CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 7: Caratteristiche acustiche dei materiali: Assorbimento acustico e materiali fonoassorbenti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 7: Caratteristiche acustiche dei materiali: Assorbimento acustico e materiali fonoassorbenti"

Transcript

1 CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA Lezione n 7: Caratteristiche acustiche dei materiali: Assorbimento acustico e materiali fonoassorbenti Ing. Oreste Boccia 1

2 Interazione del suono con la materia L equazione del bilancio energetico per un onda che incide su una parete vale: E o = E r + E a + E t dove E o è l energia sonora incidente, E r è quella riflessa o rinviata, E a è quella assorbita e dissipata in calore e E t è quella trasmessa che attraversa la parete. Dividendo tutto per E 0 : 1 = r + a + t dove r = E r / E o, a = E a / E o e t = E t / E o sono rispettivamente i coefficienti di riflessione, assorbimento e trasmissione della parete nei confronti dell energia sonora incidente. Si può definire il coefficiente di assorbimento acustico apparente come: = 1 r = a + t 2

3 Materiali: fonoisolanti & fonoassorbenti Esiste una sostanziale differenza tra un materiale fonoassorbente ed uno fonoisolante: Materiale fonoassorbente: con caratteristiche tali da minimizzare l energia sonora riflessa E r. Materiale fonoisolante: con caratteristiche tali da minimizzare l energia sonora trasmessa E t. In generale un materiale fonoassorbente può essere un cattivo fonoisolante, e viceversa una parete dal grande isolamento acustico può avere proprietà fonoassorbenti molto scarse. È pertanto necessario che i termini fonoisolamento e fonoassorbimento non vengano fra loro confusi. 3

4 Assorbimento acustico L'assorbimento acustico è il fenomeno di attenuazione delle riflessioni del suono che interessano i corpi e le pareti presenti in un ambiente e riguarda lo stesso ambiente ove è attiva la sorgente sonora. Questo risultato viene conseguito aumentando l area equivalente di assorbimento acustico delle superfici esposte al campo acustico. Ai fini della valutazione dell assorbimento acustico NON INTERESSA se l energia viene assorbita dalla parete o se viene trasmessa nel 2 mezzo 4

5 Assorbimento acustico L area equivalente di assorbimento acustico A vale: A = i S i ( m 2 ) dove S i ed i sono rispettivamente l area ed il coefficiente di assorbimento acustico apparente della porzione i-esima della superficie che delimita l ambiente. Nell ipotesi di campo acustico riverberante, il valore dell attenuazione del livello sonoro DL conseguente alla installazione di materiale fonoassorbente sulle pareti di confine risulta: DL = 10 log (A 2 / A 1 ) (db) dove "A" rappresenta l'area equivalente di assorbimento acustico delle pareti che delimitano l'ambiente; 1 e 2 indicano i valori prima e dopo il trattamento acustico delle pareti. Dalla relazione si deduce che raddoppiando il valore di A (A 2 =2A 1 ) si ottiene una riduzione di 3 db; se si volesse ottenere una attenuazione di 10 db bisognerebbe aumentare di 10 volte il valore dell'area di assorbimento equivalente. Questo è possibile, in pratica, solamente quando il valore di A 1 è molto piccolo (ambiente inizialmente con pareti molto riflettenti). Nelle normali situazioni si riescono ad ottenere attenuazioni al massimo di 7-8 db. 5

6 Materiali fonoassorbenti Il coefficiente di assorbimento dipende dal materiale costituente la parete, dalla frequenza del suono incidente, dallo spessore del materiale, dall'angolo di incidenza del suono sulla parete. In particolare, in funzione del diverso comportamento acustico al variare della frequenza i materiali fonoassorbenti sono in genere classificati in tre grosse categorie: a) materiali porosi (sfruttano la dissipazione viscosa) b) risuonatori acustici o di Helmholtz (sfruttano la risonanza delle cavità) c) pannelli o membrane vibranti (sfruttano la risonanza del pannello). Ciascuno di questi meccanismi di assorbimento acustico è maggiormente efficiente in un determinato campo di frequenza. Soltanto dalla combinazione di più meccanismi di assorbimento si riesce ad avere materiali che assorbono su tutto il campo di frequenza udibile. 6

7 Fonoassorbimento per porosità Quanto più un materiale è impermeabile all aria e rigido tanto più si avvicina al comportamento di un riflettore ideale; viceversa all aumentare della sua porosità e flessibilità aumenta pure la sua capacità di assorbire l energia sonora. Quindi, i materiali con maggiori capacità fonoassorbenti sono i materiali porosi o fibrosi di basso peso specifico come la lana di vetro, materiali polimerici espansi a celle aperte, le fibre vegetali (fibre di legno), tessuti per l arredamento, sughero. L assorbimento è legato essenzialmente all attrito che l onda sonora incontra nell attraversare la struttura porosa. L aria contenuta nei pori del materiale viene messa in vibrazione dalle variazioni di pressione che accompagnano l onda sonora e una parte dell energia acustica viene quindi trasformata in calore a causa: dell attrito sulle pareti solide del materiale (legata alla resistenza al flusso d aria della struttura porosa), dell attrito viscoso nella massa d aria. La trasformazione dell energia acustica in calore determina un lieve aumento di temperatura (non percettibile dall uomo). 7

8 Fonoassorbimento per porosità L assorbimento acustico dei materiali porosi dipende essenzialmente da alcuni parametri caratteristici del materiale stesso: resistenza al flusso d aria R [Pa s/m 3 ], grandezza misurata sperimentalmente; porosità, data dal rapporto tra il volume dell aria contenuta in un campione di materiale e il volume del campione stesso; tortuosità, che descrive la complessità del cammino dell onda che si propaga all interno del materiale Bassa tortuosità Elevata tortuosità densità; spessore; forma. 8

9 Fonoassorbimento per porosità La grandezza più importante da cui dipende l assorbimento è la resistenza al flusso d aria R, che è influenzata dalla porosità e dalla tortuosità. Più è elevata tale grandezza tanto maggiore sarà la quantità di energia sonora incidente ceduta per attrito interno dall aria contenuta nei pori e quindi trasformata in calore. Attenzione però che se tale grandezza risulta troppo elevata le onde sonore avranno difficoltà a penetrare nel materiale e, quindi, saranno in gran parte riflesse. 9

10 Fonoassorbimento per porosità L assorbimento acustico cresce all aumentare della porosità. I materiali che assorbono il suono con maggiore efficacia hanno una porosità molto elevata, anche oltre il 90%. I materiali espansi quali polistirolo, poliuretano, cloruro di polivinile, con struttura a celle chiuse hanno un potere fonoassorbente inferiore di quello dei materiali a celle aperte, poiché in essi il fenomeno dissipativo per attrito con le pareti è meno intenso essendo le celle chiuse e non essendoci comunicazione tra le varie celle. La forma del materiale è importante in quanto può offrire una più estesa superficie di contatto con l onda incidente, favorendo la dissipazione di una maggiore quantità di energia sonora. La soluzione più diffusa è quella in cui un lato del materiale è ricoperto da protuberanze a forma piramidale. 10

11 Fonoassorbimento per porosità Generalmente il coefficiente di assorbimento α aumenta al crescere della frequenza del suono incidente e dello spessore del materiale stesso. 11

