ELEMENTI DI TOPOGRAFIA - ESERCIZI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ELEMENTI DI TOPOGRAFIA - ESERCIZI"

Transcript

1 ELEMENTI I TOPOGRFI ESERIZI 1. ato il quadrilatero, i cui vertici si seguono in senso antiorario, di cui si conoscono le coordinate dei vertici e rispetto a un sistema di assi ortogonali: E = 23,55 m N = 32,15 m E = 84,80 m N = 71,15 m e le distanze: = 83,98 m = 127,01 m = 89,59 m = 125,29 m Risolvere il quadrilatero e determinare le coordinate dei due vertici e. [Risultati: = 80,8726 g ; = 95,1626 g ; = 132,3960 g ; = 91,5688 g ; S = 10885,31 m 2 E = 99,64 m; N = 54,99 m E = 2,02 m; N = 49,02 m] 2. el quadrilatero, i cui vertici si seguono in senso antiorario, si conoscono le coordinate cartesiane dei vertici, e : E = 50,82 m E = 105,05 m E = 169,62 m N = 30,05 m N = 39,09 m N = 119,07 m. Il vertice è individuato dall intersezione dell asse del segmento con la perpendicolare in al lato. 1 risolvere il quadrilatero ; 2 trovare le coordinate del punto ; 3 trovare le coordinate del punto intersezione P dei prolungamenti dei lati e ; 4 ricavare le coordinate del piede Q della perpendicolare al lato condotta per il punto (Q si troverà su o sul suo prolungamento); 5 determinare le coordinate del punto T intersezione delle bisettrici gli angoli e. 3. el quadrilatero sono note le coordinate polari dei vertici e : O = 135,85 m O = 200,03 m θ O = 275,2715 g θ O = 153,1959 g. Si conoscono inoltre le distanze = 359,07 m, = 200,15 m e gli angoli = 104,2009 g e = 64,1098 g. 1 determinare le coordinate dei vertici e del quadrilatero nell ipotesi che gli stessi vertici si susseguano in senso antiorario; 2 deterninare la superficie del quadrilatero; 3 deterninare le coordinate del punto d incontro P dei prolungamenti di lati e ; 4 determinare le coordinate del punto Q intersezione dei lati e. 4. el quadrilatero si conoscono le coordinate dei vertici e rispetto un sistema di assi ortogonali: E = 59,61 m N = 44,11 m E = 32,38 m N = 87,88 m Stazionando sui punti e con un teodolite centesimale a graduazione oraria si sono rilevati i seguenti Letture al cerchio istanze 25,2659 g 118,02 m 145,8622 g 348,1455 g 104,15 m 18,9103 g 118,08 m Risolvere il quadrilatero e determinare le coordinate dei due vertici e. Pag. 24

2 ELEMENTI I TOPOGRFI ESERIZI [Risultati: = 109,1212 g ; = 99,5177 g ; = 98,85 m ; S = 8032,22 m 2 E = 58,15 m; N = 48,18 m E = 15,60 m; N = 46,88 m] 5. el quadrilatero si conoscono le coordinate dei vertici e rispetto un sistema di assi ortogonali: E = 82,15 m N = 75,53 m E = m N = m Stazionando sui punti e con un teodolite centesimale a graduazione oraria si sono rilevati i seguenti Letture al cerchio istanze 210,8156 g 73,03 m 265,4872 g 301,2215 g 110,15 m 77,0604 g 73,09 m Risolvere il quadrilatero e determinare le coordinate dei due vertici e. [Risultati: = 50,5884 g ; = 118,9011 g ; =110,96 m ; S = 7485,98 m 2 E = 37,34 m; N = 59,18 m E = 47,32 m; N = 11,31 m] 6. el quadrilatero si conoscono le coordinate dei vertici e rispetto un sistema di assi ortogonali: E = 83,33 m N = 21,59 m E = 53,56 m N = 58,19 m Stazionando sul punto con un teodolite centesimale a graduazione oraria si sono rilevati i seguenti Letture al cerchio istanze 320,5486 g 80,66 m 11,6393 g 108,63 m Si è misurata inoltre la distanza = 122,66 m. Risolvere il quadrilatero e determinare le coordinate dei due vertici e. [Risultati: = 80,0639 g ; = 109,6565 g ; = 119,1889 g ; S = 9306,49 m 2 E = 54,90 m; N = 52,13 m E = 39,21 m; N = 26,98 m] 7. i un appezzamento quadrilatero, si conoscono le coordinate cartesiane dei vertici e : E = 110,103 m E = 409,124 m N = 99,399 m N = 110,050 m Stazionando sui punti e con un teodolite centesimale a graduazione destrorsa dotato di distanziometro Letture al istanze cerchio 55,0481 g 178,9932 g 360,701 m 349,2149 g 53,0190 g 308,836 m 2. determinare le coordinate dei vertici e del quadrilatero; Pag. 25

3 ELEMENTI I TOPOGRFI ESERIZI [Risultati: = 72,1805 g ; = 100,0703 g ; S = ,661 m 2 E = 324,661 m; N = 460,723 m E = 20,629 m; N = 406,464 m]. 8. i un appezzamento quadrilatero, si conoscono le coordinate cartesiane dei vertici e : E = 101,428 m E = 315,955 m N = 185,148 m N = 89,236 m Stazionando sui punti e con un teodolite centesimale a graduazione destrorsa dotato di distanziometro Letture al cerchio 356,2953 g 395,0047 g 66,2983 g istanze 415,167 m 148,0214 g 202,2548 g 2. determinare le coordinate dei vertici e del quadrilatero; [Risultati: = 252,798 m; = 523,953 m; = 512,211 m; = 83,7925 g ; = 151,9711 g ; S = ,237 m 2 ; E = 15,493 m; N = 325,593 m E = 283,789 m; N = 339,979 m]. 9. i un appezzamento quadrilatero, si conoscono le coordinate cartesiane dei vertici e : E = 52,255 m N = 71,815 m E = 78,255 m N = 284,785 m Stazionando sui punti e con un teodolite centesimale a graduazione destrorsa dotato di distanziometro Letture al cerchio 69,2450 g 115,0215 g 171,9054 g istanze 232,215 m 58,0447 g 110,0058 g 2. determinare le coordinate dei vertici e del quadrilatero; [Risultati: = 214,551 m; = 229,493 m; = 192,528 m; = 110,4094 g ; = 91,1550 g ; = 95,7752 g ; S = 46686,481 m 2 ; E = 309,733 m; N = 266,299 m E = 281,713 m; N = 75,821 m]. 10. el quadrilatero i cui vertici si seguono in senso antiorario si conoscono le coordinate dei punti e : X = 23,371 m X = 70,095 m Y = 28,180 m Y = 53,814 m Stazionando nel vertice con un teodolite centesimale a graduazione destrorsa si sono i punti, e ottenendo le misure riportate nel seguente specchietto: Letture azimutali istanze 310,7544 g 370,2457 g 22,4870 g 166,048 m 124,145 m Pag. 26

4 ELEMENTI I TOPOGRFI ESERIZI 1. risolvere il quadrilatero; 2. determinare le coordinate dei punti e ; 3. l area del quadrilatero; 4. rappresentare graficamente il rilievo in scala opportuna. [Risultati: = 135,995 m; = 124,334 m; = 121,965 m; = 106,0698 g ; = 87,9140 g ; = 94,2836 g ; S = 15842,675 m 2 ; E = 167,680 m; N = 22,927 m E = 83,993 m; N = 111,651 m]. 11. Un appezzamento di terreno quadrilatero è stato rilevato facendo stazione dei vertici e con un teodolite centesimale a graduazione destrorsa. Si sono fatte le misure riportate nel seguente quadro: Letture azimutali istanze 139,4499 g 98,761 m 246,6635 g 93,778 m 366,4268 g 62,9687 g 108,605 m 1. risolvere il quadrilatero sapendo che le coordinate del punto sono: X = 79,521 m, Y = 22,845 m e che l azimut θ = 85,4592 g ; 2. determinare le coordinate dei vertici, e dell appezzamento; 3. l area dell appezzamento; 4. rappresentare graficamente il rilievo in scala opportuna. 12. Utilizzando un teodolite centesimale a graduazione destrorsa ed un nastro metrico si sono misurati i seguenti elementi dell appezzamento quadrilatero : Punto collimato erchio istanza 358,3278 g 52,0198 g 118,8255 g 169,4415 g 108,89 m 217,9893 g 98,48 m Risolvere il quadrilatero. eterminare le coordinate dei vertici dell appezzamento rispetto un sistema di assi cartesiani con origine nel punto e asse delle ordinate diretto positivamente secondo il lato. el triangolo determinare inoltre il raggio della circonferenza inscritta. Rappresentare il rilievo in scala 1: Utilizzando un teodolite centesimale a graduazione destrorsa ed un nastro metrico si sono misurati i seguenti elementi dell appezzamento quadrilatero : Punto collimato erchio istanza 328,3798 g 126,25 m 26,0968 g 139,49 m 109,4252 g 204,8295 g 108,48 m Risolvere il quadrilatero. eterminare le coordinate dei vertici dell appezzamento rispetto un sistema di assi cartesiani con origine nel punto e asse delle ascisse diretto positivamente secondo il lato. eterminare inoltre la distanza del punto P intersezione delle diagonali dal lato. Pag. 27

5 ELEMENTI I TOPOGRFI ESERIZI Rappresentare il rilievo in scala 1: i un appezzamento quadrilatero, i cui vertici si seguono in senso antiorario, si conoscono le coordinate dei vertici e : E = 110,09 m E = 498,86 m N = 435,83 m N = 251,21 m Stazionando nei punti e con un teodolite centesimale a graduazione destrorsa si sono eseguite le letture angolari e lineari riportate nello specchietto: Letture azimutali istanze battuti 23,2715 g 122,1059 g 159,9897 g 303,01 m 354,1904 g 48,0052 g 1 risolvere il quadrilatero; 2 calcolare le coordinate dei punti e ; 3 rappresentare graficamente il rilievo in scala opportuna. 15. i un appezzamento di terreno pentagonale E, i cui vertici si seguono in senso orario, si conoscono le coordinate del punto e di un punto interno S: E = 150,09 m E S= 280,54 m N = 325,54 m N S= 185,94 m Si è rilevato l'appezzamento facendo stazione nei punti S e con un teodolite centesimale a graduazione destrorsa ottenendo i valori riportati nel registro di campagna: Letture azimutali istanze battuti S 105,5525 g 146,1545 g 130,94 m 288,9815 g 132,05 m 370,9405 g 140,09 m E 32,4992 g 215,74 m S 95,1544 g 1 calcolare le coordinate dei vertici E; 2 calcolare la superficie dell'appezzamento; 3 rappresentare graficamente il rilievo in scala opportuna. Pag. 28

ISTITUTO DI ISTRUZIONE SUPERIORE 25 APRILE di Cuorgnè

ISTITUTO DI ISTRUZIONE SUPERIORE 25 APRILE di Cuorgnè ISTITUTO DI ISTRUZIONE SUERIORE 25 RILE di Cuorgnè NNO SCOLSTICO 2013-2014 CLSSE 3G TTIVIT ESTIV ER LLUNNI CON GIUDIZIO SOSESO MTERI: TOOGRFI DOCENTE: rof. TONIOLO Serena Dopo aver rivisto i contenuti

Dettagli

PERCORSO ESTIVO PER STUDENTI CON DEBITO FORMATIVO IN TOPOPGRAFIA

PERCORSO ESTIVO PER STUDENTI CON DEBITO FORMATIVO IN TOPOPGRAFIA I. I. S."MOREA-VIVARELLI" ----- FABRIANO ********************************************************* sez. COSTRUZIONI AMBIENTE TERRITORIO - a.s.2013/2014 corso di TOPOGRAFIA prof. FABIO ANDERLINI nella classe

Dettagli

ATTIVITA ESTIVA PER ALLUNNI CON GIUDIZIO SOSPESO MATERIA: TOPOGRAFIA E FOTOGRAMMETRIA DOCENTE: Prof. TONIOLO Serena

ATTIVITA ESTIVA PER ALLUNNI CON GIUDIZIO SOSPESO MATERIA: TOPOGRAFIA E FOTOGRAMMETRIA DOCENTE: Prof. TONIOLO Serena NNO SCOLSTICO 2013-2014 CLSSE 4G 4H TTIVIT ESTIV PER LLUNNI CON GIUDIZIO SOSPESO MTERI: TOPOGRFI E FOTOGRMMETRI DOCENTE: Prof. TONIOLO Serena Dopo aver rivisto i contenuti degli argomenti trattati durante

