall) Sia u : [a, b] R n di classe C 1 tale che esistono ɛ, Q > 0 tali che t [a, b] u (t) ɛ + Q u(t) E sia [a, b]. Allora t [a, b] u(t) ɛ Q + u() e Q t t0 Dim: Per ogni σ > 0 consideriamo z : [a, b] R definita da Allora z(t) u(t). Inoltre z (t) = z(t) = σ 2 + u(t) σ 2 + u(t) 2 2 < u(t), u (t) > u(t) u (t) σ2 + u(t) 2 u (t) ɛ + Q u(t) ɛ + Qz(t) Supponiamo ora t >. Ma allora, dividendo entrambi i membri per ɛ + Qz(t) (che è sempre positiva) e integrando otteniamo z (s) ɛ + Qz(s) ds t Da cui infine z(t) z() 1 ɛ + Qz dz t ln(ɛ + Qz(t)) ln(ɛ + Qz( ) Q t Qz(t) ɛ + Qz(t) (ɛ + Qz( ))e Q(t t0) z(t) (ɛ/q + z( ))e Q(t t0) 5

6 Procedendo analogamente per t < otteniamo la formula generale z(t) (ɛ/q + z( ))e Q t t0 E u(t) z(t) (ɛ/q + z( ))e Q t t0 = (ɛ/q + σ 2 + u( ) 2 )e Q t t0 Da cui prendendo l estremo inferiore per σ 0 otteniamo la tesi. Teorema 1.7: (Controllo lineare) Sia u una soluzione massimale di (PC) con f : I R R, I intervallo. Se esistono α, β : I R continue tali che t I x R f(t, x) α(t) x + β(t) Allora u è soluzione globale. Dim: Sia J il dominio di u e supponiamo che J I. Ma allora J J I. Ora i moduli di α, β hanno un massimo su J. Siano questi A, B. Allora t J e per il lemma di Gronwall u (t) A + B u u(t) (A/B + u( ) )e B t t0 Quindi u è limitata su J, per cui si estende a J. Assurdo Definizione 1.3: Sia (PC) un problema di Cauchy con f continua e localmente lipschitziana. Una funzione v è detta soprasoluzione (sottosoluzione) di (PC) se per ogni t vale v (t) f(t, v(t)) v( ) u 0 ( v (t) f(t, v(t)) v( ) u 0 Teorema 1.8: (Confronto) Sia (PC) un problema di Cauchy con f continua e localmente lipschitziana. Siano u una soluzione e v una soprasoluzione (sottosoluzione). Allora t u(t) v(t) (u(t) v(t)) t u(t) v(t) (u(t) v(t)) ) Dim: Consideriamo la funzione w(t) = u(t) v(t). w è continua perchè lo sono u e v. Consideriamo l insieme J := t > w(t) > 0} Notiamo che J è aperto perchè w è continua (è la controimmagine dell aperto y < 0}). Per assurdo sia J. Prendiamo ξ J e consideriamo t = inft > 6

7 (t, ξ) J} (l insieme è non vuoto perchè J è aperto, quindi esiste una palla centrata in ξ tutta contenuta in J). Allora, per la continuità di w abbiamo che w( t) = 0. Ma allora t [ t, ξ] w (t) = (u v) (t) = u (t) v (t) = f(t, u(t)) f(t, v(t)) L u(t) v(t) = L w(t) Dove L è la costante di Lipschitz per f. E infine per il lemma di Gronwall u(t) v(t) = w(t) (u( t) v( t))e L(t t) = 0 Assurdo perchè u(t) v(t) > 0 per ogni t J. 1.5 Dipendenza continua Teorema 1.9: (Dipendenza continua dai dati iniziali) Sia f : I R R continua, L-lipschitziana nel secondo argomento, I intervallo e x 0 I. Sia in oltre per ogni α R y α l unica soluzione del problema di Cauchy: y α(t) = f(t, y α (t)) y α (x 0 ) = α Allora per ogni α, α R x I y α (x) y α (x) α α e L x x0 Dim: Consideriamo w(x) = y α (x) y α (x). Allora w (x) = y α(x) y α (x) = f(x, y α(x)) f(x, y α (x)) L y α (x) y α (x) = L w(x) Da cui per il lemma di Gronwall w(x) w(x 0 ) e L x x0 che è la tesi. Corollario 1.1: Con le notazioni del teorema precedente, se α α allora y α y α uniformemente su ogni compatto in I. Osservazione 1.2: L enunciato del corollario si estende anche al caso di due successioni, α n α e f n f uniformemente su ogni compatto, tali che le f n siano continue e equilipschitziane. Allora le soluzioni y n dei problemi di Cauchy y n(x) = f n (x, y n (x)) y n (x 0 ) = α n tendono alla soluzione del problema di Cauchy limite uniformemente su tutti i compatti. 7

