ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/ Esercizi: lezione 03/11/2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015"

Transcript

1 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/ Esercizi: lezione 03/11/2015 Piani di ammortamento Esercizio 1. Un finanziamento pari a e viene rimborsato con 4 rate annue posticipate a quote di capitale costante (piano all italiana) e tasso annuo composto i = 8%. a) Stabilire l ammontare delle quattro rate R 1, R 2, R 3, R 4 redigendo il piano di ammortamento; b) stabilire l ammontare delle quattro rate R2, R 3, R 4, R 5 nel caso in cui, dopo il pagamento della prima rata R 1, il debitore ottenga l allungamento di un anno del rimborso, di nuovo a quote di capitale costante e riduzione del tasso di un punto percentuale. Soluzione. Il piano è all italiana, quindi C 1 = C 2 = C 3 = C 4 = C. Poiché il rimborso si chiude al quarto anno si ha C 1 + C 2 + C 3 + C 4 = D 0 4 C = C = 25000e. a) Dobbiamo applicare le seguenti formule: I k = D k 1 i, per k = 1, 2, 3, 4, R k = C + I k = I k, per k = 1, 2, 3, 4, D k = D 0 k C = k per k = 1, 2, 3, 4, dunque otteniamo il seguente piano di ammortamento:

2 2 ESERCIZI DI MATEMATICA FINANZIARIA b) Siano C = C 1 e C = C 2 = C 3 = C 4 = C 5, quindi abbiamo che C 1 + C 2 + C 3 + C 4 + C 5 = D 0 C + 4 C = C = da cui C = 18750e. Procedendo come nel punto a) per le epoche t = 2, 3, 4, 5 con tasso annuo di interesse i = 0, 07, abbiamo il seguente piano di ammortamento: , , , ,50 0 Esercizio 2. Un impresa ha contratto 3 anni fa un mutuo di ammontare 10000e al tasso annuo composto del 10%. Un anno più tardi ha versato una prima rata di 3000e e due anni dopo una seconda rata di 4000e. a) Determinare il debito residuo D 2. b) Determinare la terza rata se il debito è chiuso al terzo anno. c) Se invece l impresa estingue il debito in 4 anni complessivi, pagando una stessa rata R negli ultimi due anni, determinare tale rata, sapendo che, solo nel quarto anno, il tasso è salito al 12%. Soluzione. a) Per quanto riguarda l epoca t = 1, abbiamo I 1 = D 0 i = , 1 = 1000e, C 1 = R 1 I 1 = = 2000e, D 1 = D 0 C 1 = = 8000e. In modo analogo si calcolano I 2, C 2 e D 2 per l epoca t = 2, dunque abbiamo il seguente piano di ammortamento: dunque D 2 = 4800e.

3 ESERCIZI DI MATEMATICA FINANZIARIA 3 b) Se supponiamo di estinguere il debito al terzo anno si ha I 3 = D 2 i = , 1 = 480e; essendo D 3 = 0 e D 3 = D 2 C 3, abbiamo che C 3 = D 2 = 4800e; infine R 3 = C 3 + I 3 = = 5280e. Allora il piano di ammortamento è il seguente: c) In questo caso il piano di ammortamento è il seguente: R R 5280 R R 633, 6 0, 12 R R 0 L equazione da impostare è R 4 = C 4 + I 4, ossia otteniamo la seguente equazione in R: R = 5280 R + 633, 6 0, 12 R 2, 12 R 5913, 6 = 0 da cui R = 2789, 43e. Esercizio 3. Un prestito di 10000e viene rimborsato in 5 anni a rate semestrali costanti al tasso i s = 2, 4%. Dopo 2 anni esatti, il debitore continua il piano di ammortamento presso un altro istituto di credito a tasso i s = 2%, pagando al vecchio istituto una penale, finanziata dal nuovo istituto, dell 1, 2% sul debito residuo. Supponendo che, presso il nuovo istituto, il debitore, oltre ad un abbassamento di tasso, ottenga anche di pagare con un anno in più di tempo, a quanto ammonta la nuova rata?

