11 Teorema dei lavori virtuali

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "11 Teorema dei lavori virtuali"

Transcript

1 Teorema dei lavori virtuali Teorema dei lavori virtuali Si consideri una trave ad asse rettilineo figura.). Per essa si definisce sistema carichi sollecitazioni CS) l insieme di tutte le grandezze di tipo statico S CS = { p,q,c,m t,p i,q j, C k, M l,n,t,m,m t }, cioè l insieme di tutte le funzioni che descrivono le forze esterne ed interne ossia rispettivamente i carichi, distribuiti e concentati, e le caratteristiche della sollecitazione). Fig.. Nell ambito dei sistemi CS è possibile distinguere il sottoinsieme dei sistemi equilibrati definiti come i sistemi che soddisfano gli assiomi di Eulero. Si osservi che, nel caso in esame, gli assiomi di Eulero sono equivalenti alle equazioni indefinite di equilibrio dn ds = p, dt ds = q, dm ds = T c, dm t ds = m t..) associate alle condizioni di raccordo in corrispondenza delle sezioni in cui le grandezze statiche hanno discontinuità e alle condizioni nei limiti. Analogamente possiamo definire sistema spostamenti deformazioni SD) l insieme di tutte le grandezze di tipo cinematico: S SD = {w, v T,v M, ϑ, ε, δ, κ, γ}, cioè l insieme di tutte le funzioni regolari) che descrivono gli spostamenti e le deformazioni della trave. Nell insieme dei sistemi SD è possibile individuare Corso di Scienza delle Costruzioni 98 A. A. 9-

2 Teorema dei lavori virtuali il sottoinsieme costituito dai sistemi congruenti definiti come i sistemi che soddisfano le equazioni di congruenza: ε = dw ds, δ = dv T ds, κ = d v M ds, γ = dϑ ds..) Si considerino ora due sistemi S CS ed S SD in generale non correlati tra loro, cioé tali che gli spostamenti e le deformazioni del S SD non sono in generale prodotti dai carichi e dalle sollecitazioni del S CS ). Definiamo il lavoro virtuale esterno come il lavoro compiuto dai carichi esterni del S CS per gli spostamenti del S SD e v = [p w + q v + c dv M ds + Q j vg j )+ C k ) ] + m t ϑ ds + Pi wg i )+ dv MG k ) ds ) + M l ϑg l);.3) analogamente, il lavoro virtuale interno come il lavoro delle sollecitazioni del S CS per le deformazioni del S SD [ ] i v = N ε + T δ + M κ + Mt γ ds..) Si dimostra il seguente teorema. Teorema dei lavori virtuali. Considerati due sistemi S SD e S CS, il primo congruente ed il secondo equilibrato, il lavoro virtuale esterno compiuto dai carichi del S CS per gli spostamenti del S SD è uguale al lavoro virtuale interno compiuto dalle sollecitazioni del S CS per le deformazioni del S SD. e v = i v..5) Si osservi che in generale i due sistemi S CS e S SD non sono correlati tra loro; il teorema è valido qualunque sia il modello costitutivo che caratterizza la trave; se la trave è rigida, le deformazioni sono identicamente nulle, dunque i v = ; in tal caso il teorema assume la ben nota formulazione che per un corpo rigido in equilibrio il lavoro compiuto dalle forze esterne è nullo per qualunque campo di spostamenti virtuali rigidi; è possibile inoltre provare che: se per il sistema S CS,è valida l equazione dei lavori virtuali i v = e v per ogni S SD congruente, ciò implica che il S CS è equilibrato; se per un sistema il S SD è valida l equazione dei lavori virtuali per ogni S CS equilibrato, allora il sistema S SD è congruente. Si riporta di seguito lo schema di dimostrazione del teorema dei lavori virtuali riferendosi al semplice caso di una trave rettilinea linearmente elastica soggetta solo a carichi assiali e a sforzo normale rappresentata in figura.. Il lavoro virtuale interno è pari a: i v = N ε ds. Poich e per ipotesi il sistema SD è congruente, si ha ε = dw/ds. Integrando per parti si ha: i v = N dw [ ] ds ds = dn Nw ds w ds. Per ipotesi il sistema CS è equilibrato, pertanto si ha dn/ds = p, N) =P, N) = P. Pertanto i v = N)w) N)w) + = P w)+p w) + pwds = pwds = e v.. Applicazione alle travi linearmente elastiche Nel caso di una trave linearmente elastica, la soluzione del problema di equilibrio elastico è definita dalle grandezze di spostamento {w, v T,v M, ϑ}, di Corso di Scienza delle Costruzioni 99 A. A. 9- Corso di Scienza delle Costruzioni A. A. 9-