8 1.6 Sistemi lineari Definizione 1.4: Sia A M(n, R). L esponenziale di A è la matrice così definita: e A A n = n! n=0 Osserviamo che la serie converge in quanto lo fa la serie delle norme (con una qualunque norma matriciale indotta). Inoltre è facile verificare che la funzione f(t) = e At è derivabile e vale f (t) = Ae At Infine notiamo che e A commuta con A perchè limite di polinomi in A. Teorema 1.10: Sia dato il problema di Cauchy u (t) = Au(t) u( ) = u 0 Dove A è una matrice n n a coefficienti reali e u 0 R n. Allora la soluzione esiste ed è unica su tutto R e inoltre è data da u(t) = e A(t t0) u 0 Dim: Poichè la funzione u Au è lipschitziana i teoremi già visti ci garantiscono esistenza e unicità globale. Inoltre quella mostrata è manifestatamente una soluzione, e quindi è lei. Teorema 1.11: Sia dato il problema di Cauchy u (t) = Au(t) + b(t) u( ) = u 0 Dove A è una matrice n n a coefficienti reali, u 0 R n b è una funzione continua a valori in R n. Allora la soluzione esiste ed è unica su tutto R e inoltre è data da ] u(t) = e [u A(t t0) 0 + e A(s t0) b(s)ds Dove l integrale si intende effettuato componente per componente. Dim: La dimostrazione è del tutto analoga al caso precedente. Per ricordarla meglio però presentiamo un metodo per ricavarsi la formula, piuttosto oscura, della soluzione. Moltiplichiamo entrambi i membri a destra per e A(t t0) e con semplici passaggi otteniamo e A(t t0) u (t) Ae A(t t0) u(t) = e A(t t0) b(t) (e A(t t0) u(t)) = e A(t t0) b(t) 8

9 Integrando che è la tesi. e A(t t0) u(t) u 0 = e A(s t0) b(s)ds 9

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

1.1. Spazi metrici completi

1.1. Spazi metrici completi SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Stabilità di Lyapunov

Stabilità di Lyapunov Stabilità di Lyapunov Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona Introduzione. In queste note presentiamo i primi elementi della teoria della stabilità

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Matematica generale CTF

Matematica generale CTF Equazioni differenziali 9 dicembre 2015 Si chiamano equazioni differenziali quelle equazioni le cui incognite non sono variabili reali ma funzioni di una o più variabili. Le equazioni differenziali possono

Dettagli

Note del corso di SISTEMI DINAMICI. Massimiliano Berti

Note del corso di SISTEMI DINAMICI. Massimiliano Berti Note del corso di SISTEMI DINAMICI Massimiliano Berti 16 Dicembre 2011 Versione preliminare Introduzione Va sotto il nome Sistemi Dinamici la teoria delle equazioni differenziali ordinarie, cioè di equazioni

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

7. Trasformata di Laplace

7. Trasformata di Laplace 7. Trasformata di Laplace Pierre-Simon de Laplace (1749-1827) Trasformata di Fourier e segnali causali In questa lezione ci occuperemo principalmente di segnali causali: Definizione 7.1 (Segnali causali)

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

ANALISI MATEMATICA I - Modulo Avanzato. Pamphlet sugli Studi Qualitativi di ODEs. Marco Squassina

ANALISI MATEMATICA I - Modulo Avanzato. Pamphlet sugli Studi Qualitativi di ODEs. Marco Squassina UNIVERSITÀ DEGLI STUDI DI VERONA Facoltà di Scienze Matematiche, Fisiche e Naturali ANALISI MATEMATICA I - Modulo Avanzato Pamphlet sugli Studi Qualitativi di ODEs Marco Squassina Anno Accademico 2006/2007

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 203/ 204 Corsi di Analisi Matematica I (Proff A Villani e F Faraci) Prova d Esame del giorno 6 febbraio 204 Prima prova scritta (compito A) Non sono consentiti formulari, appunti, libri

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Una funzione reale di una variabile reale f di dominio A è una legge che ad ogni x A associa un numero reale che denotiamo con f(x). Se A = N, la f è detta successione di numeri reali.