4 4 ESERCIZI DI MATEMATICA FINANZIARIA Soluzione. Dopo 2 anni, usando la formula compatta che lega un debito residuo intermedio a quello iniziale nel piano alla francese, il debito residuo è D 4 = D 0 1 (1 + i s) 6. (1) 1 (1 + i s ) 10 Poiché il debitore, cambiando istituto di credito, paga una penale dell 1, 2% su D 4, ma ha a disposizione un anno in più (ossia 2 ulteriori rate) per pagare, significa che nel nuovo istituto deve ripianare un debito di (1, 012) D 4, sempre alla francese, in 4 anni, a tasso i s. La nuova rata costante R, pertanto diviene R = 1, 012 D 4 Inserendo nella (2) la (1), si ha che R = 1, 012 D 0 i s 1 (1 + i. (2) 8 s) i s (1 (1 + i s ) 6 ) (1 (1 + i s) 8 ) (1 (1 + i s ) 10 ). (3) Inserendo ora i dati numerici nella (3) si trova che R 867, 85. e Esercizio 4. Non potendo pagare l ultima rata R n, pari a 1000e, di un mutuo a tasso i = 10%, ottenete di chiudere il prestito pagando 2 rate uguali pari a R alle epoche t = n e t = n + 1. A quanto ammonta R? Soluzione. In pratica, si tratta di scambiare la rata di 1000 euro con due rate costanti pagate l una sempre all ultimo anno e l altra l anno dopo, ma il cui complessivo valore attuale, dove attuale qui si riferisce all n-esimo anno, deve coincidere con Dunque, l equazione da impostare è 1000 = R + R 1 + i da cui facilmente R = 1 + i , i Esercizio 5. (Difficile) Stilate un piano di ammortamento all italiana con prestito iniziale pari a 2000 euro e durata 4 anni, ai tassi i 1 = 4% per i primi due anni e i 2 = 6, 5% per i successivi due anni. Successivamente, dimostrate che a questo piano corrisponde un tasso costante i per tutto il periodo compreso tra il 4, 7% e il 4, 8%. Soluzione. La quota capitale costante (anche se i tassi cambiano nel corso dei quattro anni, rimane questa la caratteristica saliente di un piano all italiana) é data da C = D 0 /4 = 500 euro. Il piano dei primi due anni, a tasso costante pari a i 1, risulta dunque

5 ESERCIZI DI MATEMATICA FINANZIARIA Poi si riparte incollando al piano precedente un nuovo piano all italiana di due anni, con quota capitale costante sempre pari a 500 euro, debito residuo iniziale pari a D 2, ossia 1000 euro, e a tasso costante pari a i 2, dato da ,5 532,5 0 Per sapere a quale tasso costante avrei ottenuto lo stesso piano, mi basta impostare la condizione di chiusura finanziaria, ossia n R k (1 + i) k = 2000, k=1 ove R k, per k = 1,..., 4, sono le rate effettivamente pagate. La formula precedente risulta una equazione nell incognita i: per dimostrare che la soluzione di tale equazione é compresa tra i valori indicati, chiamate f la funzione f(i) = n k=1 R k = (1 + i) k (1 + i) (1 + i) (1 + i) , 5 (1 + i) e notate che (a) f(0) > 0; (b) f(i) < 0 per i molto elevati; (c) f(i) é monotona decrescente (lo si vede facilmente calcolando la derivata di f(i)). Pertanto la soluzione che cerco é unica e siccome, attraverso lunghi ma banali calcoli, si verifica che f(0, 047) > 0, mentre f(0, 048) < 0, ho dimostrato che l unica soluzione che sto cercando é necessariamente compresa tra i due valori di i indicati. Esercizio 6. (Difficile) In un piano di ammortamento alla francese su prestito iniziale di e, a rate mensili, durata pari a 10 anni e tasso annuo i = 4%, dopo due anni il tasso passa a i 1 = 5%. Supposto che voi non riusciate a pagare piú di 1020 e mensili, di quanto (eventualmente) si allunga il vostro piano? Soluzione. La rata R del nostro piano alla francese, con la variazione del tasso da mensile ad annuo, data dalla solita formula di conversione i m = i 1,