3 Fig.. deformazione {ε, δ, κ, γ}, e di sollecitazione {N, T, M, M t }, che soddisfano le equazioni costitutive ε = N EA + αt, δ = T GA χ, κ = M EJ + αt, γ = M t GJ q,.6) di equilibrio.) e di congruenza.). Pertanto, l insieme delle grandezze di spostamento e di deformazione costituiscono un sistema S SD congruente, per il quale può applicarsi il teorema dei lavori virtuali. In virtù delle.6), indicando con un asterisco le grandezze riferite ad un generico sistema S CS equilibrato, il lavoro virtuale interno assume quindi l espressione ) ) ] M i v = [ N N EA + αt +T T GA χ+m EJ + αt +Mt M t GJ q ds..7) Esempio. Si determinino l abbassamento e la rotazione della sezione in B per la trave elastica in figura.3 utilizzando il teorema dei lavori virtuali. Fig..3 Si assuma come sistema S SD l insieme degli spostamenti e delle deformazioni della stessa trave di figura.3, assumendo come positivi i versi riportati in figura. Per quanto osservato prima, se queste funzioni sono le soluzioni del problema di equilibrio della trave, il sistema S SD considerato è sicuramente congruente. Si consideri ora il sistema di figura.. Esso è costituito dalla stessa trave considerata in precedenza, a cui sono applicate due coppie di valore unitario, ed è caratterizzato dalle sollecitazioni N, T, M. Il sistema di carichi e sollecitazioni così definito è equilibrato, per cui è possibile applicare il teorema dei lavori virtuali combinando i carichi e le sollecitazioni di questo S CS con gli spostamenti e le deformazioni del sistema S SD di figura.3. Fig.. Si ha N = ε = N EA = SD) T = F δ = T GA χ = F GA χ CS) M = F s) κ = M EJ = F s) EJ N = T = M = Il lavoro virtuale esterno è il lavoro compiuto dalle forze esterne del sistema S CS per gli spostamenti corrispondenti letti nel sistema S SD. e due coppie unitarie applicate in A e B compiono lavoro rispettivamente per le rotazioni delle sezioni A e B del sistema S CS di figura.3. Poiché in A vi è un incastro si ha ϕa) =, per cui e v =ϕb) ϕa) = ϕb). Corso di Scienza delle Costruzioni A. A. 9- Corso di Scienza delle Costruzioni A. A. 9-

