MATEMATICA FINANZIARIA Appello del 26 gennaio Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli"

Transcript

1 MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S ad interessi composti al tasso annuo i = 4%. Si calcoli tale somma S se l interesse maturato in tre anni risulta di I = 900. S = Si calcoli poi il tasso interno di rendimento i dell operazione di investimento {S, S + I}/{0, 3} e lo si esprima in forma percentuale e su base annua. i = % Assumendo infine che l investimento frutti quattro rate costanti semestrali posticipate, anziché il rimborso unico S + I, e che mantenga lo stesso tasso interno di rendimento calcolato in precedenza, si calcoli il valore R della rata. R = Esercizio 2. Si consideri un titolo a cedola fissa trimestrale, di valore nominale C = 100, tasso nominale annuo del 8% e quotato alla pari. Si calcoli il tasso interno di rendimento in base annua del titolo i e lo si esprima in forma percentuale. Si calcoli poi la quotazione P che avrebbe il titolo se il tasso interno di rendimento fosse i = i + 1% e nell ipotesi che la durata del titolo sia di sette anni. i = % P = Nell ipotesi di acquisto del suddetto titolo settennale al prezzo P e secondo la legge esponenziale di tasso annuo i, si calcoli il valore montante M e il valore residuo V dell operazione in t = 0.25 anni. M = V =

2 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo per una somma S = , da restituirsi secondo un ammortamento in 4 rate trimestrali posticipate al tasso annuo i = 4%. L ammortamento prescelto è di tipo non standard e prevede che le prime due rate siano di e che anche le ultime due rate siano uguali tra loro. Si compili il piano di ammortamento, giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

3 Esercizio 4. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 sia in vigore la seguente struttura per scadenza dei fattori di sconto: v(0, s) = e s/10 con le scadenze s espresse in anni. In questo mercato, si calcolino: il prezzo P 1 e la duration D 1 espressa in anni di un TCF triennale con cedola annuale, tasso nominale del 4%, capitale facciale pari a C = 100. P 1 =, D 1 = anni il prezzo P 2, pattuito in t = 0, pagabile in T = 1 anno e 4 mesi, per avere il pagamento di 100 in s = 3 anni. P 2 = Esercizio 5. Un istituzione finanziaria detiene un portafoglio obbligazionario, del valore di 1 milione di, che prevede il pagamento di due poste: dopo un anno, di 400 mila, e dopo due anni di 700 mila. Assumendo che la struttura per i tassi di interesse sia piatta, si calcoli la duration D di tale attivo finanziario. D = anni Si supponga poi che l istituzione aggiunga al portafoglio 500 mila di obbligazioni, ripartiti in BOT a 3 mesi e TCF di duration pari a 5.1 anni. Si calcolino le quantità V BOT e V T CF di acquisto di BOT e TCF rispettivamente, affinché la duration complessiva del portafoglio risulti invariata. V BOT =, V T CF =

4 Esercizio 6. Si consideri un mercato azionario in cui siano quotati due titoli I 1 e I 2 con rendimenti attesi E 1 = 5%, E 2 = 2% e varianze V 1 = E 1, V 2 = E 2. La correlazione fra i due titoli sia ρ = 0.2. Fra le composizioni di portafoglio del tipo I = αi 1 + (1 α)i 2, si calcoli la composizione α a e la varianza V a del portafoglio efficiente con rendimento atteso pari a E a = 4%. α a = V a = Si calcoli poi la composizione α b e il rendimento E b (in forma percentuale) del portafoglio efficiente con varianza complessiva pari a V b = 3%. α b = E b = %

