Calcolo delle Probabilità

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo delle Probabilità"

Transcript

1 alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo. La Probabltà che ogg pova è crca l 50%.? Soggettva Rappresenta l grado d fduca d una persona che l evento occorra. Frequentsta l valore lmte che la frequenza relatva d occorrenza d un evento raggunge al crescere del numero delle prove. ssomatca una funzone defnta sullo spazo campone e a valor n [0,], assegnata su una base ragonevole del modello studato.

2 Vengono effettuate delle SSUNZON (a) S) = ; (b) 0 Defnzone assomatca: ), S; (c) per ogn successone d event nseme d assom che le probabltà assegnate n un espermento casuale Defnzonedevono soddsfare. La probabltà è un numero compreso tra 0 eassegnato ad ogn membro d una collezone d event d un espermento casuale che soddsfa le seguent propretà : { } dsgunt s ha ) = ). Le probabltà saranno assegnate n base alla nostra conoscenza del sstema esamnato. 3 ome s assegna una msura d probabltà ad un evento? sempo: S selezon a caso un dodo al laser da un un nseme d 00 dod. Qual è la probabltà d selezonare un dodo a caso da un nseme d 00 dod? Le parole a caso suggerscono che è ragonevole assumere ogn dodo abba la stessa probabltà d essere scelto, ossa è ragonevole assumere che la probabltà che un dodo sa scelto è 0.0. RGOL: Se S =N e gl est sono tutt egualmente probabl, la probabltà d un sngolo esto è /N. Degl event casual s dcono equprobabl n una data prova se la smmetra dell espermento permette d supporre che nessuno d ess sa pù probable d un altro. d esempo l'apparzone d una delle se facce d un dado nel caso n cu questo sa non truccato. 4

3 Defnamo evento certo quell'evento che n seguto ad un espermento deve obblgatoramente verfcars. Tale evento costtusce l'unta d msura per la probabltà: s attrbusce, coè, all'evento certo probabltà uguale all'untà. D conseguenza tutt gl altr event, probabl ma non cert, saranno caratterzzat da probabltà mnor all'untà. L'evento contraro all'evento certo è detto mpossble, ossa un evento che non può accadere nella prova n questone. ll'evento mpossble è assocata una probabltà uguale a zero. RGOL: Se è l evento mpossble allora )=0 Se è l evento certo allora )=. S assuma che l 30% de dod tra 00 verfch la potenza mnma rchesta da un clente. Sa l evento che, selezonando a caso un dodo, questo soddsf la potenza mnma rchesta. Poché contene 30 est cascuno de qual ha probabltà 0.0 d essere scelto, quanto vale la probabltà d? 5 Defnzone: Per uno spazo campone dscreto, la probabltà d un evento, denotata con ), è par alla somma delle probabltà degl est che costtuscono. S assuma che nessuno de dod tra 00 verfch la potenza mnma rchesta da un clente. Sa l evento che, selezonando a caso un dodo, questo soddsf la potenza mnma rchesta. Quanto vale la probabltà che s verfch? S dcono event mutuamente dsgunt o ncompatbl quegl event aleator che non possono verfcars smultaneamente n una data prova. d esempo l'apparzone smultanea d testa e d croce nel lanco d una moneta. RGOL: Se e B sono event dsgunt, s ha P ( B ) = 0 6

4 0., 0., 0., 0.4 e 0..Sa = ), U,. { a,b,c,d,e} { a, b, c} e B = { c, d, e}.. Lo spazo campone d un espermento casuale è SRZ ltà che sano scelt due romanz e un saggo? con probabltà Determnare ),,.Tre lbr sono scelt a caso da uno scaffale contenente 4 romanz, 3sagg e dzonaro. Qual è la probabltà che sa scelto l dzonaro? Qual è la probab - 3.on 6 foglett cascuno rportante una lettera s può formare la parola LTNT. foglett vengono rmescolat ed estratt casualmente uno al - la volta. Qual è la probabltà d formare la parola TLNT? 4. S lancno due monete: qual è la probabltà che s verfch al pù una testa? Qual è la probabltà che s verfch almeno una testa? Qual è la probabltà che non s verfch alcuna testa? 7 5. Vengono selezonat de campon d brra da tre forntor conformtà a cert requst. rsultat relatv a 00 campon sono rassunt nel seguto : Sa l'evento che un campone provene dal forntoree B l'evento che un campone è conforme alle specfche. Se un campone d brra è selezonato a caso, calcolare (a) ) (b) (c) ) (d) (e) U forntor 3 S specfche NO 3 0 n base alla rspettva 8