4 Il lavoro virtuale interno è invece dato da: [ i v = N N EA +T T GA χ+m M ] ds = EJ Applicando il teorema dei lavori virtuali si ha dunque: e v = i v ϕb) = F EJ. FEJ ) s) ds = F EJ. Per determinare l abbassamento della sezione B è necessario scegliere un altro sistema S CS in maniera tale che in esso vi sia una forza che compia lavoro per lo spostamento incognito vb). A tal fine si consideri il sistema di figura.5. Perché esso sia equilibrato si ha H A =, V A = F, M A =, e ove va), ϕa) e vb) sono gli spostamenti letti nel sistema S SD. Il lavoro virtuale interno è pari a: i v [ = FGA χ s) FEJ )] s) ds = F GA χ + F3 EJ, dunque: e v = i v vb) = F GA χ + F3 EJ. Esempio. Si determini l abbassamento della sezione di mezzeria M per la trave in figura.6 utilizzando il teorema dei lavori virtuali. Fig..6 Si assuma la trave data come sistema S SD. Tale sistema è isostatico e, non essendovi forze esterne attive applicate, le reazioni vincolari e le caratteristiche della sollecitazione sono identicamente nulle. Risulta quindi: N = T = M = s) Il lavoro virtuale esterno è pari a: e v Fig..5 =vb) va) + ϕa) = vb), ε = N EA + αt = SD) δ = T GA χ = κ = M EJ + αt = α t H Come sistema S CS si assume un sistema geometricamente identico al precedente, ma con una forza esterna che compia lavoro per lo spostamento richiesto figura.7). Perché questo sistema sia equilibrato, le reazioni vincolari Corso di Scienza delle Costruzioni 3 A. A. 9- Corso di Scienza delle Costruzioni A. A. 9-

5 Fig..7 devono assumere il valore riportato in figura.8, e le caratteristiche della sollecitazione risultano N = N = CS) T = M = s s, ) T = M = s) s ), Fig..8 Il lavoro virtuale esterno vale e v =vm) va) vb) = vm) δ, mentre il lavoro virtuale interno è pari a i v = M αt ds = α t H s ds + Applicando il teorema dei lavori virtuali si ha dunque e v = i v vm) = α t H + δ. ) s)ds = α t H. Esempio 3. Si determini il salto dell abbassamento nella sezione C per la struttura in figura.9 utilizzando il teorema dei lavori virtuali, nell ipotesi che la trave abbia sezione rettangolare di altezza H. Fig..9 Si assuma la trave data come sistema S SD. Come sistema S CS si assume un sistema geometricamente identico al precedente, con due carichi unitari applicati in corrispondenza della sezione C, scelti in maniera tale che compiano lavoro opposto per gli spostamenti v + C e v C figura.). Corso di Scienza delle Costruzioni 5 A. A. 9- Corso di Scienza delle Costruzioni 6 A. A. 9-

6 CD s,) N = SD) T = qs M = qs + q CS) N = T = M = s Fig.. e reazioni vincolari che rendono equilibrato quest ultimo sistema sono riportate sempre in figura., per cui il lavoro virtuale esterno è pari a: e v =v + C) v C) + va) ϕa) ve) = [[v]] C. Per valutare il lavoro virtuale interno bisogna risolvere staticamente i due sistemi e ricavare le leggi di variazione delle caratteristiche della sollecitazione. Risulta: AB BC s,) N = SD) T = M = q s,) N = SD) T = M = q N = CS) T = M = N = CS) T = M = s DE s,) N = q SD) T = M = CS) N = T = M =. Il lavoro virtuale interno è pari quindi a: ) q i v = EJ + αt ds + s) q EJ ds+ [ + ) qs ) GA χ + s) q EJ qs + ) q ) ds = q EA EA + q GA χ + 7 Applicando il teorema dei lavori virtuali si ha dunque: e v = i v [[v]] C = q EA + q GA χ + 7 q EJ +αt, )] ds+ q EJ +αt. essendo t = t/h. Esempio. Si determini per la travatura reticolare in figura. lo spostamento del nodo C utilizzando il teorema dei lavori virtuali. a travatura è soggetta ad una variazione termica sull asta AE. Poiché la travatura è isostatica, la soluzione statica non dipende dalla variazione termica, per cui è possibile determinare le reazioni vincolari e gli sforzi nelle aste con i metodi studiati nel paragrafo 7... Si riportano di seguito i risultati. Corso di Scienza delle Costruzioni 7 A. A. 9- Corso di Scienza delle Costruzioni 8 A. A. 9-