5 MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S ad interessi composti al tasso annuo i = 5%. Si calcoli tale somma S se l interesse maturato in tre anni risulta di I = 900. S = Si calcoli poi il tasso interno di rendimento i dell operazione di investimento {S, S + I}/{0, 3} e lo si esprima in forma percentuale e su base annua. i = % Assumendo infine che l investimento frutti quattro rate costanti semestrali posticipate, anziché il rimborso unico S + I, e che mantenga lo stesso tasso interno di rendimento calcolato in precedenza, si calcoli il valore R della rata. R = Esercizio 2. Si consideri un titolo a cedola fissa trimestrale, di valore nominale C = 100, tasso nominale annuo del 10% e quotato alla pari. Si calcoli il tasso interno di rendimento in base annua del titolo i e lo si esprima in forma percentuale. Si calcoli poi la quotazione P che avrebbe il titolo se il tasso interno di rendimento fosse i = i + 1% e nell ipotesi che la durata del titolo sia di sette anni. i = % P = Nell ipotesi di acquisto del suddetto titolo settennale al prezzo P e secondo la legge esponenziale di tasso annuo i, si calcoli il valore montante M e il valore residuo V dell operazione in t = 0.25 anni. M = V =

6 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo per una somma S = , da restituirsi secondo un ammortamento in 4 rate trimestrali posticipate al tasso annuo i = 5%. L ammortamento prescelto è di tipo non standard e prevede che le prime due rate siano di e che anche le ultime due rate siano uguali tra loro. Si compili il piano di ammortamento, giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

7 Esercizio 4. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 sia in vigore la seguente struttura per scadenza dei fattori di sconto: v(0, s) = e s/10 con le scadenze s espresse in anni. In questo mercato, si calcolino: il prezzo P 1 e la duration D 1 espressa in anni di un TCF triennale con cedola annuale, tasso nominale del 4%, capitale facciale pari a C = 100. P 1 =, D 1 = anni il prezzo P 2, pattuito in t = 0, pagabile in T = 1 anno e 4 mesi, per avere il pagamento di 100 in s = 3 anni. P 2 = Esercizio 5. Un istituzione finanziaria detiene un portafoglio obbligazionario, del valore di 1 milione di, che prevede il pagamento di due poste: dopo un anno, di 400 mila, e dopo due anni di 700 mila. Assumendo che la struttura per i tassi di interesse sia piatta, si calcoli la duration D di tale attivo finanziario. D = anni Si supponga poi che l istituzione aggiunga al portafoglio 500 mila di obbligazioni, ripartiti in BOT a 3 mesi e TCF di duration pari a 5.1 anni. Si calcolino le quantità V BOT e V T CF di acquisto di BOT e TCF rispettivamente, affinché la duration complessiva del portafoglio risulti invariata. V BOT =, V T CF =

8 Esercizio 6. Si consideri un mercato azionario in cui siano quotati due titoli I 1 e I 2 con rendimenti attesi E 1 = 6%, E 2 = 2% e varianze V 1 = E 1, V 2 = E 2. La correlazione fra i due titoli sia ρ = 0.2. Fra le composizioni di portafoglio del tipo I = αi 1 + (1 α)i 2, si calcoli la composizione α a e la varianza V a del portafoglio efficiente con rendimento atteso pari a E a = 4%. α a = V a = Si calcoli poi la composizione α b e il rendimento E b (in forma percentuale) del portafoglio efficiente con varianza complessiva pari a V b = 3%. α b = E b = %

9 MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S ad interessi composti al tasso annuo i = 6%. Si calcoli tale somma S se l interesse maturato in tre anni risulta di I = 900. S = Si calcoli poi il tasso interno di rendimento i dell operazione di investimento {S, S + I}/{0, 3} e lo si esprima in forma percentuale e su base annua. i = % Assumendo infine che l investimento frutti quattro rate costanti semestrali posticipate, anziché il rimborso unico S + I, e che mantenga lo stesso tasso interno di rendimento calcolato in precedenza, si calcoli il valore R della rata. R = Esercizio 2. Si consideri un titolo a cedola fissa trimestrale, di valore nominale C = 100, tasso nominale annuo del 12% e quotato alla pari. Si calcoli il tasso interno di rendimento in base annua del titolo i e lo si esprima in forma percentuale. Si calcoli poi la quotazione P che avrebbe il titolo se il tasso interno di rendimento fosse i = i + 1% e nell ipotesi che la durata del titolo sia di sette anni. i = % P = Nell ipotesi di acquisto del suddetto titolo settennale al prezzo P e secondo la legge esponenziale di tasso annuo i, si calcoli il valore montante M e il valore residuo V dell operazione in t = 0.25 anni. M = V =

10 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo per una somma S = , da restituirsi secondo un ammortamento in 4 rate trimestrali posticipate al tasso annuo i = 6%. L ammortamento prescelto è di tipo non standard e prevede che le prime due rate siano di e che anche le ultime due rate siano uguali tra loro. Si compili il piano di ammortamento, giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

11 Esercizio 4. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 sia in vigore la seguente struttura per scadenza dei fattori di sconto: v(0, s) = e s/10 con le scadenze s espresse in anni. In questo mercato, si calcolino: il prezzo P 1 e la duration D 1 espressa in anni di un TCF triennale con cedola annuale, tasso nominale del 4%, capitale facciale pari a C = 100. P 1 =, D 1 = anni il prezzo P 2, pattuito in t = 0, pagabile in T = 1 anno e 4 mesi, per avere il pagamento di 100 in s = 3 anni. P 2 = Esercizio 5. Un istituzione finanziaria detiene un portafoglio obbligazionario, del valore di 1 milione di, che prevede il pagamento di due poste: dopo un anno, di 400 mila, e dopo due anni di 700 mila. Assumendo che la struttura per i tassi di interesse sia piatta, si calcoli la duration D di tale attivo finanziario. D = anni Si supponga poi che l istituzione aggiunga al portafoglio 500 mila di obbligazioni, ripartiti in BOT a 3 mesi e TCF di duration pari a 5.1 anni. Si calcolino le quantità V BOT e V T CF di acquisto di BOT e TCF rispettivamente, affinché la duration complessiva del portafoglio risulti invariata. V BOT =, V T CF =

12 Esercizio 6. Si consideri un mercato azionario in cui siano quotati due titoli I 1 e I 2 con rendimenti attesi E 1 = 7%, E 2 = 2% e varianze V 1 = E 1, V 2 = E 2. La correlazione fra i due titoli sia ρ = 0.2. Fra le composizioni di portafoglio del tipo I = αi 1 + (1 α)i 2, si calcoli la composizione α a e la varianza V a del portafoglio efficiente con rendimento atteso pari a E a = 4%. α a = V a = Si calcoli poi la composizione α b e il rendimento E b (in forma percentuale) del portafoglio efficiente con varianza complessiva pari a V b = 3%. α b = E b = %

13 MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S ad interessi composti al tasso annuo i = 7%. Si calcoli tale somma S se l interesse maturato in tre anni risulta di I = 900. S = Si calcoli poi il tasso interno di rendimento i dell operazione di investimento {S, S + I}/{0, 3} e lo si esprima in forma percentuale e su base annua. i = % Assumendo infine che l investimento frutti quattro rate costanti semestrali posticipate, anziché il rimborso unico S + I, e che mantenga lo stesso tasso interno di rendimento calcolato in precedenza, si calcoli il valore R della rata. R = Esercizio 2. Si consideri un titolo a cedola fissa trimestrale, di valore nominale C = 100, tasso nominale annuo del 14% e quotato alla pari. Si calcoli il tasso interno di rendimento in base annua del titolo i e lo si esprima in forma percentuale. Si calcoli poi la quotazione P che avrebbe il titolo se il tasso interno di rendimento fosse i = i + 1% e nell ipotesi che la durata del titolo sia di sette anni. i = % P = Nell ipotesi di acquisto del suddetto titolo settennale al prezzo P e secondo la legge esponenziale di tasso annuo i, si calcoli il valore montante M e il valore residuo V dell operazione in t = 0.25 anni. M = V =

14 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo per una somma S = , da restituirsi secondo un ammortamento in 4 rate trimestrali posticipate al tasso annuo i = 7%. L ammortamento prescelto è di tipo non standard e prevede che le prime due rate siano di e che anche le ultime due rate siano uguali tra loro. Si compili il piano di ammortamento, giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

15 Esercizio 4. Si consideri un mercato di titoli obbligazionari in cui, al tempo t = 0 sia in vigore la seguente struttura per scadenza dei fattori di sconto: v(0, s) = e s/10 con le scadenze s espresse in anni. In questo mercato, si calcolino: il prezzo P 1 e la duration D 1 espressa in anni di un TCF triennale con cedola annuale, tasso nominale del 4%, capitale facciale pari a C = 100. P 1 =, D 1 = anni il prezzo P 2, pattuito in t = 0, pagabile in T = 1 anno e 4 mesi, per avere il pagamento di 100 in s = 3 anni. P 2 = Esercizio 5. Un istituzione finanziaria detiene un portafoglio obbligazionario, del valore di 1 milione di, che prevede il pagamento di due poste: dopo un anno, di 400 mila, e dopo due anni di 700 mila. Assumendo che la struttura per i tassi di interesse sia piatta, si calcoli la duration D di tale attivo finanziario. D = anni Si supponga poi che l istituzione aggiunga al portafoglio 500 mila di obbligazioni, ripartiti in BOT a 3 mesi e TCF di duration pari a 5.1 anni. Si calcolino le quantità V BOT e V T CF di acquisto di BOT e TCF rispettivamente, affinché la duration complessiva del portafoglio risulti invariata. V BOT =, V T CF =

16 Esercizio 6. Si consideri un mercato azionario in cui siano quotati due titoli I 1 e I 2 con rendimenti attesi E 1 = 8%, E 2 = 2% e varianze V 1 = E 1, V 2 = E 2. La correlazione fra i due titoli sia ρ = 0.2. Fra le composizioni di portafoglio del tipo I = αi 1 + (1 α)i 2, si calcoli la composizione α a e la varianza V a del portafoglio efficiente con rendimento atteso pari a E a = 4%. α a = V a = Si calcoli poi la composizione α b e il rendimento E b (in forma percentuale) del portafoglio efficiente con varianza complessiva pari a V b = 3%. α b = E b = %

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Appello del 15 luglio 2009

MATEMATICA FINANZIARIA Appello del 15 luglio 2009 MATEMATICA FINANZIARIA Appello del 15 luglio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000 MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12 Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con

Dettagli

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione,

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

Sommario AMMORTAMENTO... 4 AMMORTAMENTO ANNUO... 4 AMMORTAMENTO COSTANTE... 4 AMMORTAMENTO.DEGR... 5 AMMORTAMENTO.FISSO... 5 AMMORTAMENTO.PER...

Sommario AMMORTAMENTO... 4 AMMORTAMENTO ANNUO... 4 AMMORTAMENTO COSTANTE... 4 AMMORTAMENTO.DEGR... 5 AMMORTAMENTO.FISSO... 5 AMMORTAMENTO.PER... Sommario AMMORTAMENTO... 4 AMMORTAMENTO ANNUO... 4 AMMORTAMENTO COSTANTE... 4 AMMORTAMENTO.DEGR... 5 AMMORTAMENTO.FISSO... 5 AMMORTAMENTO.PER... 5 AMMORTAMENTO.VAR... 6 BOT.EQUIV... 7 BOT.PREZZO... 7 BOT.REND...

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 22 maggio 2009 Cognome Nome e matr..................................................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 27 settembre 2000

MATEMATICA FINANZIARIA Appello del 27 settembre 2000 MATEMATICA FINANZIARIA Appello del 27 settembre 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

1a 1b 2a 2b 3 4 5 6 6 5 4 3

1a 1b 2a 2b 3 4 5 6 6 5 4 3 MATEMATICA FINANZIARIA A e B - Prova scritta del 30 maggio 2000 1. (11 pti) Un tale deve pagare un debito di ammontare D. L ammortamento viene strutturato su 3 anni valutando gli interessi coi tassi variabili

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

1 MATEMATICA FINANZIARIA

1 MATEMATICA FINANZIARIA 1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 27 maggio 2010 Cognome Nome e matr..................................................................................