Dettagli

ESERCIZI DI TOPOGRAFIA per gli Allievi Istituto per Geometri. rel. 0.1. Esercizi di Topografia distribuzione gratuita 1/6

ESERCIZI DI TOPOGRAFIA per gli Allievi Istituto per Geometri. rel. 0.1. Esercizi di Topografia distribuzione gratuita 1/6 ESERCIZI DI TOPOGRAFIA per gli Allievi Istituto per Geometri rel. 0.1 Esercizi di Topografia distribuzione gratuita 1/6 Indice generale ANNO 3...3 1.1 - Esercizi pratica calcolatrice...3 1.2 - Esercizi

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

I particolari del territorio

I particolari del territorio UNITÀ UNITÀ 4 A1 I particolari del territorio TEORIA 1 Premessa Il rilievo dei particolari topografici Definizioni di 2 angolo Il sopralluogo, e di arcol eidotipo e i registri Misura degli angoli 3 Relazione

Dettagli

LA SECONDA PROVA SCRITTA

LA SECONDA PROVA SCRITTA L SEOND PROV SRITT 1 L SEOND PROV SRITT 1 Sessione unica 1975 Un tronco stradale è composto da tre tratti rettilinei, e D che si vogliono raccordare con due curve circolari. Per determinare la posizione

Dettagli

LA SECONDA PROVA SCRITTA

LA SECONDA PROVA SCRITTA L SEOND PROV SRITT 1 L SEOND PROV SRITT 1 Sessione unica 1975 Un tronco stradale è composto da tre tratti rettilinei, e D che si vogliono raccordare con due curve circolari. Per determinare la posizione

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1 Esercizio n.1 Un appezzamento di terreno quadrilatero ABCD è stato rilevato andando a misurare: AB = 345,65 m AD = 308,68 m CD = 195,44 m a = 95,3852 gon g = 115,5600 gon Rappresentare in scala opportuna

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

Disciplina Competenze da recuperare Contenuti di studio. Acquisire una buona conoscenza del sistema grafico in genere;

Disciplina Competenze da recuperare Contenuti di studio. Acquisire una buona conoscenza del sistema grafico in genere; CORSO CAT/Geometra Classe prima Disciplina Competenze da recuperare Contenuti di studio TECNOLOGIA E TECNICHE DI RAPPRESENTAZIONE GRAFICA 1 FONDAMENTI DEL DISEGNO convenzioni ed elementi base del disegno

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA Una Geometria non può essere più vera di un altra; può essere solamente più comoda. Ora la Geometria Euclidea è e resterà più comoda H. Poincaré

Dettagli

LEZIONI DI TOPOGRAFIA

LEZIONI DI TOPOGRAFIA Prof. Ing. Paolo Saija LEZIONI DI TOPOGRAFIA (Appunti per l esame di abilitazione alla professione di Geometra) Anno 2006 II a Edizione 1 SOMMARIO LA TOPOGRAFIA Grandezze geometriche e unità di misura

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. .6 esercizi 3 Esercizio 8. Stabilisci se la funzione = 4 è pari o dispari. Soluzione. Sostituiamo al posto di in f(): f( ) = ( ) 4 ( ) = 4 = f() La funzione è pari. Vedi le figure 4f e 30f..6 esercizi

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

APPUNTI DI LABORATORIO DI TOPOGRAFIA MODULO 2

APPUNTI DI LABORATORIO DI TOPOGRAFIA MODULO 2 PPUNTI DI LORTORIO DI TOPOGRFI MODULO PROLEMI SULLE COORDINTE CRTESINE E POLRI PROF. I.T.P. TRMONTNO NGELO PREMESS Per individuare la posizione di un punto nei piano, e per la successiva rappresentazione

Dettagli

ELEMENTI DI TOPOGRAFIA

ELEMENTI DI TOPOGRAFIA Il fascicolo è un supporto didattico destinato agli studenti [allievi geometri]. Raccoglie parte dei contenuti esposti durante le lezioni di Topografia tenute presso l I.I.S. Morea-Vivarelli (sede Morea)