7 Asta AB N BC Fig.. Asta N AB F BC F CD F AE F ED F BE CE Per determinare lo spostamento richiesto è necessario scegliere un sistema da assumere come S CS nel quale vi sia un carico che compie lavoro per lo spostamento stesso. Poiché non è nota a priori la direzione di tale spostamento, è necessario applicare due volte il teorema dei lavori virtuali per determinare le due componenti di spostamento in direzione orizzontale e verticale. Sia assuma quindi come primo S CS il sistema in figura.. Per esso risulta: CD 3 AE 3 ED BE CE Fig.. Applicando il teorema dei lavori virtuali, si ha: e v =vc) va) 3 vd) = vc). Il lavoro virtuale interno in questo caso assume una forma particolarmente semplice. Infatti è noto che nelle travature reticolari sono identicamente nulli taglio e momento flettente su tutte le aste, mentre lo sforzo normale è costante Corso di Scienza delle Costruzioni 9 A. A. 9- Corso di Scienza delle Costruzioni A. A. 9-

8 su ciascun asta. Dunque si ha: ) N i v = N EA + αt ds = = n aste i= N i ) Ni EA + αt i. i n aste i Ni i= ) N EA + αt ds = i Riassumendo quindi nella seguente tabella gli sforzi normali nelle aste calcolati nel S SD enel S CS, si ha: i v = + Asta N t N AB F BC F CD F 3 AE F t 3 ED F BE CE ) F EA ) F EA + α t F ) 3 EA ) F + EA + 3 F EA = + 3) F EA + α t ; e v = i v vc) = + 3) F EA + α t. Per calcolare la componente orizzontale dello spostamento richiesto scegliamo un secondo sistema S CS figura.3). Il lavoro virtuale esterno è pari a: e v =wc) + va) wa) vd) = wc). Indicando con un doppio asterisco le grandezze riferite a questo sistema S CS, si ha: i v = Asta N t N AB F BC F CD F 3 AE F t ED F BE CE ) F + EA + 3 ) F EA + α t + F EA e v = i v wc) = F EA + 3 α t. F ) EA = F EA + 3 α t ; ) F + EA Corso di Scienza delle Costruzioni A. A. 9- Corso di Scienza delle Costruzioni A. A. 9-

9 Fig..3 Dunque lo spostamento del nodo C è, rispetto al riferimento indicato in figura., il vettore uc) = vc) e + wc) e = = + 3) F EA + α t ) F e + EA + 3 ) α t e. In figura. sono riportati i vettori spostamento corrispondenti al contributo dato dai carichi e dalla variazione termica. Fig.. Corso di Scienza delle Costruzioni 3 A. A. 9-

7 Applicazioni ulteriori

7 Applicazioni ulteriori 7 Applicazioni ulteriori 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse 7.1.1 Analisi cinematica Si consideri la struttura in figura 7.1: i gradi di libertà sono pari a l =3n c v =3 0 3 = 0,

Dettagli

6 Statica delle travi

6 Statica delle travi 6 Statica delle travi 6 Statica delle travi 6.1 Forze esterne Si consideri un generico corpo tridimensionale. possono agire i seguenti tipi di forze esterne: forze di volume b = b(x): [b] =[FL 3 ]; Si

Dettagli

Prova d esame del 30 giugno 2010 Soluzione

Prova d esame del 30 giugno 2010 Soluzione UNIVERSITÀ I PIS Facoltà di Ingegneria Meccanica nalitica e dei Continui (CS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (C Ing. Nucleare e della Sicurezza e Protezione) Scienza

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI Alcune proprietà della deformata dei portali Si esaminano nel seguito alcune proprietà della deformata dei portali. Queste proprietà permettono

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Esercizi di Statica. Giacinto A. PORCO Giovanni FORMICA. Corso dell A.A. 2003/2004 titolare prof. G. A. Porco. acuradi

Esercizi di Statica. Giacinto A. PORCO Giovanni FORMICA. Corso dell A.A. 2003/2004 titolare prof. G. A. Porco. acuradi Esercizi di Statica Corso dell A.A. 2003/2004 titolare prof. G. A. Porco acuradi Giacinto A. PORCO Giovanni FORMICA Esercizi di Statica A. G. Porco, G. Formica 1 Indice 1 Calcolo delle reazioni vincolari