5 serczo: Sa x la lunghezza d un blocchetto metallco prodotto n una certa azenda. S sa che l 0% de blocchett prodott ha lunghezza al pù 7.55 mm, che l 5% ha lunghezza superore a 7.55 mm ma al pù 7.57 mm.selezonando un blocchetto a caso, qual è la probabltà che la sua lunghezza sa al pù 7.57 mm? U RGOL : Se = allora ) + ) = ) se gl event non fossero mutuamente dsgunt? RGOL : Se, B S allora U = ) + serczo: n una coppa d spos la probabltà che l uomo sopravvva fno a 70 ann è 7%, la probabltà che la donna sopravvva fno a 70 ann è 85%, la probabltà che sopravvva uno de due fno a 70 ann è del 95%. Quanto vale la probabltà che sopravvvano entramb fno a 70 ann? 9 S lancno due dad: qual è la probabltà d totalzzare 6? S supponga che durante l lanco (ad esempo su un tavolo) uno de due dad s sa fermato, mostrando la facca par a. Qual è ora la probabltà d totalzzare 6? Quando s acqusscono maggor nformazon sull espermento casuale, le possbltà d occorrenza degl est vanno rvalutate. La probabltà condzonata d un evento dato un evento B, denotato con è per > 0. Defnzone = 0

6 serczo: 66 campon d ara sono stat classfcat n base alla presenza d una molecola d due gas rarefatt. Qual è la probabltà che scelto un campone a caso, questo contenga la molecola del gas? Qual è la probabltà che l campone scelto contenga la molecola del gas se contene quella d B? GS B GS no s no 4 s 8 Regola della Moltplcazone P ( = = B ) ) serczo: n un urna c sono 0 pallne, d cu 6 rosse e 4 nere. S estrae una pallna e s osserva l colore. S estrae po una seconda pallna senza aver rmesso nell urna la precedente. Qual è la probabltà che l colore d entrambe le pallne sa rosso? ' utle dare un'nterpretazone geometrca alla probabltà condzonata. Dal momento che abbamo sempre assocato al concetto d probabltà quello d area dell'evento nel dagramma degl nsem, possamo rcondurc a questa assocazone ed osservare la fgura. Sapendo che s è verfcato B, la probabltà che s verfch è par alla probabltà che s verfch l'ntersezone de due event; cò equvale a calcolare l rapporto tra l'area dell'ntersezone d e B (n blu charo) e l'area totale d B (blu charo + blu scuro). l rapporto tra le aree nel dagramma nsemstco corrsponde al rapporto tra le probabltà degl event consderat....quando un numero non esce da molto tempo, gocator corrono a coprrlo d denaro. ss rtengono che quel numero retcente debba uscre al prossmo colpo, a preferenza d altr..., ma l passato non può avere alcuna nfluenza sull' avvenre" (Perre Smon de Laplace).

7 Due event proposzo n : () = ); e B s dcono ndpenden t se rsulta vera una delle seguent () B ) = ; (3) = ) Defnzon e l concetto d ndpendenza dpende dal modello usato per descrvere l espermento casuale STOST: è parte dell espermento casuale che descrve l espermento fsco STTST: dpende dal modello d probabltà mpegato nell espermento casuale. 3 ndpendenza stocastca serczo: l crcuto n fgura funzona solo se c e almeno uno strumento che funzona. La probabltà che ogn strumento funzon è par a Qual è la probabltà che l crcuto funzon? a B b serczo: 84 campon d ara sono stat classfcat n base alla presenza d una molecola d due gas rarefatt. Qual è la probabltà che scelto un campone a caso, questo contenga la molecola del gas B? Qual è la probabltà che l campone scelto contenga la molecola del gas B se contene quella d? ndpendenza statstca GS no s no 3 4 GS B s 6 4