12 Fonoassorbimento per porosità: effetto dello spessore Lo spessore del materiale condiziona l entità dell energia sottratta all onda incidente. Abbiamo detto che l assorbimento dei materiali fonoassorbenti porosi è dovuto alla dissipazione, per attrito con le superfici delle cavità, dell energia vibrazionale posseduta dalle molecole dell aria; questa dissipazione è massima laddove le molecole vibrano alla velocità più elevata. Supponendo che la parete da trattare possa essere considerata perfettamente rigida, in corrispondenza di questa la velocità delle particelle d aria sarà nulla. Al contrario, allontanandosi dalla parete, la velocità delle particelle d aria aumenta fino a raggiungere un picco ad una distanza di λ/4 dalla parete. A tale distanza corrisponde anche la massima dissipazione dell energia sonora per attrito, ottenibile in presenza di un pannello di materiale poroso. 12

13 Fonoassorbimento per porosità: effetto dello spessore Quindi tale meccanismo risulta particolarmente efficace quando lo spessore del pannello poroso applicato alla parete è uguale ad ¼ del valore della lunghezza d onda del suono incidente. Se ad esempio consideriamo un onda sonora alla frequenza di 1000 Hz a cui corrisponde una lunghezza d onda di 0,34 m, un pannello poroso dello spessore di 8,5 cm a diretto contatto con la parete offrirà un efficace assorbimento. Invece, se consideriamo un onda sonora alla frequenza di 100 Hz, a cui corrisponde una lunghezza d onda di circa 3,4 m, risulterebbe massimamente efficace un pannello di spessore 85 cm a diretto contatto con la parete : 0,34 d 0,085m 8, 5cm 4 4 3,4 d 0,85m 85cm 4 4 evidentemente improponibile per una applicazione pratica. 13

14 Fonoassorbimento per porosità: effetto dello spessore Un sistema normalmente impiegato per migliorare l efficienza del materiale alle frequenze medio-basse, evitando di impiegare materiali con spessori elevati e laddove gli ingombri lo permettono (per ex. controsoffitti), è quello di interporre un intercapedine d aria tra la superficie da trattare e il pannello assorbente, il quale dovrà essere posto ad una distanza d dalla superficie (parete o soffitto) corrispondente al massimo dell ampiezza dell onda sonora, ossia a λ/4. λ/4 14

15 Fonoassorbimento per porosità Pannello incollato alla superficie da trattare Pannello applicato su struttura metallica sospesa dalla superficie da trattare 15

16 Fonoassorbimento per risonanza di cavità Le strutture di risonanza sono costituite da pannelli di materiale non poroso (ad es. una lastra di gesso) sui quali vengono praticati dei fori di opportune dimensioni e vengono montati ad una certa distanza dalla superficie da trattare. Un siffatto sistema si comporta come un insieme di risonatori di Helmholtz, tanti quanti sono i fori producendo un effetto di fonoassorbimento fondato sul principio di Helmholtz. Un risuonatore di Helmholtz, è costituito da una cavità di volume V definita da pareti rigide e collegata all esterno da una apertura detta collo di lunghezza h e di sezione S (fig.a) "h" Questo sistema è equivalente a quello costituito da una massa oscillante (aria nel collo), un elemento elastico (aria nella cavità) ed un elemento smorzante (l attrito dell aria sulle pareti del collo) (fig.b). 16

17 Fonoassorbimento per risonanza di cavità Quando un onda sonora va ad incidere sull ingresso del risuonatore l aria contenuta nel suo collo viene posta in oscillazione mentre l aria contenuta nella cavità viene ad essere alternatamene compressa ed espansa e la sua elasticità fa si che essa si comporti come una molla. Tale risuonatore è in grado di dissipare energia acustica in calore per effetto dell attrito viscoso che si verifica a causa delle oscillazioni dell aria contenuta nel collo e dell attrito dell aria con le pareti del collo stesso. La dissipazione di energia sonora sarà massima in corrispondenza della frequenza di risonanza: dove c è la velocità del suono nell aria, S l area della sezione del collo del risonatore, V il volume della cavità, h la lunghezza del collo e d il diametro del collo. 17

18 Fonoassorbimento per risonanza di cavità Quando la cavità del risuonatore è vuota il sistema ha uno smorzamento piccolo per cui l assorbimento dei risuonatori è elevato in corrispondenza della sola frequenza di risonanza ma molto ridotto per tutte le altre frequenze. È possibile così costruire dei dispositivi calibrati per assorbire specifiche frequenze. Per rendere meno selettivi i risuonatori acustici si può inserire del materiale poroso all interno della cavità. Si ottiene un allargamento dello spettro di assorbimento ma una conseguente riduzione del picco di assorbimento in corrispondenza della frequenza di risonanza. 18

19 Fonoassorbimento per risonanza di cavità Un pannello forato risonante assorbente costituisce una estensione del singolo risonatore acustico: infatti, montato ad una distanza D dalla parete rigida, si comporta come un insieme di risonatori acustici, ciascuno costituito da un collo di diametro d e lunghezza h, corrispondente al foro nel pannello, e da una cavità, corrispondente ad una parte del volume dell intercapedine d aria paretepannello: Ad ogni foro è associata una cavità il cui volume V si ottiene dividendo il volume di tutta l intercapedine per il numero totale di fori. Pannello forato 19

20 Fonoassorbimento per risonanza di cavità La frequenza di risonanza di pannelli di questo tipo è approssimativamente data dalla seguente relazione: f r 5,4 D p 0,8d h in cui p=100 ns/s p (%) è la percentuale di foratura del pannello di area S p, munito di n fori di area S, h è la lunghezza dei fori, d diametro dei fori, D l altezza dell intercapedine. 20

21 Fonoassorbimento per risonanza di cavità Il comportamento di un pannello forato si discosta di molto rispetto al comportamento di un risuonatore singolo. In presenza di più fori la mutua interazione tra essi determina la comparsa di fenomeni dissipativi anche a frequenze diverse dalla frequenza di risonanza. Per questo motivo i pannelli forati hanno uno spettro di assorbimento più ampio rispetto a quello che si ottiene con risuonatori singoli. Inoltre sempre nel campo delle medie frequenze, agendo sullo spessore del pannello, sulle dimensioni dei fori, sulla percentuale di foratura e sulla distanza di montaggio dalla parete, si può rendere massimo l assorbimento nella banda di frequenze desiderata. 21

22 Fonoassorbimento per risonanza di cavità E possibile riempire, almeno in parte, l intercapedine con del materiale assorbente poroso (lana di vetro o lana minerale) allo scopo di ottenere una curva di assorbimento più regolare. Struttura rigida Intercapedine d aria Strato poroso Pannello forato Assorbimento di un pannello forato abbinato ad uno strato di materiale poroso L assorbimento per risonanza di cavità è utilizzato soprattutto per assorbire le frequenze medie, tipiche della voce umana, cosa questa non realizzabile con spessori economici di materiali assorbenti per porosità. 22

23 Fonoassorbimento per risonanza di membrana I pannelli vibranti sono costituiti da lastre di materiale flessibile non poroso (impermeabili all aria), quale ad esempio il legno compensato, montate su apposito telaio che le mantiene distanziate dalla parete formando una intercapedine d aria. Colpiti dall onda sonora questi pannelli vibrano come un diaframma su di un cuscino d aria e assorbono una parte dell energia acustica che viene dissipata in calore. L energia sonora viene cioè convertita in lavoro di deformazione e spostamento del pannello. Anche in questo caso il sistema è riconducibile ad un oscillatore semplice massamolla in cui la massa in grado di oscillare è costituita dal pannello (o membrana) di superficie S e massa totale M e la molla dalla intercapedine d aria di spessore d compresa tra il pannello e la struttura. 23