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Prima Facoltà di Architettura Ludovico Quaroni Corso di Laurea in DISEGNO INDUSTRIALE A.A. 2007-08 - 1 Semestre Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Calendario del corso con argomenti svolti

Dettagli

Anno 4 Applicazioni dei teoremi di trigonometria

Anno 4 Applicazioni dei teoremi di trigonometria Anno 4 Applicazioni dei teoremi di trigonometria 1 Introduzione In questa lezione descriveremo le applicazioni dei teoremi di trigonometria. Inizieremo, illustrando alcune formule di trigonometria, utili

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

Sono dati i punti 0; 1, 1; 0, 4; 2. Determina e rappresenta l equazione del luogo dei punti P del piano tali che: 2.

Sono dati i punti 0; 1, 1; 0, 4; 2. Determina e rappresenta l equazione del luogo dei punti P del piano tali che: 2. PIANO CARTESIANO E RETTA ESERCIZI Esercizio 26.95 Sono dati i punti 0; 1, 1; 0, ; 2. Determina e rappresenta l equazione del luogo dei punti P del piano tali che: 2. Soluzione Indichiamo con : le coordinate

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

APPUNTI DI TOPOGRAFIA

APPUNTI DI TOPOGRAFIA APPUNTI DI TOPOGRAFIA IDONEITA ALLA CLASSE 5 a PROF. SPADARO EMANUELE GENERALITÀ SUL CAMPO OPERATIVO Il termine Topografia deriva dal greco e significa descrizione dei luoghi (topos = luogo e grafia =

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

QUOTATURA. Introduzione

QUOTATURA. Introduzione QUOTATURA 182 Introduzione Per quotatura si intende l insieme delle norme che permettono l indicazione esplicita delle dimensioni(lineari ed angolari) dell oggetto rappresentato. Poiché a ciascun disegno

Dettagli

MATERIA: GENIO RURALE PROGRAMMAZIONE CLASSI TERZE: INDIRIZZO GESTIONE

MATERIA: GENIO RURALE PROGRAMMAZIONE CLASSI TERZE: INDIRIZZO GESTIONE MATERIA: GENIO RURALE PROGRAMMAZIONE CLASSI TERZE: INDIRIZZO GESTIONE 1. OBIETTIVI 1.1 COMPETENZE CHIAVE DI CITTADINANZA: Si tratta di competenze che la reciproca integrazione e interdipendenza fra i saperi

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

PROGRAMMA ESTIMO 2014/2015 CLASSE 4 A cat ISIS Cologno Monzese ECONOMIA

PROGRAMMA ESTIMO 2014/2015 CLASSE 4 A cat ISIS Cologno Monzese ECONOMIA PROGRAMMA ESTIMO 2014/2015 CLASSE 4 A cat ISIS Cologno Monzese ECONOMIA Bisogni, beni e utilità Natura dei bisogni Classificazione beni e bisogni Concetto di utilità Legge dell utilità decrescente Utilità

Dettagli

Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Il numero 200013 2013

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

RECUPERO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO CARTESIANO

RECUPERO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO CARTESIANO RECUPER LE TRSFRMZINI GEMETRICHE NEL PIN CRTESIN La traslazione di punti, rette, parabole secondo un vettore assegnato 1 Data la retta r di equazione 0 e la traslazione secondo il vettore v (; ), scrivi

Dettagli

LEZIONE DI TOPOGRAFIA E RILIEVO

LEZIONE DI TOPOGRAFIA E RILIEVO LEZIONE DI TOPOGRAFIA E RILIEVO IS Antonio Cortigiani TOPOGRAFIA E RILIEVO Di Antonio Cortigiani La Topografia e la Cartografia La Topografia è quella disciplina che ha come scopo quello di fornire una

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2 SOLUZIONE DEL PROBLEMA CORSO DI ORDINAMENTO. Studiamo la funzione f(x) = x R). Notiamo che f( x) = 4 + x, con dominio R (infatti x + 4 per ogni 4 + ( x) = 4 + x = f(x), cioè la funzione è pari e il grafico

Dettagli

Programma (piano di lavoro) preventivo

Programma (piano di lavoro) preventivo I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E G u g l i e l m o M a r c o n i V e r o n a Programma (piano di lavoro) preventivo Anno Scolastico 2015/16 Materia Tecnologie e Tecniche

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

Ministero delle Infrastrutture e dei Trasporti

Ministero delle Infrastrutture e dei Trasporti Ministero delle Infrastrutture e dei Trasporti UNITÀ DI GESTIONE DELLE INFRASTRUTTURE PER LA NAVIGAZIONE ED IL DEMANIO MARITTIMO S.I.D. SISTEMA INFORMATIVO DEMANIO MARITTIMO GUIDA ALLA COMPILAZIONE DEL

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

La simmetria centrale

La simmetria centrale La simmetria centrale Una simmetria centrale di centro O è una isometria che associa al punto O se stesso e ad ogni altro punto P del piano il punto P in modo che O sia il punto medio del segmento PP.

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

r x P fig.1 coordinate cartesiane e polari nel piano

r x P fig.1 coordinate cartesiane e polari nel piano Posizione di un punto su un piano Come è noto, per definire la posizione di un punto su un piano, si usa introdurre una coppia di assi cartesiani ortogonali. Ognuno dei assi è messo in corrispondenza biunivoca

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08 UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08 Corso di Disegno Tecnico Industriale per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica

Dettagli

Elementi di topografia parte II

Elementi di topografia parte II Corso di Topografia Istituto Agrario S. Michele Elementi di topografia parte II prof. Maines Fernando Giugno 2010 Elementi di meccanica agraria pag. 164 Maines Fernando Sommario 1 Gli errori e il loro

Dettagli

Laboratorio di Rappresentazione e Modellazione dell Architettura

Laboratorio di Rappresentazione e Modellazione dell Architettura Laboratorio di Rappresentazione e Modellazione dell Architettura Seconda Università di Napoli Facoltà di Architettura Corso di Laurea in Architettura Laboratorio di Rappresentazione e Modellazione dell

Dettagli

Punti inaccessibili e artifici

Punti inaccessibili e artifici Appunti di Topografia Volume 1 Goso Massimiliano Punti inaccessibili e artifici Punti inaccessibili e Artifici. Revisione 1-06/11/2009 Autore : Massimiliano Goso Email: Copyright (c) 2009 Massimiliano

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo I TRIANGOLI 1. IL TRIANGOLO Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo In un triangolo: I lati e i vertici sono consecutivi fra loro. La somma degli angoli interni è sempre

Dettagli

Laboratorio di restauro Topografia e rilevamento. Lezione n.6 : Strumenti topografici per la misura di distanze e angoli

Laboratorio di restauro Topografia e rilevamento. Lezione n.6 : Strumenti topografici per la misura di distanze e angoli Laboratorio di restauro Topografia e rilevamento Dott. Andrea Piccin andrea_piccin@regione.lombardia.it Lezione n.6 : Strumenti topografici per la misura di distanze e angoli Breve storia degli strumenti

Dettagli

INDICE GENERALE PREFAZIONE...17 CAPITOLO 1 NOZIONI DI GEODESIA...19 CAPITOLO 2 SISTEMI DI RIFERIMENTO...57

INDICE GENERALE PREFAZIONE...17 CAPITOLO 1 NOZIONI DI GEODESIA...19 CAPITOLO 2 SISTEMI DI RIFERIMENTO...57 INDICE GENERALE PREFAZIONE...17 CAPITOLO 1 NOZIONI DI GEODESIA...19 1.1 Cenni storici sulla determinazione della forma della Terra...19 1.2 Distinzione tra geodesia, geografia e topografia...27 1.3 Superficie

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

AGRIMENSURA E RAPPRESENTAZIONE GRAFICA

AGRIMENSURA E RAPPRESENTAZIONE GRAFICA GIOVANNI NALIN Socio AIAPP n 467 AGRIMENSURA E RAPPRESENTAZIONE GRAFICA Premessa: Nella progettazione, ma anche nella gestione del "verde", sia esso pubblico o privato, riveste fondamentale importanza

Dettagli

Stazioni Totali serie RTS700

Stazioni Totali serie RTS700 Stazioni Totali serie RTS700 Comunicazione dati tramite porta USB oppure RS232 L ampio doppio display grafico da 3,8 con touch screen ed il CAD grafico ad aggiornamento in tempo reale del lavoro in svolgimento

Dettagli

Il rilievo topografico di dettaglio

Il rilievo topografico di dettaglio Il rilievo topografico di dettaglio Gli strumenti e le operazioni elementari In qualsiasi tipo di rilievo, per prima cosa, si deve procedere ad un accurato sopralluogo e redigere a vista un accurato schizzo

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

x + y x2 y 2. y = x y + 1 y(0) = 1 3. Determinare i punti di massimo e di minimo assoluto della funzione f(x, y) = 3x 2 + 4y 2 6x + 3.

x + y x2 y 2. y = x y + 1 y(0) = 1 3. Determinare i punti di massimo e di minimo assoluto della funzione f(x, y) = 3x 2 + 4y 2 6x + 3. COMPITO n. 1 x + y x2 y 2. y = x y + 1 y(0) = 1 3x 2 + 4y 2 6x + 3. nell insieme D = (x, y) R 2 : x 2 + y 2 4}. dove ω = (3x 2 + y) dx + (2x + y 2 ) dy e γ è la curva costituita dalle tre curve regolari

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Collegio dei Geometri di Bergamo I.S.I.S. Quarenghi

Collegio dei Geometri di Bergamo I.S.I.S. Quarenghi Collegio dei Geometri di Bergamo I.S.I.S. Quarenghi Corso di preparazione agli Esami di abilitazione alla libera professione di Geometra Sessione 009 TOPOGRAFIA Docente Ing. Aldo Piantoni Come misuriamo

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Una grande nave cargo

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1

Dettagli

matematica per le terze

matematica per le terze istituto professionale versari-macrelli, cesena lorenzo pantieri matematica per le terze Dipartimento di Matematica Anno scolastico 2015-2016 Questo lavoro spiega il programma di matematica agli alun-

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

Topografia e Costruzioni Topografia

Topografia e Costruzioni Topografia Idee per il tuo futuro Renato Cannarozzo Lanfranco Cucchiarini William Meschieri Vera Zavanella Topografia e Costruzioni Topografia per Geotecnico Sistemi di riferimento, strumenti e misure, operazioni

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 COMPETENZE ABILITA /CAPACITA CONOSCENZE

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 COMPETENZE ABILITA /CAPACITA CONOSCENZE ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA/SECONDA PROFESSIONALE CORSO SERALE DOCENTE: LUBRANO LOBIANCO ANIELLO Legenda: In

Dettagli

DIVISIONE DELLE AREE - ESERCIZI ESERCIZIO N.1

DIVISIONE DELLE AREE - ESERCIZI ESERCIZIO N.1 ESERCIZIO N.2 ESERCIZIO N.1 AB=80,34 m AC=144,86 m a=63 c,7261 Il terreno va suddiviso in tre parti S 1, S 2, S 3 direttamente proporzionali ai coefficienti m 1 =2,5 m 2 =3 m 3 =4 con due dividenti uscenti

Dettagli

la restituzione prospettica da singolo fotogramma

la restituzione prospettica da singolo fotogramma la restituzione prospettica da singolo fotogramma arch. francesco guerini francesco.guerini@gmail.com politecnico di Milano, Facoltà di Architettura e Società Laboratorio di Rappresentazione 1 Prof. Andrea

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Esercizio Decorazioni

Esercizio Decorazioni Nome Cognome Classe Data La riproduzione di questa pagina tramite fotocopie è autorizzata ai soli fini dell utilizzo nell attività didattica degli alunni delle classi che hanno adottato il testo. Esercizio

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

Laboratorio di restauro Topografia e rilevamento. Lezione n. 4 : elementi di fotogrammetria

Laboratorio di restauro Topografia e rilevamento. Lezione n. 4 : elementi di fotogrammetria Laboratorio di restauro Topografia e rilevamento Dott. Andrea Piccin andrea_piccin@regione.lombardia.it Lezione n. 4 : elementi di fotogrammetria principi della fotografia metrica la fotogrammetria aerea

Dettagli