8 Gl event,,, K,, K, rsulta : n K sono ndpendent se e solo se per ogn sottonseme Defnzone ) = ) ) L ) serczo: l crcuto n fgura funzona solo se c e almeno uno strumento che funzona. La probabltà che ogn strumento funzon è par a Qual è la probabltà che l crcuto funzon? a b B D 5 serczo: n un urna c sono 0 pallne, d cu 6 rosse e 4 nere. S estrae una pallna e s osserva l colore. S estrae po una seconda pallna senza aver rmesso nell urna la precedente. Qual è la probabltà che l colore d entrambe le pallne sa rosso? Qual è la probabltà che la seconda pallna estratta sa rossa? Regola delle probabltà total ) + B ) = B ) ) B ) ), B S, = B + B S S osserv che una partzone {, } d S, ossa costtusc e U = S, = Ø 6

9 S 3 B 4 5 Una collezone d event mutuamente esclusva se, j j = Ø ed esaustva Una collezone d event,, K, se {,, K,n}, mutuamente esclusva S. ed esaustva costtusce una partzone d S = s dce U =. Se,, K, B S è Regola delle sono event mutuamente esclusv ed esaustv, allora = = probabltà B ) ) total serczo: Nella produzone d un semconduttore vale 0.0 la probabltà che un chp, soggetto ad elevat lvell d contamnazone durante l processo d produzone, provoch un malfunzonamento del semconduttore. Vale nvece la probabltà che un chp non soggetto a contamnazone provoch lo stesso un malfunzonamento. Qual è la probabltà che un semconduttore n cu è nserto uno d quest chp non funzon bene se s conosce che l 0% de chp è soggetto a contamnazone? 7 serczo: Una dtta produttrce d autovetture rceve da tre forntor camb da nstallare nelle macchne secondo le seguent percentual: 65%, 5% e 0%. Sapendo che tre forntor producono camb con una dfettostà dcharata rspettvamente del 5%,0% e 5%, calcolare la probabltà che ha la dtta produttrce d autovetture d rcevere un cambo dfettoso. vendo selezonato a caso una automoble e avendo rscontrato che tale automoble rsulta possedere un cambo dfettoso, qual è la probabltà che v sa stato montato un cambo provenente dal secondo forntore? Se,, K, sono n event con > 0 rsulta per =,, K, n = Teorema d Bayes mutuamente esclusv ed esaustv, allora n = B ) ) B ) ) B S, 8

10 ,, K, è l'effetto sono le cause Da qualedeglevent è stato causatol'effetto? P ) probabltà a - pror, ) probabltà a - posteror ( j j 9 P ) ( ) ) n ) n m ( ( m ) m n ) m n ) m m ) P ) P Dagramma ad albero delle probabltà serczo: Poché è stata provata l effcaca d una nuova procedura medca nella prevenzone d una certa malatta, s decde d effettuare un test dagnostco sulla popolazone. La probabltà che l test rconosca (test postvo) che l pazente è malato vale 0.99, mentre vale 0.95 la probabltà che l test rconosca (test negatvo) che l pazente è sano. L ncdenza della malatta nella popolazone è par a Maro s sottopone al test e l rsultato è postvo. Qual è la probabltà che Maro sa effettvamente malato? 0

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabltà Che collegamento c è tra gl strument statstc vst fno ad ora per lo studo de fenomen real e l calcolo delle probabltà? Non sempre la conoscenza delle caratterstche d un fenomeno

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Approfondimenti disciplinari

Approfondimenti disciplinari UNIVERSITÁ DEGLI STUDI DI FERRARA CORSO SPECIALE ABILITANTE anno accademco 2006/2007 CORSO DI: Approfondment dscplnar UNITÁ DIDATTICA DELLA CLASSE A049 LA PROBABILITA DOCENTE: PROF. BERNARDI EROS TITOLO:

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabltà pr - 1 Che collegamento c è tra gl strument statstc per lo studo de fenomen real e l calcolo delle probabltà? Vedremo che non sempre la conoscenza delle caratterstche d un fenomeno

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Definizione classica di probabilità

Definizione classica di probabilità Corso d Idrologa A.A. 0-0 Teora delle probabltà Prof. Ing. A. Cancellere Dpartmento d Ingegnera Cvle e Ambentale Unverstà d Catana Defnzone classca d probabltà Il concetto d probabltà ha trovato formalzzazone

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui:

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui: I IDACATI E LA COTRATTAZIOE COLLETTIVA Il ruolo economco del sndacato n concorrenza mperfetta, n cu: a) le mprese fssano prezz de ben n contest d concorrenza monopolstca (con extra-proftt); b) lavorator

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes.