Dettagli

2. Scomporre la seconda rata in quota di capitale e quota d interesse.

2. Scomporre la seconda rata in quota di capitale e quota d interesse. Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..

Dettagli

Quesiti livello Application

Quesiti livello Application 1 2 3 4 Se la correlazione tra due attività A e B è pari a 0 e le deviazioni standard pari rispettivamente al 4% e all 8%, per quali dei seguenti valori dei loro pesi il portafoglio costruito con tali

Dettagli

SOLUZIONI ESERCIZI DA SVOLGERE

SOLUZIONI ESERCIZI DA SVOLGERE Vivere l azienda 2 Ripasso del programma di prima classe Soluzioni pag. 1 di 7 SOLUZIONI ESERCIZI DA SVOLGERE Ripasso del programma di prima classe 1.6 CALCOLO DELLE PERCENTUALI DI COMPOSIZIONE DEI FINANZIAMENTI

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE INFORMAZIONI SULLA BANCA Denominazione Iscrizione in albi e/o registri Indirizzo della sede legale FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE Banca Euromobiliare S.p.A.

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

Corso di Asset and liability management. Il rischio di interesse sul banking book ESERCIZI

Corso di Asset and liability management. Il rischio di interesse sul banking book ESERCIZI Università degli Studi di Parma Corso di Asset and liability management Il rischio di interesse sul banking book ESERCIZI Prof.ssa Paola Schwizer Anno accademico 2010-2011 Riclassificazione del bilancio

Dettagli

FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO

FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO scheda prodotto FINANZIAMENTO IMPRESA CONVENZIONE FIDIMPRESA LAZIO rilascio del 30.08.2013 FOGLIO INFORMATIVO FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO INFORMAZIONI SULLA BANCA Denominazione

Dettagli

PRESTITO SOCI BPC TASSO MISTO

PRESTITO SOCI BPC TASSO MISTO scheda prodotto PRESTITO SOCI BPC rilascio del 02.05.2014 FOGLIO INFORMATIVO PRESTITO SOCI BPC TASSO MISTO INFORMAZIONI SULLA BANCA Denominazione e forma giuridica BANCA POPOLARE DEL CASSINATE Società

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

MATEMATICA FINANZIARIA Appello del 30 giugno 2016

MATEMATICA FINANZIARIA Appello del 30 giugno 2016 MATEMATICA FINANZIARIA Appello del 30 giugno 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 10 Contenuti della lezione Valutazione di titoli obbligazionari

Dettagli

Calcolo economico e finanziario: Esercizi da svolgere. A) Capitalizzazione semplice

Calcolo economico e finanziario: Esercizi da svolgere. A) Capitalizzazione semplice Calcolo economico e finanziario: Esercizi da svolgere A) Capitalizzazione semplice A.1) Il capitale di 3.000 viene impiegato al tasso i=0,07 per 4 anni. Calcolare il montante. A.2) Il capitale di 3.500

Dettagli

Esempi di Asset swap

Esempi di Asset swap Esempi di Asset swap La società A e la società B possiedono entrambe un portafoglio di attività finanziarie La società A possiede BTP 1/07/19 con cedola semestrale del 3, 375% per un valore nominale di

Dettagli

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005 Matematica finanziaria: svolgimento prova di esame del 5 luglio 5. [5 punti cleai, 5 punti altri] Prestiamo e a un amico. Ci si accorda per un tasso di remunerazione del 6% annuale (posticipato), per un

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO INFORMAZIONI SULLA BANCA Denominazione Iscrizione in albi e/o registri Indirizzo della sede legale Banca Euromobiliare S.p.A. Iscritta

Dettagli

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una

Dettagli

SOMMARIO. Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008

SOMMARIO. Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008 SOMMARIO Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008 Art. 2 Autorizzazioni di spesa per l anno 2008 Art. 3 Variazioni alle previsioni del bilancio pluriennale

Dettagli

MATEMATICA FINANZIARIA Appello del 7 settembre 2010 programma a.a. 2009 10

MATEMATICA FINANZIARIA Appello del 7 settembre 2010 programma a.a. 2009 10 MATEMATICA FINANZIARIA Appello del 7 settembre 2010 programma a.a. 2009 10 Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Elementi di matematica finanziaria utili alla comprensione di alcune parti del Corso Definizione di operazione finanziaria Successione di importi di segno

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%.