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici Capitolo 2 TOPOLOGIE Ogni spazio che si considera in gran parte della matematica e delle sue applicazioni è uno spazio topologico di qualche tipo: qui introduciamo in generale le nozioni di base della

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m = Una ricetta per il calcolo dell asintoto obliquo Se f() è asintotica a m+q allora abbiamo f() m q = o(1), da cui (dividendo per ) m = f() q + 1 f() o(1) = + o(1), mentre q = f() m = o(1). Dunque si ha

Dettagli

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3 CAPITOLO 3 Successioni e serie 3. Successioni Un caso particolare di applicazione da un insieme numerico ad un altro insieme numerico è quello delle successioni, che risultano essere definite nell insieme

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

16. Vari modi di convergenza delle successioni di funzioni reali misurabili.

16. Vari modi di convergenza delle successioni di funzioni reali misurabili. 16. Vari modi di convergenza delle successioni di funzioni reali misurabili. L argomento centrale di questa ultima parte del corso è lo studio in generale della convergenza delle successioni negli spazi

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Trasformate integrali

Trasformate integrali Trasformate integrali Gianni Gilardi Pavia, 12 dicembre 1997 Siano I e J due intervalli di R, limitati o meno, e K : I J C una funzione fissata. Data ora una generica funzione u : I R, consideriamo, per

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Successioni e serie di funzioni A. Albanese, A. Leaci, D. Pallara In questa dispensa generalizzeremo la trattazione delle successioni e delle serie al caso in cui i termini delle stesse siano non numeri

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI Il criterio più semplice è il seguente. CRITERI DI CONVERGENZA PER LE SERIE Teorema(condizione necessaria per la convergenza). Sia a 0, a 1, a 2,... una successione di numeri reali. Se la serie a k è convergente,

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Analisi complessa EDOARDO SERNESI

Analisi complessa EDOARDO SERNESI Analisi complessa EDOARDO SERNESI Contents 1 Funzioni analitiche 3 1.1 Funzioni olomorfe...................... 3 1.2 Serie formali......................... 5 1.3 Serie convergenti......................

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Analisi Matematica 3 appunti

Analisi Matematica 3 appunti Corso di Laurea in Statistica Matematica e trattamento Informatico dei Dati Analisi Matematica 3 appunti Francesca Astengo Università di Genova, A.A. 20/202 Indice Capitolo. Serie numeriche. Brevi richiami

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

TOPOLOGIA ALBERTO SARACCO

TOPOLOGIA ALBERTO SARACCO TOPOLOGIA ALBERTO SARACCO Abstract. Le presenti note saranno il più fedeli possibile a quanto detto a lezione. I testi consigliati sono Jänich [1], Kosniowski [2] e Singer- Thorpe [3]. Un ottimo libro

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE)

REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE) REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE) 30/09/2013 ore 3 I numeri naturali, relativi, razionali e loro proprieta'. Incompletezza del campo dei numeri razionali. I numeri reali come allineamenti

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica.

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica. 8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica la nuova successione {s n } definita come s 1 = a 1, s 2 = a 1 + a 2, s 3

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Registro di Analisi Matematica II c.l. IIn a.a. 2006/2007 M. Furi

Registro di Analisi Matematica II c.l. IIn a.a. 2006/2007 M. Furi Registro delle lezioni di Analisi Matematica II (6 CFU) Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica A.A. 2006/2007 - Prof. Massimo Furi Testo di riferimento:

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria federico.lastaria@polimi.it

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria federico.lastaria@polimi.it Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Primi teoremi di caclolo differenziale Ottobre 2010. Indice 1 Funzioni derivabili su un intervallo 1 1.1

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Appunti di Complementi di Matematica. Jacobo Pejsachowicz (a cura di Nathan Quadrio)

Appunti di Complementi di Matematica. Jacobo Pejsachowicz (a cura di Nathan Quadrio) Appunti di Complementi di Matematica Jacobo Pejsachowicz (a cura di Nathan Quadrio) 1 Indice 1 Cenni della teoria degli insiemi 4 1.1 Classi ed insiemi........................... 4 1.2 Operazioni fra gli

Dettagli