Dettagli

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile e Ambientale Università di Trieste Piazzale Europa 1, Trieste Sistemi di travi Corsi di Laurea in

Dettagli

STRUTTURE RETICOLARI

STRUTTURE RETICOLARI TRUTTURE RETICOARI i considerino un arco a tre cerniere, costituito da due corpi rigidi rappresentabili come travi collegate da cerniere puntuali. upponiamo che in corrispondenza della cerniera interna

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Relazione di fine tirocinio. Andrea Santucci

Relazione di fine tirocinio. Andrea Santucci Relazione di fine tirocinio Andrea Santucci 10/04/2015 Indice Introduzione ii 1 Analisi numerica con COMSOL R 1 1.1 Il Software.................................... 1 1.1.1 Geometria................................

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

McGraw-Hill. Tutti i diritti riservati

McGraw-Hill. Tutti i diritti riservati Copyright 004 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a Mosca 1931 Problema 1. Arco Trave di copertura Tirante bielle Membrana di copertura Fig. P1.1 Analizzare il sistema in

Dettagli

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2 Indice 1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale..................... 1 1.2 Un esempio................................. 2 2 Spazi Vettoriali, Spazio e Tempo 7 2.1 Cos

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-3-2012

Dettagli

3 - Analisi statica delle strutture

3 - Analisi statica delle strutture 3 - nalisi statica delle strutture Metodo analitico ü [.a. 11-1 : ultima revisione 3 settembre 11] Si consideri una struttura piana S, costituita da t tratti rigidi, e si immagini di rimuovere tutti i

Dettagli

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE v 1.0 1 I PROVA DI VALUTAZIONE 15 Novembre 2006 - Esercizio 2 Data la struttura di figura, ricavare

Dettagli

TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE

TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE Università degli Studi di Palermo Facoltà di Ingegneria Dipartimento di Ingegneria Strutturale e Geotecnica TRAVI SU SUOO AA WINKER, INTERAZIONE TERRENO-FONDAZIONE Prof.. Cavaleri Ing. F. Di Trapani TRAVI

Dettagli

Le coperture in legno

Le coperture in legno CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 Le coperture in legno LA CAPRIATA Tra scienza ed arte del costruire «Il forte intreccio di storia, tecnologia, architettura e cultura materiale,

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Strutture in Acciaio:

Strutture in Acciaio: Strutture in Acciaio: i Verifica degli elementi strutturali STATI LIMITE DI ESERCIZIO STATI LIMITE ULTIMI DELLE SEZIONI (RESISTENZA DELLE SEZIONI) Si possono considerare due stati limite: 1. Stato

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

17 - I corollari di Mohr per il calcolo degli spostamenti

17 - I corollari di Mohr per il calcolo degli spostamenti 17 - I corollari di ohr per il calcolo degli spostamenti ü [.a. 011-01 : ultima revisione settembre 01] Relazioni fondamentali : l' analogia In questo capitolo si utilizza la teoria dell'analogia di ohr

Dettagli

Inflessione delle travi

Inflessione delle travi Inflessione delle travi In precedenza si è esplicitato il legame sollecitazione-curvature-tensioni nelle travi, ma non è ancora stato affrontato il problema del calcolo delle frecce di inflessione Il calcolo

Dettagli

za Bozza - Appunti di Meccanica dei Solidi/Statica, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - Travature Piane con Elementi Elastici

za Bozza - Appunti di Meccanica dei Solidi/Statica, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - Travature Piane con Elementi Elastici 6 Travature Piane con Elementi Elastici 24 Introduzione La meccanica, sotto lo stimolo delle diverse applicazioni, costruisce modelli di comportamento dei corpi materiali che si possono ordinare per complessità

Dettagli

Analisi limite di un telaio

Analisi limite di un telaio Analisi limite di un telaio Si consideri il portale sotto, tre volte iperstatico, dotato di un momento limite superiore ed inferiore costante e pari a M0 Si assuma inoltre che lo sforzo normale (ed il

Dettagli

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a.