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%. ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 16 maggio 2008 Cognome Nome e matr..................................................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2001

MATEMATICA FINANZIARIA Appello del 10 luglio 2001 MATEMATICA FINANZIARIA Appello del 10 luglio 2001 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009. Assestamento.

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009. Assestamento. REGIONE TOSCANA Proposta di Legge Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009 Assestamento SOMMARIO Art. 1 - Variazioni delle previsioni di entrata

Dettagli

NOTA INFORMATIVA OPERAZIONI DI FINANZA DERIVATA (SWAP)

NOTA INFORMATIVA OPERAZIONI DI FINANZA DERIVATA (SWAP) NOTA INFORMATIVA OPERAZIONI DI FINANZA DERIVATA (SWAP) Art. 62 del D.L. 25 giugno 2008, n. 112, convertito, con modificazioni, dalla legge 6 agosto 2008, n. 133, sostituito dall art. 3 comma 1 della legge

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un

Dettagli

1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università

Dettagli

Foglio Informativo del Servizio/Prodotto. PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015

Foglio Informativo del Servizio/Prodotto. PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015 Foglio Informativo del Servizio/Prodotto INFORMAZIONI SULLA BANCA PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015 Banca Popolare del Lazio Via Martiri

Dettagli

ESERCIZI DI CALCOLO FINANZIARIO (Capitolo 27)

ESERCIZI DI CALCOLO FINANZIARIO (Capitolo 27) ESERCIZI DI CALCOLO FINANZIARIO (Capitolo 27) Elementi di calcolo finanziario EEE 2012-2013 INTERESSE SEMPLICE Dato un capitale di : 1000 determinare l'interesse per giorni: 73 al tasso annuo del: 8% n

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 7 Costituzione di un capitale Classificazione Fondo di

Dettagli

Foglio Informativo CR_ACC-MTP01. Foglio Informativo

Foglio Informativo CR_ACC-MTP01. Foglio Informativo Foglio Informativo Infomazioni sulla Banca Banca A.G.C.I. S.p.A. Sede legale e Direzione Generale: Via Alessandrini, 15 40126 Bologna (BO) Capitale sociale Euro 18.000.000 i.v. Riserve per sovrapprezzo

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA INTERESSE SEMPLICE Calcolo dell interesse 1. Un capitale di 3.400 fu impiegato per 3 mesi al tasso del 5%. Qual è l interesse prodotto? 2. Un capitale di 1.725 venne impiegato per

Dettagli

ISTITUZIONI DI ECONOMIA AZIENDALE

ISTITUZIONI DI ECONOMIA AZIENDALE ISTITUZIONI DI ECONOMIA AZIENDALE INVESTIMENTI IN TITOLI 1 GLI INVESTIMENTI IN TITOLI OPERAZIONI DI INVESTIMENTO FINANZIARIO 1. Operazioni di prestito attivo 2. Investimenti in immobilizzazioni non caratteristiche

Dettagli

Nome e cognome/ragione sociale Sede (indirizzo) Telefono e e-mail

Nome e cognome/ragione sociale Sede (indirizzo) Telefono e e-mail INFORMAZIONI SULLA BANCA Cassa di Risparmio di Cento S.p.A. Sede Legale e Direzione generale: Via Matteotti 8/B - 44042 CENTO (FE) Tel. 051 6833111 - Fax 051 6833237 CODICE FISCALE, PARTITA IVA e Numero

Dettagli