6 6 ESERCIZI DI MATEMATICA FINANZIARIA è pari a R = D i 1 1 (1 + i) 10, ove D 0 = L esercizio non richiede espressamente di calcolare R, in ogni caso, se lo faceste, risulterebbe R = 1009, 06 e. Dopo k = 2 anni, cambia il tasso e passa a i 1 = 5%, quindi la nuova rata R, usando la precedente formula con i 1 al posto di i, il debito residuo D k (con k = 2) al posto di D 0 e con durata che ora dovrebbe essere quella residua, ossia 8 anni, risulterebbe pari a (1) R = D i (1 + i 1 ) 8, ove D 2 si puó determinare attraverso la seguente formula generale, valida in un arbitario piano alla francese: Nel nostro caso D k = D 0 D 2 = D 0 Se inseriamo tale formula in eq. (1), troviamo (2) R = D 0 1 (1 + i) n+k 1 (1 + i) n. 1 (1 + i) 8 1 (1 + i) ( i) i (1 + i) 10 1 (1 + i 1 ) 8. Se ora inserite i dati, troverete R = 1046, 50 e, quindi sopra il vostro tetto mensile R max = 1020 e. Conseguentemente, essendo ora evidente che, potendovi permettere di pagare al massimo R max ogni mese, la durata residua si debba allungare, dovete riscrivete la formula data in eq. (2), con R max al posto di R e x al posto di 8, perché ora la vostra vera incognita è la nuova durata del piano. Pertanto la nuova formula diviene 1 ( i) 8 R max = D 0 1 (1 + i) i (1 + i 1 ) x, da cui, con qualche passaggio algebrico, si arriva a ( log 1 D 0 R max 1 (1+i) 8 ( 12 ) 1 + i 1 (1+i) x = ) log(1 + i 1 ) = 8, 2558, ossia la durata supera ora gli 8 anni di circa 0, 25 anni, il che significa (approssimando per leggero difetto) 3 mesi.

7 ESERCIZI DI MATEMATICA FINANZIARIA 7 Esercizio 7. (Difficile) A due anni dall estinzione di un prestito a rata costante a tasso i = 5, 5%, siete di fronte a due possibili scelte. La prima consiste nel chiudere anticipatamente il prestito, con una penale α > 0 da definirsi, proporzionale al debito residuo. Supponendo peró di non possedere la cifra necessaria per la chiusura anticipata, ve la fate prestare da un altra istituzione finanziaria, presso la quale vi impegnate in un ammortamento in 2 anni a rata costante, detta R α, sempre a tasso i. La seconda, invece, consiste nel continuare il piano originario, ma sapendo questa volta che il tasso subirá un innalzamento, passando da i = 5, 5% a i 1 = 6%, il che ovviamente produrrá una rata R 1 piú gravosa negli ultimi 2 anni. La domanda è: per quali α è piú conveniente uscire anticipatamente piuttosto che continuare? Soluzione. Se si esce anticipatamente, si deve pagare il debito residuo D n 2 piú la penale pari a α D n 2, ossia in tutto D n 2 (1+α). Ci facciamo prestare tale somma da un altra banca, presso la quale ci si impegna in un piano alla francese a tasso i in 2 anni, quindi, usando la solita formula generale dell ammortamento alla francese, si ha che (3) D n 2 (1 + α) = R α a 2 i, ove ricordiamo che, in generale, si ha 1 (1 + i) n a n i =. i Se, invece, optiamo per la seconda scelta, riapplichiamo la formula precedente sostituendo D n 2 (1 + α) con D n 2, perché non vi é penale, ma anche i con i 1, a causa dell aggravio di tasso, ottenendo quindi (4) D n 2 = R 1 a 2 i1. Se ora si sostituisce D n 2 ricavato dalla (4) nella (3), si trova che R 1 (1 + α) a 2 i1 = R α a 2 i, da cui, con un semplice passaggio algebrico, si ha che R α (5) = (1 + α) a2 i 1. R 1 a 2 i Poiché la maggiore convenienza nell uscire anticipatamente piuttosto che continuare é ovviamente equivalente a dire che R α < R 1 o, che é lo stesso, che R α R 1 < 1, allora, inserendo questa condizione nella (5), si trova facilmente che α < a 2 i a 2 i1 1,

8 8 ESERCIZI DI MATEMATICA FINANZIARIA ossia α < 1 (1 + i) 2 i dunque α < 0, 7051%. i 1 1 (1, 055) 2 0, 06 1 = 1 0, (1 + i 1 ) 2 0, (1, 06) 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 3 Piani di ammortamento Esercizio 1. Un prestito di 12000e viene rimborsato in 10 anni con rate

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

Esercitazione 24 marzo

Esercitazione 24 marzo Esercitazione 24 marzo Esercizio 1 Una persona contrae un prestito di 25000 e, che estinguerà pagando le seguenti quote capitale: 3000 e fra 6 mesi, 5000 e fra un anno, 8000 e fra 18 mesi, 4000 e fra 2

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 09/10/2015 Regimi semplice e composto Esercizio 1. Dopo quanti mesi un capitale C, impiegato

Dettagli

2. Scomporre la seconda rata in quota di capitale e quota d interesse.

2. Scomporre la seconda rata in quota di capitale e quota d interesse. Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 7 Costituzione di un capitale Classificazione Fondo di

Dettagli

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/010 1. Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13.

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro sufficiente

Dettagli

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 8 Ammortamenti a tasso costante Classificazione Ammortamento

Dettagli

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI. Autore. Francesca Miglietta

APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI. Autore. Francesca Miglietta APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI Autore Francesca Miglietta 1 Che cosa si intende per ammortamento? L ammortamento non è altro che il rimborso di un prestito. Il rimborso

Dettagli

Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente

Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito

Dettagli

Verifica di fine modulo. Il credito e i calcoli finanziari

Verifica di fine modulo. Il credito e i calcoli finanziari ... Nome... Classe... Data... Verifica di fine modulo. Il credito e i calcoli finanziari Scelta multipla Indicare con una crocetta la risposta esatta. 1. Concorre al soddisfacimento del fabbisogno finanziario

Dettagli

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005 Matematica finanziaria: svolgimento prova di esame del 5 luglio 5. [5 punti cleai, 5 punti altri] Prestiamo e a un amico. Ci si accorda per un tasso di remunerazione del 6% annuale (posticipato), per un

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni?

COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni? UNIVERSITA DEGLI STUDI DI URBINO (Sede di Fano) COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013 1) L'impresa Gamma emette 250 obbligazioni il cui VN unitario è pari a 100. Il rimborso avverrà tramite

Dettagli

AMMORTAMENTO. Generalità e Funzionamento dell applicativo

AMMORTAMENTO. Generalità e Funzionamento dell applicativo AMMORTAMENTO Generalità e Funzionamento dell applicativo Per ammortamento di un prestito (mutuo) indiviso si intende quel procedimento in base al quale un soggetto (unico) cede ad un tempo iniziale (es.

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

OPERAZIONI DI PRESTITO

OPERAZIONI DI PRESTITO APPUNTI DI ESTIMO La matematica finanziaria si occupa delle operazioni finanziarie, delle loro valutazioni, nonché del loro confronto. Si definisce operazione finanziaria, qualsiasi operazione che prevede

Dettagli

Montante (C n ) La somma di capitale ed interesse, disponibile alla fine dell'anno, viene chiamata montante:

Montante (C n ) La somma di capitale ed interesse, disponibile alla fine dell'anno, viene chiamata montante: NOZIONI DI CALCOLO FINANZIARIO: a cura del dr. Renato Fucito 1 Introduzione La matematica finanziaria studia i problemi relativi al trasferimento nel tempo di valori. In particolare essa si occupa dei

Dettagli

I calcoli finanziari: l interesse

I calcoli finanziari: l interesse Albez edutainment production I calcoli finanziari: l interesse Classe II ITC Il concetto di interesse Con le operazioni di credito un soggetto (creditore) concede in prestito una somma di denaro, per un

Dettagli

CALCOLO PIANO DI AMMORTAMENTO TASSO FISSO RATA COSTANTE

CALCOLO PIANO DI AMMORTAMENTO TASSO FISSO RATA COSTANTE CALCOLO PIANO DI AMMORTAMENTO TASSO FISSO RATA COSTANTE L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro sufficiente a soddisfare

Dettagli

Ammortamento di un debito

Ammortamento di un debito Algoritmi e dintorni: Ammortamento di un debito: Ricerca del tasso Prof. Ettore Limoli Ammortamento di un debito In questa nostra trattazione non ci addentreremo in problemi di matematica finanziaria o

Dettagli

Corso di Estimo Elementi di Matematica Finanziaria

Corso di Estimo Elementi di Matematica Finanziaria Corso di Estimo Elementi di Matematica Finanziaria Corso di Scienze e Tecnologie Agrarie Indice argomenti Capitale e Interesse Interesse semplice Interesse composto Annualità Poliannualità r nominale e

Dettagli

3. Determinare il rendimento effettivo di un BTP triennale con cedole al 5,2% acquistato a 100,35 e venduto a 99,95.

3. Determinare il rendimento effettivo di un BTP triennale con cedole al 5,2% acquistato a 100,35 e venduto a 99,95. Matematica finanziaria CLAMM 20/202, giugno 202 Secondo parziale. 20 000 d sono rimborsati con 72 rate mensili in progressione geometrica di ragione 0, 99 al tasso i 2 = 0, 0032. Determinare la somma degli

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018 ESECIZI DI MATEMATICA FINANZIAIA DIPATIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018 Esercizi 3 Piani di ammortamento Esercizio 1. Un prestito di 12000e viene rimborsato in 10 anni con rate mensili

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione

Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione Prestiti divisi 1 I prestiti obbligazionari 1.1 Introduzione Finora ci siamo occupati di prestiti indivisi (mutui in cui un unico soggetto (creditore o mutuante presta denaro ad un unico soggetto debitore

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

RIMBORSO DI UN PRESTITO

RIMBORSO DI UN PRESTITO RIMBORSO DI UN PRESTITO Conoscenze Conoscere le principali forme di rimborso di un prestito Saper individuare gli elementi caratterizzanti un rimborso di un prestito Abilità Saper determinare le principali

Dettagli

Esercizi svolti durante le lezioni del 2 dicembre 2015

Esercizi svolti durante le lezioni del 2 dicembre 2015 Esercizi svolti durante le lezioni del 2 dicembre 205 Sconto commerciale ed attualizzazione. Lo sconto commerciale è proporzionale al capitale scontato ed al tempo che intercorre tra oggi e l'epoca in

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

www.alexpander.it TAEG Tasso Annuo Effettivo Globale TASSO GLOBALE

www.alexpander.it TAEG Tasso Annuo Effettivo Globale TASSO GLOBALE TAEG Tasso Annuo Effettivo Globale Costo totale del credito a carico del consumatore espresso in percentuale annua del credito concesso 1. Il TAEG, come indicato dall art. 122, d.lgs. 385/93, T.U. delle

Dettagli

Foglio Informativo Mutui Fondiari

Foglio Informativo Mutui Fondiari Informazioni sulla banca Denominazione e forma giuridica: BANCA DEL SUD S.p.A. Sede legale e amministrativa: VIA CALABRITTO, 20 80121 NAPOLI Recapiti ( telefono e fax) 0819776411, 0817976402 Sito internet:

Dettagli

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una

Dettagli

ESTIMO LAVORO ESTIVO IV ITG

ESTIMO LAVORO ESTIVO IV ITG ESTIMO LAVORO ESTIVO IV ITG 1 Sono debitore di 12.800, da pagarsi tra 5 mesi, e creditore, nei confronti della stessa persona, dei seguenti importi: - 3.500 da pagarsi tra 2 mesi; - 2.500 da pagarsi tra

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria Indice 1 Leggi di capitalizzazione 5 1.1 Introduzione............................ 5 1.2 Richiami di teoria......................... 5 1.2.1 Regimi notevoli...................... 6 1.2.2 Tassi equivalenti.....................

Dettagli

CORSO DI RAGIONERIA A.A. 2013/2014

CORSO DI RAGIONERIA A.A. 2013/2014 CORSO DI RAGIONERIA A.A. 2013/2014 MODULO A LEZIONE N. 6 LE SCRITTURE CONTABILI I finanziamenti I FINANZIAMENTI Nello svolgimento quotidiano del ciclo operativo ogni impresa presenta un diverso livello

Dettagli

Rinegoziazione dei Mutui presso la Cassa Depositi e Prestiti Approvata dal Consiglio Comunale di Cassina de Pecchi il 16 Novembre 2015

Rinegoziazione dei Mutui presso la Cassa Depositi e Prestiti Approvata dal Consiglio Comunale di Cassina de Pecchi il 16 Novembre 2015 Rinegoziazione dei Mutui presso la Cassa Depositi e Prestiti Approvata dal Consiglio Comunale di Cassina de Pecchi il 16 Novembre 2015 Descrizione dell operazione a cura di Marcello Novelli, Assessore

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA Introduzione Definizione. La matematica finanziaria studia le operazioni finanziarie. Definizione. Una operazione finanziaria è un contratto che prevede scambi di danaro (tra i contraenti)

Dettagli

Foglio Informativo del Servizio/Prodotto. PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015

Foglio Informativo del Servizio/Prodotto. PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015 Foglio Informativo del Servizio/Prodotto INFORMAZIONI SULLA BANCA PRESTITI PERSONALI a tasso fisso oltre 75.000.00 Euro Serie FI0310. Condizioni praticate dal 01/07/2015 Banca Popolare del Lazio Via Martiri

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Foglio Informativo Mutui Fondiari Tasso BCE

Foglio Informativo Mutui Fondiari Tasso BCE Informazioni sulla banca Denominazione e forma giuridica: BANCA DEL SUD S.p.A. Sede legale e amministrativa: VIA CALABRITTO, 20 80121 NAPOLI Recapiti ( telefono e fax) 0819776411, 0817976402 Sito internet:

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore

Dettagli

Esercizi di riepilogo. 10 dicembre 2015. Esercizi capitalizzazione semplice e composta e rendite

Esercizi di riepilogo. 10 dicembre 2015. Esercizi capitalizzazione semplice e composta e rendite Esercizi di riepilogo. 0 dicembre 205 Esercizi capitalizzazione semplice e composta e rendite Esercizio. Un capitale C viene impiegato in capitalizzazione semplice per 2 mesi al tasso annuo del 5%. La

Dettagli

Equivalenza economica

Equivalenza economica Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due

Dettagli

PRESTITO SOCI BPC TASSO MISTO

PRESTITO SOCI BPC TASSO MISTO scheda prodotto PRESTITO SOCI BPC rilascio del 02.05.2014 FOGLIO INFORMATIVO PRESTITO SOCI BPC TASSO MISTO INFORMAZIONI SULLA BANCA Denominazione e forma giuridica BANCA POPOLARE DEL CASSINATE Società

Dettagli

MINI GLOSSARIO PER SAPERNE DI PIÙ SUL CREDITO AL CONSUMO E SUI MUTUI

MINI GLOSSARIO PER SAPERNE DI PIÙ SUL CREDITO AL CONSUMO E SUI MUTUI MINI GLOSSARIO PER SAPERNE DI PIÙ SUL CREDITO AL CONSUMO E SUI MUTUI (a cura del Prof.Maurizio Berruti) Centrali di rischio C.R.I.F. CE.RI. Centrale dei rischi (*) Il ritardo o il mancato pagamento di

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

prof.ssa S. Spallini RAGIONERIA GENERALE Interesse e sconto

prof.ssa S. Spallini RAGIONERIA GENERALE Interesse e sconto 1 RAGIONERIA GENERALE Interesse e sconto L interesse ed i fattori che lo determinano 2 Dicesi interesse il compenso spettante a colui che cede una certa somma di denaro per un certo periodo di tempo I

Dettagli

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007

Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 2007 Matematica finanziaria: svolgimento della prova di esonero del 28 marzo 27. Bobo e Bubi affrontano la loro prima crisi familiare a causa della mancanza di una lavastoviglie. Decidono pertanto di acquistarne

Dettagli

Calcolo del Valore Attuale Netto (VAN)

Calcolo del Valore Attuale Netto (VAN) Calcolo del Valore Attuale Netto (VAN) Il calcolo del valore attuale netto (VAN) serve per determinare la redditività di un investimento. Si tratta di utilizzare un procedimento che può consentirci di

Dettagli

ISTITUZIONI DI ECONOMIA AZIENDALE

ISTITUZIONI DI ECONOMIA AZIENDALE ISTITUZIONI DI ECONOMIA AZIENDALE LE OPERAZIONI DI FINANZIAMENTO CON CAPITALE DI TERZI 1 LE OPERAZIONI DI FINANZIAMENTO CON CAPITALE DI TERZI OPERAZIONI A BREVE TERMINE - rapporto di conto corrente - operazioni

Dettagli

7. CONTABILITA GENERALE

7. CONTABILITA GENERALE 7. CONTABILITA GENERALE II) SCRITTURE DI GESTIONE OTTENIMENTO CAPITALE DI TERZI 1 Definizione Per poter acquisire i fattori produttivi da impiegare nel processo produttivo l impresa necessita del fattore

Dettagli

( ) i. è il Fattore di Sconto relativo alla scadenza (futura) i-esima del Prestito

( ) i. è il Fattore di Sconto relativo alla scadenza (futura) i-esima del Prestito DURATA FINANZIARIA CORRISPONDENTE AL TASSO FINANZIARIAMENTE EQUIVALENTE Il calcolo della Durata Finanziaria Corrispondente (DFC) al Tasso Finanziariamente Equivalente del Prestito () ha come obiettivo

Dettagli

Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85)

Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85) Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85) INFORMAZIONI SULLA BANCA Banca di Credito Cooperativo di Cambiano (Castelfiorentino-Firenze)

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85)

Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85) Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85) INFORMAZIONI SULLA BANCA Banca di Credito Cooperativo di Cambiano (Castelfiorentino Firenze)

Dettagli

CONTABILITA GENERALE

CONTABILITA GENERALE CONTABILITA GENERALE 7 II) SCRITTURE DI GESTIONE F) OTTENIMENTO CAPITALE DI TERZI 20 novembre 2010 Ragioneria Generale e Applicata - Parte seconda - La contabilità generale 1 F. Scritture relative all

Dettagli

Soluzione verifica 2G

Soluzione verifica 2G Soluzione verifica 2G 1 1) Un imprenditore vende una parta di merci per 20.400 euro. Il pagamento viene concordato come segue: metà alla consegna e metà dopo due mesi con l aggiunta di un interesse di

Dettagli

Notazione. S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a capita l e R

Notazione. S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a capita l e R Ammortamento t finanziarioi i Piani di rimborso prestiti MQ 186PP Notazione S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi: lezione 04/11/2016

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi: lezione 04/11/2016 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercizi: lezione 04/11/2016 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

Le basi della Partita Doppia in 1.000 parole Facile e comprensibile. Ovviamente gratis.

Le basi della Partita Doppia in 1.000 parole Facile e comprensibile. Ovviamente gratis. Le basi della Partita Doppia in 1.000 parole Facile e comprensibile. Ovviamente gratis. Qual è la differenza tra Dare e Avere? E tra Stato Patrimoniale e Conto Economico? In 1.000 parole riuscirete a comprendere

Dettagli

TUTTI I MUTUI DI CHEBANCA! Condizioni valide al 1 gennaio 2011

TUTTI I MUTUI DI CHEBANCA! Condizioni valide al 1 gennaio 2011 TUTTI I MUTUI DI CHEBANCA! valide al 1 gennaio 2011 Questo documento, predisposto ai sensi delle disposizioni di trasparenza di Banca d Italia, elenca tutti i prodotti di mutuo offerti da CheBanca! 1.

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

Il presente documento è conforme all'originale contenuto negli archivi della Banca d'italia

Il presente documento è conforme all'originale contenuto negli archivi della Banca d'italia Il presente documento è conforme all'originale contenuto negli archivi della Banca d'italia Firmato digitalmente da Sede legale Via Nazionale, 91 - Casella Postale 2484-00100 Roma - Capitale versato Euro

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana A volte i fenomeni economici che ci interessano non variano con continuitá oppure non possono essere osservati con continuitá, ma solo a intervalli

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

I MIGLIORI 10 MUTUI ONLINE PER LA CASA

I MIGLIORI 10 MUTUI ONLINE PER LA CASA I MIGLIORI 10 MUTUI ONLINE PER LA CASA Acquistare una casa è sempre un passo molto importante da fare e tante famiglie e giovani ragazzi spesso non sanno proprio da dove cominciare. Per questo motivo abbiamo

Dettagli

Indice dei contenuti. La nuova Organizzazione della CDP. I Nuovi Strumenti e Servizi per gli Enti Locali. Appendice Lista Contatti

Indice dei contenuti. La nuova Organizzazione della CDP. I Nuovi Strumenti e Servizi per gli Enti Locali. Appendice Lista Contatti Indice dei contenuti La nuova Organizzazione della CDP La gestione separata e la gestione ordinaria Le innovazioni 2005 I Nuovi Strumenti e Servizi per gli Enti Locali Prestito Flessibile di Scopo Fondo

Dettagli