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. 1 Caso studio Si vogliono eseguire degli interventi di ristrutturazione di un edificio esistente adibito a civile abitazione

Dettagli

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE Per un corretto dimensionamento del martinetto a ricircolo di sfere è necessario operare come segue: definizione dei dati del dell applicazione (A)

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - 11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello

Dettagli

Collegamenti nelle strutture

Collegamenti nelle strutture 1 Collegamenti nelle strutture Le tipologie delle unioni bullonate o saldate sono molteplici e dipendono essenzialmente da: caratteristiche dell unione: nell ambito di quelle bullonate si possono avere

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

MODULO GRAT PROCEDURA TRASFXY TEST CASES

MODULO GRAT PROCEDURA TRASFXY TEST CASES TC GRAT/TrasfXY 1 MODULO GRAT PROCEDURA TRASFXY TEST CASES 1 TC TRASFXY 1 - Graticcio a 17 aste carico nel perimetro aste ripartizione in direz. Y Trave 1 Trave 2 Trave 3 Traverso 1 Traverso 2 Traverso

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Fondamenti di Meccanica delle Strutture

Fondamenti di Meccanica delle Strutture Università degli Studi Roma Tre Facoltà di Architettura Fondamenti di Meccanica delle Strutture Appunti sul Giovanni Formica Roma, 27 gennaio 214 Sommario 1 Trave di Timoshenko 4 1.1 Posizione del problema:

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Le travi reticolari sono strutture formate da aste rettilinee, mutuamente collegate

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

Documento #: Doc_a8_(9_b).doc

Documento #: Doc_a8_(9_b).doc 10.10.8 Esempi di progetti e verifiche di generiche sezioni inflesse o presso-tensoinflesse in conglomerato armato (rettangolari piene, circolari piene e circolari cave) Si riportano, di seguito, alcuni

Dettagli

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente: Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto della scala in c.a da realizzarsi nel rifugio Cima Bossola in località Marciana NORMATIVA DI RIFERIMENTO La normativa

Dettagli

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla:

pure rivolta verso sinistra (se l accelerazione è positiva). Per l equilibrio dinamico del corpo la somma di tali forze deve essere nulla: Oscillatore semplice Vibrazioni armoniche libere o naturali k m 0 x Se il corpo di massa m è spostato di x verso destra rispetto alla posizione di riposo, è soggetto alla forza elastica di richiamo della

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

RELAZIONE Ai sensi del Cap. 10.2 delle N.T.C. 2008 ANALISI E VERIFICHE SVOLTE CON L' AUSILIO DI CODICI DI CALCOLO

RELAZIONE Ai sensi del Cap. 10.2 delle N.T.C. 2008 ANALISI E VERIFICHE SVOLTE CON L' AUSILIO DI CODICI DI CALCOLO Comune di Calatabiano Provincia di Catania RELAZIONE Ai sensi del Cap. 10.2 delle N.T.C. 2008 ANALI E VERIFICHE SVOLTE CON L' AULIO DI CODICI DI CALCOLO PROGETTO PER LA MESSA IN CUREZZA DEL MURO DI CONFINE

Dettagli

La misura di forza avviene mediante celle di carico (dette anche Bilance o Dinamometri).

La misura di forza avviene mediante celle di carico (dette anche Bilance o Dinamometri). Misure di forza 1 Misure di forza La misura di forza avviene mediante celle di carico (dette anche Bilance o Dinamometri). Le celle di carico possono essere suddivise in due categorie che, in funzione

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2015-2016 A. Ponno (aggiornato al 19 gennaio 2016) 2 Ottobre 2015 5/10/15 Benvenuto, presentazione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Dinamica del corpo rigido: Appunti.

Dinamica del corpo rigido: Appunti. Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,

Dettagli

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J. Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,

Dettagli

SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo

SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo EI, ma deformabile termicamente; le variazioni termiche nei 2 tratti sono opposte di segno, nulle entrambe lungo la linea d'assi.

Dettagli

LA TRAVE DI FONDAZIONE SU SUOLO ELASTICO STRATIFICATO DI SPESSORE LIMITATO CON MODULO ELASTICO VARIABILE CON LA PROFONDITÀ

LA TRAVE DI FONDAZIONE SU SUOLO ELASTICO STRATIFICATO DI SPESSORE LIMITATO CON MODULO ELASTICO VARIABILE CON LA PROFONDITÀ LA TRAVE DI FONDAZIONE SU SUOLO ELASTICO STRATIFICATO DI SPESSORE LIMITATO CON MODULO ELASTICO VARIABILE CON LA PROFONDITÀ Giovanni Dalerci, Rossella Bovolenta Università degli Studi di Genova Dipartimento

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

Definizione Statico-Cinematica dei vincoli interni

Definizione Statico-Cinematica dei vincoli interni Definizione Statico-Cinematica dei vincoi interni Esempi deo schema strutturae di una struttura in cemento armato e di due strutture in acciaio in cui sono presenti dei vincoi interni cerniera. Vincoo

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne

Dettagli

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2014/2015 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2015 1. Lunedì 2/03/2015, 11 13. ore: 2(2) Presentazione

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Horae. Horae Software per la Progettazione Architettonica e Strutturale

Horae. Horae Software per la Progettazione Architettonica e Strutturale 1 IL MATERIALE X-LAM Nel programma CDSWin il materiale X-LAM pu ò essere utilizzato solo come elemento parete verticale. Quindi, dal punto di vista strutturale, il suo comportamento è prevalentemente a

Dettagli

Istruzioni per l uso dei programmi MomCad, TraveCon, TraveFon

Istruzioni per l uso dei programmi MomCad, TraveCon, TraveFon Istruzioni per l uso dei programmi MomCad, TraveCon, TraveFon I tre programmi sono utility generali preparate appositamente per gli studenti (ma che potrebbero essere utili anche per professionisti). MomCad

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011. Strutture murarie. Analisi con il metodo degli elementi finiti

CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011. Strutture murarie. Analisi con il metodo degli elementi finiti CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 Strutture murarie Analisi con il metodo degli elementi finiti ANALISI DELLE STRUTTURE MURARIE CON IL METODO DEGLI ELEMENTI FINITI (1) Il metodo

Dettagli

Combinazione dei carichi

Combinazione dei carichi Combinazione dei carichi Un passo fondamentale del progetto di un opera civile è sicuramente l analisi delle forze agenti su essa che sono necessarie per l individuazione delle corrette sollecitazioni

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

Esercitazione 01: Calcolo degli spostamenti mediante il teorema del Castigliano

Esercitazione 01: Calcolo degli spostamenti mediante il teorema del Castigliano Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo II Prof. Leonardo BERTINI Ing. Ciro SANTUS Esercitazione 01: Calcolo degli spostamenti mediante il teorema del Castigliano

Dettagli

ARGOMENTI DI TECNICA DELLE COSTRUZIONI INDICE

ARGOMENTI DI TECNICA DELLE COSTRUZIONI INDICE Giuseppe Stagnitto Erica Barzoni ARGOMENTI DI TECNICA DELLE COSTRUZIONI Applicazioni ed approfondimenti del Corso di FONDAMENTI DI TECNICA DELLE COSTRUZIONI Appunti a cura degli studenti INDICE I - RICHIAMI

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Progetto strutturale di una trave rovescia Alle travi di fondazioni

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Capriate in legno I edizione aprile 2011. Indice Introduzione

Capriate in legno I edizione aprile 2011. Indice Introduzione Capriate in legno I edizione aprile 2011 Indice Introduzione 1. Il legno e sue applicazioni 1.1. Il legno come materiale da costruzione 1.2. diffusione del legno 1.3. Standardizzazione della produzione

Dettagli

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Meccanica dei solidi e delle travi. Prof. Daniele Zaccaria

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Meccanica dei solidi e delle travi. Prof. Daniele Zaccaria Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile e Architettura Università di Trieste Piazzale Europa 1, Trieste Meccanica dei solidi e delle travi

Dettagli

Generalità e note di teoria

Generalità e note di teoria Capitolo 1 Generalità e note di teoria In questo capitolo sono riportate alcune note delle teorie utilizzate, riguardanti: Verifiche di resistenza. Dati del problema e convenzioni. Ipotesi fondamentali.

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ. Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in

Dettagli

9 Travature elastiche

9 Travature elastiche 9 Travature elastiche 9 Travature elastiche La teoria delle travi fin qui introdotta ha consentito di determinare la soluzione statica per strutture staticamente determinate; tuttavia le sole equazioni

Dettagli

Appunti di sviluppo di una procedura software per l analisi di Pushover

Appunti di sviluppo di una procedura software per l analisi di Pushover Appunti di sviluppo di una procedura software per l analisi di Pushover Namirial SpA Il presente testo non vuole essere né una trattazione teorica, né un lezione sul tema della valutazione di vulnerabilità

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Capitolo 1 I fondamenti del FEM

Capitolo 1 I fondamenti del FEM Capitolo 1 I fondamenti del FEM 1.1 Il percorso base Prima di avventurarci nel dettaglio nell utilizzo del programma Femap è bene fissare dei punti di riferimento tra i quali mi sembra doveroso individuare

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI L.S. IN INGEGNERIA STRUTTURALE E GEOTECNICA (STREGA) Corso di Calcolo Anelastico e a Rottura delle Strutture DOCENTE: Prof. Ing.

Dettagli

Operazioni sui vettori Scomposizione di un vettore F in un vettore e in una coppia

Operazioni sui vettori Scomposizione di un vettore F in un vettore e in una coppia Operazioni sui vettori Scomposizione di un vettore F in un vettore e in una coppia F (non baricentrico) = F (baricentrico) + Momento orario F. b F (diretto verso il basso) = vettore spostato a sinistra

Dettagli

Le forme e le soluzioni per le strutture orizzontali...

Le forme e le soluzioni per le strutture orizzontali... LabCos! 4LabCos! Le forme e le soluzioni per le strutture orizzontali... LabCos! LabCos! il problema della spinta, oltre a quello dei carichi verticali! Strutture inflesse! Strutture spingenti! Un arco

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

Le deformazioni nelle travi rettilinee inflesse

Le deformazioni nelle travi rettilinee inflesse 2 Le deformazioni nelle travi rettilinee inflesse Tema 2.1 Per la struttura riportata in figura 2.1 determinare l espressione analitica delle funzioni di rotazione ed abbassamento, integrando le equazioni

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Cognome e nome PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Si ricorda al candidato di rispondere alle domande di Idraulica, Scienza delle costruzioni e Tecnica delle

Dettagli

Flessione orizzontale

Flessione orizzontale Flessione orizzontale Presso-flessione fuori piano Presso-flessione fuori piano Funzione dei rinforzi FRP nel piano trasmissione di sforzi di trazione all interno di singoli elementi strutturali o tra

Dettagli

Corso di Costruzioni Aeronautiche

Corso di Costruzioni Aeronautiche Corso di Costruzioni Aeronautiche Introduzione al metodo degli elementi finiti 13 Novembre 2013 Ing. Mauro Linari Senior Project Manager MSC Softw are S.r.l. La schematizzazione delle strutture Considerazioni

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

esercizio e le verifiche di durabilità.

esercizio e le verifiche di durabilità. Normativa: aspetti generali e di dettaglio FONDAZIONI PER EDIFICI Le scelte progettuali per le opere di fondazione devono essere effettuate t contestualmente e congruentemente con quelle delle strutture

Dettagli