24 Fonoassorbimento per risonanza di membrana Tuttavia, per il fatto stesso che vibra, il pannello reirradia una parte dell energia ricevuta; l assorbimento sarà quindi solo parziale a meno di smorzare opportunamente le vibrazioni stesse. Lo smorzamento non deve essere molto piccolo, altrimenti il pannello reirradia quasi tutta l energia ricevuta, cosicché l assorbimento risulta trascurabile. Se lo smorzamento è eccessivo, il pannello vibra assai poco ed il meccanismo di assorbimento non può manifestarsi. Esiste un valore ottimale dello smorzamento, al quale corrisponde il massimo potere fonoassorbente della struttura a pannelli. E opportuno inserire nell intercapedine un materiale assorbente poroso per regolare il valore dello smorzamento. L efficacia assorbente del pannello è massima in corrispondenza della frequenza di risonanza del sistema. 24

25 Fonoassorbimento per risonanza di membrana Nella figura seguente è illustrato l andamento del coefficiente di assorbimento, in funzione della frequenza, per un pannello vibrante di legno (la linea continua fa riferimento alla presenza di materiale fonoassorbente poroso nell intercapedine, mentre la linea tratteggiata si riferisce all assenza di tale materiale): Il grafico indica che l assorbimento acustico è massimo per frequenze intorno alla frequenza di risonanza del pannello: 60 f r md dove m è la massa frontale (o densità superficiale) del pannello [kg/m 2 ], e d è la distanza [m] del pannello dalla parete. Con le dimensioni usuali dei pannelli e dell intercapedine tali sistemi risultano molto selettivi ed utili per assorbire suoni incidenti caratterizzati da basse frequenze ( Hz), dove i materiali fonoassorbenti sono poco efficaci e i risonatori di Helmholtz assumerebbero dimensioni troppo grandi. 25

26 Risonanza di membrana e porosità E possibile combinare l effetto dell assorbimento per risonanza di membrana con l assorbimento per porosità, adoperando un materiale poroso a celle chiuse, quale la fibra di legno, montandolo a pannello, cioè separato dalla parete mediante un intercapedine di piccolo spessore. Il pannello poroso di fibra di legno è in grado di assorbire sia per porosità che per risonanza di membrana. Diagramma di assorbimento di un pannello poroso in fibra di legno montato a parete (curva a) e montato a pannello distanziato dalla parete (curva b). E evidente l incremento del coefficiente di assorbimento alle basse frequenze dovuto all effetto di risonanza di membrana. 26

ACUSTICA IN EDILIZIA L ACUSTICA NEGLI AMBIENTI INTERNI

ACUSTICA IN EDILIZIA L ACUSTICA NEGLI AMBIENTI INTERNI ACUSTICA IN EDILIZIA associato L ACUSTICA NEGLI AMBIENTI INTERNI Sala B. Fenoglio Via Vittorio Emanuele 19 12051 - Alba Relatore: Fabio Girolametti 04 Aprile 2012 ACUSTICA ARCHITETTONICA ACUSTICA DEGLI

Dettagli

Fonoassorbimento: materiali e sistemi assorbenti

Fonoassorbimento: materiali e sistemi assorbenti SISTEMI FONOASSORBENTI Fonoassorbimento: materiali e sistemi assorbenti Per assorbire l energia sonora presente in un ambiente si ricorre all utilizzo di sistemi fonoassorbenti; ovvero dei sistemi con

Dettagli

Legge di massa e scostamenti per pareti reali (rappresentazione grafica qualitativa) Il coefficiente di trasmissione acustica è:

Legge di massa e scostamenti per pareti reali (rappresentazione grafica qualitativa) Il coefficiente di trasmissione acustica è: ACUSTICA Coefficiente di trasmissione e definizione di potere fonoisolante Potere fonoisolante: l attitudine a ridurre la trasmissione del suono. in cui t è il coefficiente di trasmissioneacustica della

Dettagli

Sound Division. Isolamento acustico, legge di massa

Sound Division. Isolamento acustico, legge di massa Isolamento acustico, legge di massa Argomenti trattati: Coefficienti di riflessione, assorbimento e trasmissione Materiali fonoassorbenti e fonoisolanti Problemi di disturbo Materiali fonoassorbenti Materiali

Dettagli

ACUSTICA EDILIZIA. Obiettivo dell acustica edilizia è la difesa dai rumori sia esterni che interni mediante:

ACUSTICA EDILIZIA. Obiettivo dell acustica edilizia è la difesa dai rumori sia esterni che interni mediante: ACUSTICA EDILIZIA Obiettivo dell acustica edilizia è la difesa dai rumori sia esterni che interni mediante: a) definizione dei limiti di benessere; b) individuazione e caratterizzazione delle fonti di

Dettagli

"I REQUISITI ACUSTICI DEGLI EDIFICI" G.MOSSA S.C.S Controlli e Sistemi

I REQUISITI ACUSTICI DEGLI EDIFICI G.MOSSA S.C.S Controlli e Sistemi "I REQUISITI ACUSTICI DEGLI EDIFICI" G.MOSSA S.C.S Controlli e Sistemi 1 2 Indice Indice... 1 I REQUISITI ACUSTICI DEGLI EDIFICI... 4 INTRODUZIONE... 4 PROGETTO ACUSTICO DEGLI EDIFICI IN FUNZIONE DEL CONTROLLO

Dettagli

FONOISOLAMENTO. SpA. Bonifica acustica_modulo j8

FONOISOLAMENTO. SpA. Bonifica acustica_modulo j8 Coefficiente τ di trasmissione del rumore di una parete τ = W W t = Potere fonoisolante R di una parete i potenza sonora trasmessa al di là della parete potenza sonora incidente sulla parete R = livello

Dettagli

ELEMENTI DI ACUSTICA 08

ELEMENTI DI ACUSTICA 08 I.U.A.V. Scienze dell architettura a.a. 2012/2013 Fisica Tecnica e Controllo Ambientale Prof. Piercarlo Romagnoni ELEMENTI DI ACUSTICA 08 ACUSTICA ARCHITETTONICA 02 FONOISOLAMENTO ASSORBIMENTO, RIFLESSIONE,

Dettagli

1. Modalità di assorbimento del suono 2. Grandezze caratteristiche dei materiali fonoassorbenti 3. Materiali fibrosi 4. Materiali porosi 5.

1. Modalità di assorbimento del suono 2. Grandezze caratteristiche dei materiali fonoassorbenti 3. Materiali fibrosi 4. Materiali porosi 5. I materiali fonoassorbenti 1. Modalità di assorbimento del suono 2. Grandezze caratteristiche dei materiali fonoassorbenti 3. Materiali fibrosi 4. Materiali porosi 5. Risonatori 1 Modalità di assorbimento

Dettagli

Il coefficiente di assorbimento di un materiale si può misurare. Metodo del tubo di Kundt (determinazione del coefficiente ad incidenza normale, n ).

Il coefficiente di assorbimento di un materiale si può misurare. Metodo del tubo di Kundt (determinazione del coefficiente ad incidenza normale, n ). Acustica Isolamento acustico Assorbimento, riflessione e trasmissione del suono Assorbimento Il coefficiente di assorbimento di un materiale si può misurare utilizzando due metodi diversi: Metodo del tubo

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA Lezione n 8: Caratteristiche acustiche dei materiali: Isolamento acustico e potere fonoisolante delle pareti Comportamento dei materiali nei confronti dell

Dettagli

IUAV - MASTER IN PROGETTAZIONE ACUSTICA A.A.

IUAV - MASTER IN PROGETTAZIONE ACUSTICA A.A. IUAV - MASTER IN PROGETTAZIONE ACUSTICA A.A. 2004/2005 Lezione del 26 ottobre 2004 Titolo: Il fonoassorbimento principi, materiali, strutture e dispositivi. Docente: Arch. Antonio Carbonari IL FONOASSORBIMENTO

Dettagli

A cura di: Patrizio Fausti

A cura di: Patrizio Fausti CAPITOLO 2 ACUSTICA EDILIZIA ACUSTICA EDILIZIA A cura di: Patrizio Fausti Premessa Lo studio della trasmissione del rumore negli edifici e la caratterizzazione dei materiali con cui vengono realizzati

Dettagli

VALUTAZIONE TEORICA E SPERIMENTALE DELLE PROPRIETA DI ISOLAMENTO ACUSTICO DI PANNELLI IN SUGHERO

VALUTAZIONE TEORICA E SPERIMENTALE DELLE PROPRIETA DI ISOLAMENTO ACUSTICO DI PANNELLI IN SUGHERO Associazione Italiana di Acustica 36 Convegno Nazionale Torino, 10-12 giugno 2009 VALUTAZIONE TEORICA E SPERIMENTALE DELLE PROPRIETA DI ISOLAMENTO ACUSTICO DI PANNELLI IN SUGHERO Cinzia Buratti, Elisa

Dettagli

L acustica architettonica Parametri di progetto e scelta dei materiali

L acustica architettonica Parametri di progetto e scelta dei materiali Che cosa è, come funziona L acustica architettonica Parametri di progetto e scelta dei materiali Parte II Leonardo Scopece, lberto Ciprian 1. Elementi pratici di progettazione Quando si parla di progettazione

Dettagli

Trasmissione del suono attraverso una parete. Prof. Ing. Cesare Boffa

Trasmissione del suono attraverso una parete. Prof. Ing. Cesare Boffa Trasmissione del suono attraverso una parete Prof. ng. Cesare offa W t W i scoltatore W r orgente W a La frazione di energia trasmessa dalla parete è data dal fattore di trasmissione t=w t /W i. Più spesso

Dettagli

Soluzioni di involucro e dettagli costruttivi per isolare dai rumori aerei

Soluzioni di involucro e dettagli costruttivi per isolare dai rumori aerei Soluzioni di involucro e dettagli costruttivi per isolare dai rumori aerei Dipartimento di Ingegneria Meccanica e Industriale Università degli Studi di Brescia Ing. Edoardo Piana Contenuti minimi del progetto

Dettagli

SCHEDA 3 ISOLAMENTO ACUSTICO: ASPETTI FISICI

SCHEDA 3 ISOLAMENTO ACUSTICO: ASPETTI FISICI SCHED 3 ISOLMENTO CUSTICO: SPETTI FISICI Se si pone una sorgente sonora in un locale (emittente) separato da un altro (ricevente) mediante una parete divisoria, una parte dell energia sonora emessa dalla

Dettagli

Isolamento acustico. Andrea Nicolini

Isolamento acustico. Andrea Nicolini Isolamento acustico Andrea Nicolini Università degli Studi di Perugia Dipartimento di Ingegneria Industriale, sezione di Fisica Tecnica nicolini.unipg@ciriaf.it ISOLAMENTO ACUSTICO Strutture fonoisolanti

Dettagli

Isolamento acustico: valutazione del potere fonoisolante per strutture complesse

Isolamento acustico: valutazione del potere fonoisolante per strutture complesse Isolamento acustico: valutazione del potere fonoisolante per strutture complesse Dott. Edoardo Piana, Dipartimento di Ingegneria Meccanica e Industriale Università degli Studi di Brescia, via Branze 38,

Dettagli

bianchi_acusticaok.qxp 13-07-2007 16:15 Pagina V Indice

bianchi_acusticaok.qxp 13-07-2007 16:15 Pagina V Indice bianchi_acusticaok.qxp 13-07-2007 16:15 Pagina V 3 CAPITOLO 1 Storia dell acustica architettonica 3 1.1 Definizione 3 1.2 Gli inizi 4 1.3 I Greci 9 1.4 I Romani 1.4.1 La geometria, p. 10 1.4.2 L orecchio,

Dettagli

L ACUSTICA. Criteri di Progettazione, Materiali Fonoisolanti e Certificazione Acustica degli Edifici. Ing. Paolo Marinoni.

L ACUSTICA. Criteri di Progettazione, Materiali Fonoisolanti e Certificazione Acustica degli Edifici. Ing. Paolo Marinoni. L ACUSTICA Criteri di Progettazione, Materiali Fonoisolanti e Certificazione Acustica degli Edifici Ing. Paolo Marinoni Celenit SpA Soluzioni ecobiocompatibili per l isolamento acustico UN PRODOTTO SOSTENIBILE

Dettagli

La qualità acustica degli ambienti interni Soluzioni progettuali, materiali e metodi di verifica

La qualità acustica degli ambienti interni Soluzioni progettuali, materiali e metodi di verifica La qualità acustica deg Soluzioni progettuali, materiali e metodi di verifica Simone Secchi li ambienti in nterni custica degl La qualità ac. Secchi L Dipartimento di Tecnologie dell Architettura e Design

Dettagli

Acustica architettonica: la trasmissione del suono

Acustica architettonica: la trasmissione del suono Acustica architettonica: la trasmissione del suono La trasmissione del suono da una sorgente al ricevitore può avvenire in diversi modi e per diverse vie. Le traiettorie seguite possono riassumersi in

Dettagli

D.P.C.M. 5 Dicembre 1997 1D 55 45 58 35 25 2 A,C 50 40 63 35 35 3 E 50 48 58 35 25 4 B,F,G 50 42 55 35 35

D.P.C.M. 5 Dicembre 1997 1D 55 45 58 35 25 2 A,C 50 40 63 35 35 3 E 50 48 58 35 25 4 B,F,G 50 42 55 35 35 D.P.C.M. 5 Dicembre 1997 Categoria Rw-Potere Isolamento Calpestio Pressione Livello fonoisolante acustico sonora continuo R w D2m,nT,w Ln,w LASmax LAeq 1D 55 45 58 35 25 2 A,C 50 40 63 35 35 3 E 50 48

Dettagli

BONIFICA ACUSTICA: SILENZIATORI. SCUOLA SUPERIORE DI INGEGNERIA The post-graduate School of Advanced Engineering Studies. SpA

BONIFICA ACUSTICA: SILENZIATORI. SCUOLA SUPERIORE DI INGEGNERIA The post-graduate School of Advanced Engineering Studies. SpA BONIFICA ACUSTICA: SILENZIATORI Silenziamento lungo i condotti o tramite silenziatori dissipativi I canali rettangolari costruiti con lamiera metallica presentano una bassa attenuazione sonora dell ordine

Dettagli

Michele Pascali ACUSTICA AMBIENTI INTERNI PROPAGAZIONE ED ATTENUAZIONE DEL RUMORE, ISOLAMENTO E DISINQUINAMENTO

Michele Pascali ACUSTICA AMBIENTI INTERNI PROPAGAZIONE ED ATTENUAZIONE DEL RUMORE, ISOLAMENTO E DISINQUINAMENTO Michele Pascali ACUSTICA AMBIENTI INTERNI PROPAGAZIONE ED ATTENUAZIONE DEL RUMORE, ISOLAMENTO E DISINQUINAMENTO PROPAGAZIONE IN AMBIENTI CHIUSI O CONFINATI, PER VIA AEREA E STRUTTURALE ATTRAVERSO DIVISORI

Dettagli

Isolamento acustico: teoria e quadro legislativo

Isolamento acustico: teoria e quadro legislativo Isolamento acustico: teoria e quadro legislativo Dott. Edoardo Piana, Dip. Ingegneria Meccanica e Industriale Università degli Studi di Brescia, via Branze 38, 513 Brescia piana@ing.unibs.it Ing. Ugo Pannuti,

Dettagli

ASSORBIMENTO ACUSTICO

ASSORBIMENTO ACUSTICO Manuale tecnico-pratico ASSORBIMENTO ACUSTICO Metodi di miglioramento delle prestazioni acustiche degli edifici A cura di Luciano Mattevi Specialista in acustica Indice La propagazione sonora in ambienti

Dettagli

ACUSTICA AMBIENTALE. Considerazioni introduttive

ACUSTICA AMBIENTALE. Considerazioni introduttive ACUSTICA AMBIENTALE 1 ACUSTICA AMBIENTALE Considerazioni introduttive Sorgente sonora può essere rappresentata da un corpo vibrante posto in un messo elastico che produce una successione di compressioni

Dettagli

IL SUONO. Grandezze Fisiche. Y = Spostamento della particella. t = Tempo

IL SUONO. Grandezze Fisiche. Y = Spostamento della particella. t = Tempo IL SUONO Caratteristiche Generali Il suono é un onda elastica (ha bisogno di un mezzo per propagarsi),longitudinale (la perturbazione avviene parallelamente alla direzione di propagazione); per la sua

Dettagli

Matematica e teoria musicale 1

Matematica e teoria musicale 1 Matematica e teoria musicale 1 Stefano Isola Università di Camerino stefano.isola@unicam.it Il suono Il fine della musica è dilettare e muovere in noi diversi sentimenti, il mezzo per raggiungere tale

Dettagli

CASE PIÙ SILENZIOSE L isolamento Acustico

CASE PIÙ SILENZIOSE L isolamento Acustico I.P. CASE PIÙ SILENZIOSE L isolamento Acustico ASSOCIAZIONE NAZIONALE PER L ISOLAMENTO TERMICO E ACUSTICO Via Matteo Civitali, 77 20148 Milano - Tel. 02/40070208 - Fax. 02/40070201 e-mail: anit@anit.it

Dettagli

Quaderni d informazione. La protezione dal rumore. Isolamento acustico

Quaderni d informazione. La protezione dal rumore. Isolamento acustico Quaderni d informazione La protezione dal rumore Isolamento acustico LA PROTEZIONE DAL RUMORE Fonoisolamento, fonoassorbimento, controllo del rumore Suoni e Rumori Come viene definito il "rumore" e come

Dettagli

MOVIMENTO DI GAS (ARIA)

MOVIMENTO DI GAS (ARIA) BONIFICA ACUSTICA: MOVIMENTO DI GAS (ARIA) Affrontiamo questo problema inizialmente esaminando un impianto RCV (raffreddamento, condizionamento, ventilazione) La generazione del rumore Le cause della rumorosità

Dettagli

ISOLAMENTO ACUSTICO. Corso di Acustica applicata. Dipartimento di Tecnica e Gestione dei Sistemi industriali

ISOLAMENTO ACUSTICO. Corso di Acustica applicata. Dipartimento di Tecnica e Gestione dei Sistemi industriali Università degli studi di Padova dtg ISOLAMENTO ACUSTICO Corso di Acustica applicata Renato Lazzarin Dipartimento di Tecnica e Gestione dei Sistemi industriali L isolamento acustico si occupa della riduzione

Dettagli

5. LE SOLUZIONI DI PROGETTO PER LA CORREZIONE ACUSTICA DELLE AULE SCOLASTICHE (a cura di A. Astolfi, M. Giovannini e D. Schiavon)

5. LE SOLUZIONI DI PROGETTO PER LA CORREZIONE ACUSTICA DELLE AULE SCOLASTICHE (a cura di A. Astolfi, M. Giovannini e D. Schiavon) 5. LE SOLUZIONI DI PROGETTO PER LA CORREZIONE ACUSTICA DELLE AULE SCOLASTICHE (a cura di A. Astolfi, M. Giovannini e D. Schiavon) In questo capitolo è descritta una procedura per effettuare la correzione

Dettagli

PROTEZIONE DAI RUMORI TRASMESSI PER VIA AEREA SOLUZIONE UNIVERSALE PER PARETI, SOLAI, SOFFITTI E COPERTURE

PROTEZIONE DAI RUMORI TRASMESSI PER VIA AEREA SOLUZIONE UNIVERSALE PER PARETI, SOLAI, SOFFITTI E COPERTURE PROTEZIONE DAI RUMORI TRASMESSI PER VIA AEREA ISOLAMENTO ACUSTICO DAI RUMORI DA CALPESTIO PROTEZIONE DALLE RADIAZIONI SOLUZIONE UNIVERSALE PER PARETI, SOLAI, SOFFITTI E COPERTURE SICUREZZA AL 100% NON

Dettagli

ALLEGATO A Calcoli di progetto PREMESSA Scopo della presente relazione, redatta ai sensi della Legge 26 ottobre 1995, n. 447 Legge quadro sull'inquinamento acustico e del Decreto del Presidente del Consiglio

Dettagli

Laboratorio di onde II anno CdL in Fisica

Laboratorio di onde II anno CdL in Fisica Laboratorio di onde II anno CdL in Fisica Termometri sonori Introduzione In condizioni prossime a quelle standard, un onda sonora si propaga nell aria a velocità = f (T ) In un fluido, infatti, vale la

Dettagli

Onde armoniche o sinusoidali

Onde armoniche o sinusoidali Onde armoniche o sinusoidali v = ν = T 1 A T ν = v y x 2π y = Asen ± ( x vt ) 2π = Asen x ± 2πνt Il suono Il suono è un onda longitudinale di compressione e rarefazione del mezzo in cui l onda si propaga.

Dettagli

Il Metodo Ultrasonico (UT)

Il Metodo Ultrasonico (UT) Il Metodo Ultrasonico (UT) Il suono si propaga nei corpi mediante la vibrazione elastica degli atomi e delle molecole che lo compongono ad una velocità dipendente dalle caratteristiche meccaniche del materiale

Dettagli

Lezione XIX del 23/05/2014 (14:30-17:30) Mattia Peri matr.231795, Giorgio Notari matr.233444

Lezione XIX del 23/05/2014 (14:30-17:30) Mattia Peri matr.231795, Giorgio Notari matr.233444 Mattia Peri matr.231795, Giorgio Notari matr.233444 ISOLAMENTO ACUSTICO DEGLI EDIFICI REQUISITI ACUSTICI PASSIVI DEGLI EDIFICI In campo civile, in particolar modo per quanto riguarda abitazioni, uffici

Dettagli

LA CASSA CHIUSA. con Vab il volume del box apparente, data la presenza del materiale fonoassorbente ( vedi oltre ).

LA CASSA CHIUSA. con Vab il volume del box apparente, data la presenza del materiale fonoassorbente ( vedi oltre ). LA CASSA CHIUSA Trattandosi di un box senza alcun tipo di aperture è indubbiamente il tipo di cassa acustica dalla realizzazione più semplice; è stato brevettato nel 99 da Harry Olson e J. Preston ed è

Dettagli

La previsione della protezione acustica degli edifici con metodi semplificati

La previsione della protezione acustica degli edifici con metodi semplificati La previsione della protezione acustica degli edifici con metodi semplificati EDILTIRRENO EXPO Carrara, 16 Maggio 2008 Simone Secchi Dipartimento di Tecnologie dell Architettura e Design _ Università di

Dettagli

Guida all acustica pinta

Guida all acustica pinta Guida all acustica pinta UNA BREVE INTRODUZIONE NEL MONDO DELL ACUSTICA [2/16] >> Da dove proviene il rumore? QUALI SONO I CONCETTI FONDAMENTALI DEL- L ACUSTICA NELLA PROGETTAZIONE E NELLA CO- STRUZIONE

Dettagli

SOMAIN SOTTOSISTEMI E MATERIALI INNOVATIVI PER LA GESTIONE INTEGRATA DEL CICLO DI VITA DELLE UNITÀ DA DIPORTO

SOMAIN SOTTOSISTEMI E MATERIALI INNOVATIVI PER LA GESTIONE INTEGRATA DEL CICLO DI VITA DELLE UNITÀ DA DIPORTO SOMAIN SOTTOSISTEMI E MATERIALI INNOVATIVI PER LA GESTIONE INTEGRATA DEL CICLO DI VITA DELLE UNITÀ DA DIPORTO A cura di: Prof. Ing. S. zanelli Componenti del gruppo di ricerca Fonoassorbenti per l assorbimento

Dettagli

Comportamento acustico dell involucro

Comportamento acustico dell involucro PROGETTAZIONE DI EDIFICI CON STRUTTURE PORTANTI IN LEGNO Comportamento acustico dell involucro Rovereto, 12 Novembre 2010 Ing. Gaia Pasetto La trasmissione del suono negli edifici Trasmissione per via

Dettagli

VITAL PANNELLO DI FIBRE DI CELLULOSA ISOLAMENTO TERMICO ED ACUSTICO BIOECOLOGICO IN FIBRE DI CELLULOSA

VITAL PANNELLO DI FIBRE DI CELLULOSA ISOLAMENTO TERMICO ED ACUSTICO BIOECOLOGICO IN FIBRE DI CELLULOSA PANNELLO DI FIBRE DI CELLULOSA ISOLAMENTO TERMICO ED ACUSTICO BIOECOLOGICO IN FIBRE DI CELLULOSA SOMMARIO - PANNELLO DI FIBRE DI CELLULOSA 4 5 6 8 GENERALITà IL PRODOTTO Vital LE APPLICAZIONI Assorbimento

Dettagli

Principali parti di un fabbricato

Principali parti di un fabbricato Principali parti di un fabbricato Un fabbricato industriale risulta essenzialmente costituito dalle seguenti parti: Fondazioni (del fabbricato e dei macchinari) Struttura portante; Copertura e pareti (complete

Dettagli

Comfort termico e acustico con sistemi isolanti a secco

Comfort termico e acustico con sistemi isolanti a secco Comfort termico e acustico con sistemi isolanti a secco Pannelli isolanti con cartongesso Gexo è un sistema nato per risolvere, agendo dall interno, i problemi di isolamento degli ambienti abbinando i

Dettagli

S. Secchi, Università degli Studi di Firenze, Dip. di Tecnologie dell Architettura e Design (TAeD)

S. Secchi, Università degli Studi di Firenze, Dip. di Tecnologie dell Architettura e Design (TAeD) Isolamento acustico di facciata: effetto delle connessioni rigide nelle pareti doppie S. Secchi, Università degli Studi di Firenze, Dip. di Tecnologie dell Architettura e Design (TAeD) Nella realizzazione

Dettagli

Isolamento acustico: pubblicazione protetta da copyright Lafarge Gessi.

Isolamento acustico: pubblicazione protetta da copyright Lafarge Gessi. I s o l a m e n t o a c u s t i c o Isolamento acustico: pubblicazione protetta da copyright Lafarge Gessi. Introduzione L inquinamento acustico ambientale ha ormai raggiunto soglie elevate, che hanno

Dettagli

ONLECO S.r.l. Società di ricerca applicata e consulenza Laureata nell Incubatore di Imprese Innovative del Politecnico di Torino

ONLECO S.r.l. Società di ricerca applicata e consulenza Laureata nell Incubatore di Imprese Innovative del Politecnico di Torino ONLECO S.r.l. Società di ricerca applicata e consulenza Laureata nell Incubatore di Imprese Innovative del Politecnico di Torino Consulenza acustica per la riqualificazione delle aree didattiche Conservatorio

Dettagli

Soluzioni costruttive e problemi per l isolamento acustico delle facciate

Soluzioni costruttive e problemi per l isolamento acustico delle facciate Soluzioni costruttive e problemi per l isolamento acustico delle facciate Simone Secchi Dipartimento Tecnologie dell Architettura e Design Pierluigi Spadolini simone.secchi@unifi.it http://web.taed.unifi.it/fisica_tecnica/secchi/secchi.htm

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

Prova scritta intercorso 2 31/5/2002

Prova scritta intercorso 2 31/5/2002 Prova scritta intercorso 3/5/ Diploma in Scienza e Ingegneria dei Materiali anno accademico - Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione ora e 45 minuti ) Un elettrone

Dettagli

lunghezza 3000 mm larghezza 310 mm spessore 70 mm (T1 = 40 mm) 5 microns con smalto epossidico spessore minimo 20 mm.

lunghezza 3000 mm larghezza 310 mm spessore 70 mm (T1 = 40 mm) 5 microns con smalto epossidico spessore minimo 20 mm. 75 I pannelli Flexophone sono elementi modulari, autoportanti, costituiti da un involucro in lamiera s=5/10 preverniciata nel colore bianco simile Le dimensioni STANDARD del pannello sono le seguenti:

Dettagli

coscienza ecologica caring for the environment

coscienza ecologica caring for the environment Nella figura vediamo l installazione in esame, in cui sono state previste 10 unità GAHP-AR in configurazione silenziata, distribuite su tre gruppi preassemblati. Le unità sono state installate sulla terrazza

Dettagli

ACUSTICA VERSO L ECONOMIA CIRCOLARE. Sergio Luzzi, Lucia Busa

ACUSTICA VERSO L ECONOMIA CIRCOLARE. Sergio Luzzi, Lucia Busa Martedì 23 giugno 2015 Senato della Repubblica Sala degli Atti parlamentari della Biblioteca "Giovanni Spadolini" VERSO L ECONOMIA CIRCOLARE La Green Strategy di Ecopneus: presentazione e discussione del

Dettagli

MATERIALI ASSORBENTI: CONFRONTO TRA LE MISURE ACQUISITE CON IL TUBO DI IMPEDENZA E LE MISURE ESEGUITE CON UNA SONDA MICROFONICA

MATERIALI ASSORBENTI: CONFRONTO TRA LE MISURE ACQUISITE CON IL TUBO DI IMPEDENZA E LE MISURE ESEGUITE CON UNA SONDA MICROFONICA Associazione Italiana di Acustica 42 Convegno Nazionale Firenze, 16-17 luglio 2015 MATERIALI ASSORBENTI: CONFRONTO TRA LE MISURE ACQUISITE CON IL TUBO DI IMPEDENZA E LE MISURE ESEGUITE CON UNA SONDA MICROFONICA

Dettagli

Prof. Federico Rossi

Prof. Federico Rossi VOLUME PRIMO TEMI ASSEGNABILI ALL'ESAME DI FISICA TECNICA (Corso di Laurea in Ingegneria Industriale) Prof. Federico Rossi Le sezioni A relative al Primo volume sono le seguenti: A1 Diagramma di stato

Dettagli

RICCARDO SANTOBONI ANNA RITA TICARI. Fondamenti di Acustica e Psicoacustica

RICCARDO SANTOBONI ANNA RITA TICARI. Fondamenti di Acustica e Psicoacustica RICCARDO SANTOBONI ANNA RITA TICARI Fondamenti di Acustica e Psicoacustica 1 2 Riccardo Santoboni Anna Rita Ticari Fondamenti di Acustica e Psicoacustica 3 Terza edizione (2008) 4 Sommario 5 6 Sommario

Dettagli

A cura di: Patrizio Fausti

A cura di: Patrizio Fausti CAPITOLO 1 PRINCIPI BASE DI ACUSTICA PRINCIPI BASE DI ACUSTICA A cura di: Patrizio Fausti Il suono e le grandezze acustiche Sorgente sonora e mezzo elastico Il suono è caratterizzato dalla propagazione

Dettagli

ESERCITAZIONE DI ACUSTICA ARCHITETTONICA Progetto acustico di massima di una sala per conferenze

ESERCITAZIONE DI ACUSTICA ARCHITETTONICA Progetto acustico di massima di una sala per conferenze 2010/2011 Prima Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile Anno Accademico 2010/2011 Corso di Fisica Tecnica Professore: Ing. Cesare Boffa Codice del Corso: 08AXYEV Studente: Eleonora Magnotta

Dettagli

Il vetro e l isolamento acustico

Il vetro e l isolamento acustico Proprietà e funzioni del vetro 31 Principi generali Intensità, pressioni e livelli sonori La "potenza" di un rumore può essere data dalla sua intensità I o dalla sua pressione P (misurate rispettivamente

Dettagli

Corso di Acustica prof. ing. Gino Iannace

Corso di Acustica prof. ing. Gino Iannace Corso di Acustica prof. ing. Gino Iannace e-mail: gino.iannace@unina2.it prof. ing. Gino IANNACE 1 Il suono è un "rumore sgradevole", "un suono fastidioso, non desiderato". Dal punto di vista fisico, il

Dettagli

CONTROLLARE LE VIBRAZIONI

CONTROLLARE LE VIBRAZIONI Le vibrazioni sono un fenomeno ondulatorio, della stessa natura di quello dei suoni; a differenza di questi, che si propagano nell aria, le vibrazioni diffondono le loro onde nelle strutture solide. Le

Dettagli

ACUSTICA ARCHITETTONICA

ACUSTICA ARCHITETTONICA ACUSTICA ARCHITETTONICA Prof. Luigi Di Francesco I principi dell'acustica fisica vengono applicati in edilizia per due problemi nettamente diversi. Il primo problema dell'acustica edilizia è lo studio

Dettagli

CALPESTIO. PARETE DEL SILENZIO HABITAT I e HABITAT II. FORMATO mm 1.200 x 2.800/3.000 o su richiesta 1.400/1.500. SPESSORE 33-43-53 mm

CALPESTIO. PARETE DEL SILENZIO HABITAT I e HABITAT II. FORMATO mm 1.200 x 2.800/3.000 o su richiesta 1.400/1.500. SPESSORE 33-43-53 mm / Data 01/08/2015 FORMATO mm 1.200 x 2.800/3.000 o su richiesta 1.400/1.500 SPESSORE 33-43-53 mm PESO 12-13-14 kg/mq CONDUCIBILITA TERMICA W/mK 0,035 10 C POTERE FONOISOLANTE Rw = 32 db FONOISOLAMENTO

Dettagli

Premessa. Valori limite dei parametri Parametri R w (*) D 2m,nT,w L n,w L ASmax L Aeq

Premessa. Valori limite dei parametri Parametri R w (*) D 2m,nT,w L n,w L ASmax L Aeq Premessa Scopo della presente relazione, redatta ai sensi della Legge 26 ottobre 1995, n. 447 Legge quadro sull'inquinamento acustico e del Decreto del Presidente del Consiglio dei Ministri 5 dicembre

Dettagli

LE FINESTRE E L ISOLAMENTO ACUSTICO

LE FINESTRE E L ISOLAMENTO ACUSTICO LE FINESTRE E L ISOLAMENTO ACUSTICO Roberto Malatesta. William Marcone Ufficio Tecnico (giugno 2008) LA PROTEZIONE DAL RUMORE DEGLI EDIFICI, LA NORMATIVA NAZIONALE La maggior sensibilità delle persone

Dettagli

Ispesl Conferenza dei Presidenti delle Regioni e delle Province Autonome

Ispesl Conferenza dei Presidenti delle Regioni e delle Province Autonome SCHEDA 17 COPERTURE INTEGRALI E PARZIALI DI SORGENTI SONORE I modi di trasmissione di un segnale, soprattutto se generato da un macchinario di grandi dimensioni (e quindi di massa molto maggiore al cabinato

Dettagli

PRESTAZIONI DEI TETTI IN LEGNO: DAI MATERIALI AL SISTEMA POSATO IN OPERA

PRESTAZIONI DEI TETTI IN LEGNO: DAI MATERIALI AL SISTEMA POSATO IN OPERA PRESTAZIONI DEI TETTI IN LEGNO: DAI MATERIALI AL SISTEMA POSATO IN OPERA L. Parati(1), A. Carrettini(1), C. Scrosati(2), F. Scamoni(2) 1) PARATI & CO. Studio di Consulenze e Progettazioni Acustiche, Crema

Dettagli

PRINCIPI DI TRASMISSIONE DEL CALORE

PRINCIPI DI TRASMISSIONE DEL CALORE PRINCIPI DI TRASMISSIONE DEL CALORE La trasmissione del calore può avvenire attraverso tre meccanismi: - Conduzione; - Convezione; - Irraggiamento; Nella conduzione la trasmissione del calore è riconducibile

Dettagli

LINEA ISOLGYPSUM RISANAMENTO TERMICO E ACUSTICO A BASSO SPESSORE DELLE PARETI

LINEA ISOLGYPSUM RISANAMENTO TERMICO E ACUSTICO A BASSO SPESSORE DELLE PARETI LINEA ISOLGYPSUM RISANAMENTO TERMICO E ACUSTICO A BASSO SPESSORE DELLE PARETI Stop a rumore e muffe Via al risparmio LINEA RISANAMENTO RISANAMENTO > APPLICAZIONI A PARETE >LINEA CARTONGESSO RISANAMENTO

Dettagli

VITAL PANNELLO DI FIBRE DI CELLULOSA ISOLAMENTO TERMICO ED ACUSTICO BIOECOLOGICO IN FIBRE DI CELLULOSA

VITAL PANNELLO DI FIBRE DI CELLULOSA ISOLAMENTO TERMICO ED ACUSTICO BIOECOLOGICO IN FIBRE DI CELLULOSA PANNELLO DI FIBRE DI CELLULOSA ISOLAMENTO TERMICO ED ACUSTICO BIOECOLOGICO IN FIBRE DI CELLULOSA GENERALITÀ SOMMARIO - PANNELLO DI FIBRE DI CELLULOSA PAG. 4 PAG. 5 PAG. 6 PAG. 8 GENERALITÀ IL PRODOTTO

Dettagli

ARCHITETTURA TECNICA III 2012-13

ARCHITETTURA TECNICA III 2012-13 ARCHITETTURA TECNICA III 2012-13 APPROCCIO BIOCLIMATICO ALLA PROGETTAZIONE - TECNOLOGIE SOLARI ATTIVE e PASSIVE. Ing. Nicola Bartolini nicola.bartolini5@unibo.it AZIMUTH E ALTEZZA SOLARE Angolo di altezza

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 22 Il primo principio della termodinamica non è altro che una affermazione del principio di conservazione dell energia. Ci dice che se un sistema

Dettagli

Rigips. Rigiton Climafit: Diminuire il fabbisogno energetico grazie al soffitto e raggiungere un clima perfetto.

Rigips. Rigiton Climafit: Diminuire il fabbisogno energetico grazie al soffitto e raggiungere un clima perfetto. Rigips Rigiton Climafit: Diminuire il fabbisogno energetico grazie al soffitto e raggiungere un clima perfetto. Sano e gradevole. Un ambiente interno ottimale protegge la salute e rende il clima gradevole

Dettagli

Acustica. Caratteristiche distintive del suono. Altezza. Intensità W S

Acustica. Caratteristiche distintive del suono. Altezza. Intensità W S Acustica L acustica studia le caratteristiche del suono e della sua propagazione. l suono è generato da un corpo vibrante, come una corda, una membrana elastica, le corde vocali. La sorgente del suono

Dettagli

Trasformatore di corrente (TA)

Trasformatore di corrente (TA) Sensori di corrente Il modo più semplice di eseguire la misura di corrente è il metodo volt-amperometrico, in cui si misura la caduta di tensione su di una resistenza di misura percorsa dalla corrente

Dettagli

2) Parametri R w D 2m,nT,w L n,w 1) D 55 45 58 2) A, C 50 40 63 3) E 50 48 58 4) B, F, G 50 42 55

2) Parametri R w D 2m,nT,w L n,w 1) D 55 45 58 2) A, C 50 40 63 3) E 50 48 58 4) B, F, G 50 42 55 Valente Sonia Matricola 139047 Lezione del 16/01/003 10:30-1:30 ntroduciamo l argomento dell ACUSTCA EDLZA riprendendo il discorso della lezione precedente riguardante l acustica architettonica che ha

Dettagli

2. Acustica ACUSTICA EDILIZIA

2. Acustica ACUSTICA EDILIZIA 1 2. Acustica ACUSTICA EDILIZIA 1.Il comfort acustico 2.Trasmissione i del suono attraverso le strutture tt 3.Requisiti acustici passivi degli edifici: grandezze ed indici di riferimento 4.Metodologie

Dettagli

BENVENUTI IN ISOLMANT

BENVENUTI IN ISOLMANT 28 ottobre 2014 BENVENUTI IN ISOLMANT Tecnasfalti-Isolmant è stata fondata nel 1976 da Ugo Canni Ferrari Produce e distribuisce prodotti per l isolamento acustico e termico Leader in Italia e in Europa

Dettagli

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo diverse metodologie. 1 La tempra termica (o fisica) si basa

Dettagli

TIPOLOGIE PRINCIPALI 10

TIPOLOGIE PRINCIPALI 10 QUADERNO II Chiusure in muratura e calcestruzzo MURI ESTERNI IN ELEVAZIONE Scheda N : TIPOLOGIE PRINCIPALI 10 Esistono diversi tipi di muri,che si differenziano gli uni dagli altri per la loro resistenza

Dettagli

La qualità acustica delle sale

La qualità acustica delle sale La qualità acustica delle sale Simone Secchi Dipartimento di Tecnologie dell Architettura e Design Pierluigi Spadolini Università degli Studi di Firenze simone.secchi@unifi.it http://www.taed.unifi.it/fisica_tecnica

Dettagli

Trasmissione termica

Trasmissione termica ISOLAMENTO TERMICO Per oltre 80 anni l utilizzo della vetrata isolante è stata riconosciuta come una condizione essenziale per garantire l isolamento termico degli edifici. Recenti sviluppi tecnologici

Dettagli

ESEMPI DI APPLICAZIONI

ESEMPI DI APPLICAZIONI RISCALDAMENTO IN FIBRA DI CARBONIO ESEMPI DI APPLICAZIONI MATERASSINO SOTTO IL MASSETTO E PAVIMENTO L installazione sotto il massetto, grazie all inerzia termica dello stesso, consente di mantenere la

Dettagli

DLGS 192 Interventi per il controllo del surriscaldamento estivo

DLGS 192 Interventi per il controllo del surriscaldamento estivo DLGS 192 Interventi per il controllo del surriscaldamento estivo 1-Efficaci elementi di schermatura delle superfici vetrate ( esterni o interni) 2-Ottimizzare la ventilazione naturale 3-Eventuale ventilazione

Dettagli

Polistirene espanso macinato a granulometria variabile. Polistirene espanso macinato a granulometria variabile,

Polistirene espanso macinato a granulometria variabile. Polistirene espanso macinato a granulometria variabile, Massetti leggeri Perliking : Polistirene macinato e perla vergine per massetti in CLS leggero Tipo PKM Polistirene espanso macinato a granulometria variabile PKM/ADD Polistirene espanso macinato a granulometria

Dettagli

Alba therm e Alba phon. Alba. Lastre composite per l isolamento termico all interno e per la protezione dal rumore.

Alba therm e Alba phon. Alba. Lastre composite per l isolamento termico all interno e per la protezione dal rumore. Alba therm e Alba phon Alba Lastre composite per l isolamento termico all interno e per la protezione dal rumore. Dove l isolamento dell edificio all interno è sensato ed efficace. Il risanamento energetico

Dettagli

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015 1 Giochi d ombra [Punti 10] Una sorgente di luce rettangolare, di lati b e c con b > c, è fissata al soffitto di una stanza di altezza L = 3.00 m. Uno schermo opaco quadrato di lato a = 10cm, disposto

Dettagli

TECNOLOGIA DELL ARCHITETTURA I

TECNOLOGIA DELL ARCHITETTURA I UNIVERSITÀ DEGLI STUDI DELLA BASILICATA - Facoltà di Architettura di Matera Classe LM/4, conforme alla DIRETTIVA EUROPEA 85/384 e al D.M. 22 ottobre 2004, n.270 a.a. 2011/2012 II ANNO Semestrale TECNOLOGIA

Dettagli

CHIUSURE VER VER ICALI

CHIUSURE VER VER ICALI CHIUSURE VERTICALI In generale si definisce CHIUSURA l insieme delle unità tecnologiche e degli elementi del sistema edilizio aventi funzione di separare e di conformare gli spazi interni del sistema edilizio

Dettagli

L isolamento termico degli edifici

L isolamento termico degli edifici Oliviero Tronconi Politecnico di Milano Dipartimento BEST L isolamento termico degli edifici 2262 Una delle principali prestazioni tecnologiche di un edificio è l isolamento termico. La realizzazione di

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG

DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG DOCUMENTO TRATTO DA WWW.AEREIMILITARI.ORG I Radar ad Onda Continua (CW) Principi di funzionamento dei radar CW. Al contrario dei radar ad impulsi, quelli ad onda continua (CW) emettono radiazioni elettromagnetiche

Dettagli