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes. EH SmartVew Servz Onlne d Euler Hermes Una SmartVew su rsch e sulle opportuntà Servzo d montoraggo dell asscurazone del credto www.eulerhermes.t Cos è EH SmartVew? EH SmartVew è l servzo d Euler Hermes

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Newsletter "Lean Production" Autore: Dott. Silvio Marzo

Newsletter Lean Production Autore: Dott. Silvio Marzo Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA Unverstà degl Stud d Bresca Poltecnco d Mlano Unverstà degl Stud d Pava Unverstà degl Stud d Lecce Dottorato d Rcerca n TECNOLOGIE E SISTEMI DI LAVORAZIONE XII CICLO METODI BAYESIANI PER IL CONTROLLO STATISTICO

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

Distributore di comando della motrice. Istruzione di controllo. Informazioni sulla sicurezza 1/5. con pedale / 3 Interruttori 1/2

Distributore di comando della motrice. Istruzione di controllo. Informazioni sulla sicurezza 1/5. con pedale / 3 Interruttori 1/2 Dstrbutore d comando della motrce con pedale / 3 Interruttor Istruzone d controllo Prma d nzare l controllo s raccomanda d leggere attentamente le nformazon d scurezza. Informazon sulla scurezza Il controllo

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia PROT. N 53897 ENTE EMITTENTE: OGGETTO: DESTINATARI: DATA DECORRENZA: CIRCOLARE N. 9 DC Cartografa, Catasto e Pubblctà Immoblare, d ntesa con l Uffco del Consglere Scentfco e la DC Osservatoro del Mercato

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

PROVIAMO A VERIFICARE SE...

PROVIAMO A VERIFICARE SE... PROVAMO A VERFCARE SE... CHECK llst PER la VERFCA DEL RSPETTO DE PRNCPAL OBBLGH N MATERA D SCUREZZA E SALUTE SUL lavoro (RF. PCCOL UFFC) Pago 1 d 7 S PRECSA CHE LA CHECK-L1ST D SEGUTO RPORTATA NON PUÒ

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

InfoCenter Product A PLM Application

InfoCenter Product A PLM Application genes d un fra o Gestone de crcolazone dell'nformazone sa crcoscrtta entro Pdetermnat ambt settoral. L'ntegrazone de sstem e de odpartment azendal rchede nuove modaltà operatve, nuove t competenze e nuov

Dettagli

ESERCIZI SULLE VARIABILI CASUALI DISCRETE

ESERCIZI SULLE VARIABILI CASUALI DISCRETE ESERCIZI SULLE VARIABILI CASUALI DISCRETE 1) S lanca un dado. Rappresentare la varable casuale: X = " facca mnore d tre ". 2) S lancano due dad. Rappresentare la varable casuale: X = "somma delle facce

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

Teoria delle Decisioni

Teoria delle Decisioni La teora delle decson Teora delle Decson L oggetto della Decson Theory è la decsone ntesa come scelta tra alternatve Esemp: se ntrodurre o meno d un nuovo prodotto, se rnnovare un mpanto oppure aprrne

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Speculazioni matematiche per la formalizzazione/descrizione di un Sistema di Gestione per la Qualità

Speculazioni matematiche per la formalizzazione/descrizione di un Sistema di Gestione per la Qualità Speculazon matematche per la formalzzazone/descrzone d un Sstema d Gestone per la Qualtà S. Gorla (*), (**) R. Grass (*) Responsable Qualtà e Certfcazone Ctroën tala S.p.A. e consglere d gunta AcqCN, (**)

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L.

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L. MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura d L.Bernard) 3.3. Dsegn d camponamento d Lorenzo Bernard 3.3.1. Una defnzone per ntrodurre

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli