Teoria degli insiemi
|
|
- Albino Massa
- 2 anni fa
- Visualizzazioni
Transcript
1 Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di insieme sono: collezione, aggregato, classe, ecc.. E importante che esista un criterio atto a stabilire in modo univoco se un elemento appartiene o no all insieme. d esempio l insieme delle vocali dell alfabeto latino è un insieme, mentre l insieme dei libri divertenti non è un insieme perché il criterio per stabilire se un libro è divertente o meno è soggettivo. Gli insiemi vengono indicati con lettere latine maiuscole,, C,. Gli oggetti che compongono un insieme prendono il nome di elementi e vengono indicati con lettere latine minuscole : a, b, c, Per indicare che un elemento a appartiene all insieme si scrive: a Il simbolo deriva dal latino est e prende il nome di simbolo di appartenenza, mentre è il simbolo di non appartenenza. Un insieme privo di elementi prende il nome di insieme vuoto e si denota con il simbolo. Rappresentazione di un insieme Nella teoria degli insiemi vengono usati tre modi per rappresentare un insieme: 1. Rappresentazione tabulare: consiste nell elencare tutti gli elementi dell insieme che = aeiou ; ;; ; vengono inclusi in parentesi graffe. Es. 2. Rappresentazione mediante i grafici di Eulero-Venn: consiste nel rappresentare un insieme mediante una linea chiusa del piano, all interno della quale gli elementi vengono indicati con dei punti e con delle lettere a fianco di essi. Questi diagrammi o grafici prendono il nome di diagrammi di Eulero-Venn. 3 Rappresentazione mediante una proprietà caratteristica: L insieme viene assegnato mediante una proprietà di cui godono tutti gli elementi dell insieme. Es. = x: x è una vocale dell'alfabeto latino Il simbolo :viene letto tale che.
2 Teoria degli insiemi pag 2 Easy Matematica di dolfo Scimone Sottoinsiemi Dati due insiemi e, si dice che è sottoinsieme di se ogni elemento di è anche elemento di e si indica Si legge anche è contenuto o è incluso in. Def.: Due insiemi e si dicono uguali se sono formati con gli stessi elementi = ovvero ogni elemento dell uno è anche elemento dell altro (non ha importanza l ordine con cui vengono descritti gli insiemi) x x = = [ ] ovvero [ ] Es. { a; bcd ; ; } = { bcad ; ; ; } Si dice che è un sottoinsieme proprio di se e se esiste almeno un elemento di che non sia elemento di ( ) x x e y : y [ ] Es. = { aeiou ; ;; ; } = { aou ; ; } L insieme vuoto viene considerato come sottoinsieme di ogni insieme, e fra i sottoinsiemi di si considera stesso, per cui ogni insieme non vuoto possiede due sottoinsiemi: se stesso e l insieme vuoto, che prendono il nome di sottoinsiemi banali. Per evitare contraddizioni logiche considereremo gli insiemi come sottoinsiemi di un insieme detto insieme universale o ambiente, che è un insieme tale da contenere come sottoinsiemi tutti gli insiemi che ci interessano. Insieme delle parti ssegnato un insieme, consideriamo tutti i sottoinsiemi che si possono formare con gli elementi di. Chiamiamo insieme delle parti di e lo indichiamo con P( ) l insieme i cui elementi sono tutti i sottoinsiemi di. Esempio: = { abc ; ; } Si ha P( ) = ;{ a} ;{ b} ;{ c} ;{ ab ; }{ ac ; }{ bc ; }{ abc ; ; } Se l insieme è formato da n elementi, l insieme delle parti P( ) è formato da 2 n elementi Dim. : Ogni sottoinsieme di è formato da k elementi di dove 0 k n bbiamo quindi tanti sottoinsiemi di con k elementi quante sono le combinazioni di n n oggetti a k a k, cioè k Il numero N di elementi di P() sarà n n N = k = 0 k
3 Teoria degli insiemi pag 3 Easy Matematica di dolfo Scimone pplicando la formula del binomio di Newton avremo n n n k n k ( a + b) = a b k= 0 k ponendo a = 1, b= 1 avremo n n k n k n N = 1 1 = 2 k = 0 k Operazioni sugli insiemi Unione di insiemi Dati due insiemi e definiamo unione di e l insieme formato dagli elementi che appartengono ad o a o a entrambi e lo denotiamo con. = x: x x Intersezione di insiemi Dati due insiemi e definiamo intersezione di e l insieme formato dagli elementi che appartengono sia ad, sia a. Si ha: = x: x x Differenza di insiemi Dati due insiemi e, si dice differenza fra e l insieme formato dagli elementi di che non appartengono a
4 Teoria degli insiemi pag 4 Easy Matematica di dolfo Scimone \ = = x: x x Insieme complementare Sia S un insieme qualunque ed un suo sottoinsieme S. Si dice complementare di in S e si indica con S od anche, l insieme degli elementi di S che non appartengono ad. Si ha anche = S S \ Differenza simmetrica Supponiamo che e siano sottoinsiemi di S. Siano e i loro complementari. Si ha: = ( )\( ) = ( ) ( ) Pertanto: La differenza simmetrica è l insieme degli elementi di che non appartengono a e l insieme degli elementi di che non appartengono ad. Proprietà formali delle operazioni tra insiemi = infatti { : } { : } = idempotenza dell intersezione = x x x = x x = idempotenza dell unione
5 Teoria degli insiemi pag 5 Easy Matematica di dolfo Scimone = è evidente perché l insieme vuoto è sottoinsieme di qualsiasi insieme = è conseguenza del fatto che e proprietà commutativa = = Si può dimostrare usando tabelle simili alle tabelle di verità. Proprietà associativa ( = ( ) C C C ( ( ) C ( = ( ) C C C ( ( ) C Proprietà distributive dell intersezione rispetto all unione, sia a destra che a sinistra ( = ( ) (
6 Teoria degli insiemi pag 6 Easy Matematica di dolfo Scimone ( ) C = ( ( Proprietà distributive dell unione rispetto all intersezione, sia a destra che a sinistra ( = ( ) ( ( ) C = ( ( Si ha inoltre \ = \ = = = = U Leggi di De Morgan 1. = 2. = Prodotto cartesiano Dati due insiemi e non vuoti, definiamo prodotto cartesiano di e (nell ordine) l insieme delle coppie ordinate ( ab, ) con a ; b ; cioè {( ; ): } = a b a b Se cioè il prodotto cartesiano non gode della proprietà commutativa. Se = è un insieme diverso da (perché è formato dalle coppie ordinate degli elementi di ). Si ha 2 = Se = o = non è possibile formare alcuna coppia in quanto l insieme vuoto è privo di elementi. S ha quindi: = = = Proprietà distributiva del prodotto cartesiano rispetto all unione (a sinistra e a destra) ssegnati gli insiemi,, C avremo ( = ( ) ( Dim. ( a; b) ( a ; b C a ; b oppure a ; b C [ ] [ ] [ ] [( a; b) oppure ( a; b) C] [( a; b) ( ) ( ] Inversamente avremo
7 Teoria degli insiemi pag 7 Easy Matematica di dolfo Scimone [( ab ; ) ( ) ( ] [( ab ; ) oppure ( ab ; ) C] [ a ; b oppure a ; b C] [ a ; b oc] [ a ; b C] [( a; b) ( ] Proprietà distributiva del prodotto cartesiano rispetto all intersezione (a sinistra e a destra) ( = ( ) ( vremo: [( ab ; ) ( ] [ a b ; C] [ a b ; C] ( ab ; ) ( ab ; ) C ( ab ; ) ( ) C [ ] [ ] Inversamente [( ab ; ) ( ) ( ] [( ab ; ) ( ab ; ) C] a b ; a b ; C a b ; C ( ab ; ) ( [ ] [ ] [ ] Relazioni tra insiemi Dati due insiemi non vuoti e dicesi relazione binaria una proprietà R tale che per ogni coppia ( xy ; ) del prodotto cartesiano sia vera una ed una sola delle due affermazioni: a) la coppia ordinata ( xy ; ) soddisfa la proprietà R xr y b) la coppia ordinata ( xy ; ) non soddisfa la proprietà R x R y La relazione prende il nome di binaria perché è definita fra la coppia ( xy ; ) con x e y Il sottoinsieme di sul quale è definita la relazione R prende il nome di dominio della relazione. L insieme degli elementi corrispondenti in prende il nome di codominio della relazione. Pertanto una relazione è un sottoinsieme del prodotto cartesiano perché la relazione è il sottoinsieme costituito da tutte e sole le coppie ordinate che verificano la condizione. Possiamo quindi dire che: Una relazione binaria fra e è un sottoinsieme del prodotto cartesiano. Esempio: 1,2,3,4,5,6,7,8 = 2,4,6,8,10,12 Sia = E sia arb a è un divisore di b Il grafico sarà il sottoinsieme di formato dai punti segnati con il pallino
8 Teoria degli insiemi pag 8 Easy Matematica di dolfo Scimone (5,10) 5R 10 perché 5 10 Esempio xr y = x+ y è un numero pari Se = avremo una relazione binaria su. Proprietà di una relazione Sia R una relazione sull insieme. La relazione è: riflessiva se: a ;( a, a) R ovvero ar a simmetrica se: ab, ;( ab, ) R ( ba, ) R ovvero arb br a transitiva se: abc,, ; ( ab, ) Re( bc, ) R ( ac, ) R ovvero arb brc ar c [ ] antisimmetrica se: a, b ; ( a, b) R ( b, a) R a= b ovvero arb bra a = b [ ]
9 Teoria degli insiemi pag 9 Easy Matematica di dolfo Scimone Relazione di equivalenza Sia R una relazione definita in un insieme. La relazione R è chiamata relazione di equivalenza se gode delle tre proprietà: riflessiva, simmetrica e transitiva: 1. a ar a riflessiva 2. a, b arb br a simmetrica 3. a, bc, ( arb brc) ar c transitiva Una relazione di equivalenza spesso si indica con il simbolo o Partizione di un insieme Insieme quoziente Definizione: ssegnato un insieme, si dice partizione di una famiglia F di sottoinsiemi non vuoti di tale che: 1. nessun sottoinsieme di F è vuoto 2. a due a due i sottoinsiemi di F sono disgiunti ( due insiemi si dicono disgiunti se la loro intersezione è l insieme vuoto) 3. l unione dei sottoinsiemi di G dà l insieme Pertanto assegnata una partizione di ogni elemento appartiene ad uno e un solo sottinsieme di F Sa assegnata tra gli elementi di un insieme una relazione di equivalenza ε. Definizione: Dato un x si dice classe di equivalenza X l insieme degli elementi x' x' ε x X = x': x' ε x tali che, cioè Inoltre se X è una classe di equivalenza un qualunque elemento x basta per individuare la classe X che pertanto potrà essere scritta con [ x ] e quindi [ x] = X. Si ha ' [ ] [ '] rappresentano la stessa classe xε x x = x = X per cui se x e ' x sono equivalenti Teorema: Data in una relazione di equivalenza ε, le classi di equivalenza determinano una partizione di. Inversamente assegnata in una partizione e la relazione ε, se x e x ' appartengono allo stesso sottoinsieme è una relazione di equivalenza. Definizione: Si dice insieme quoziente di rispetto alla relazione ε l insieme delle classi di equivalenza (cioè l insieme i cui elementi sono le classi di equivalenza) determinate da ε nell insieme e si indica con ε. Esempio: relazione di parallelismo. Premettiamo la seguente definizione. Due rette del piano si dicono parallele se non hanno alcun punto in comune o se coincidono. La relazione di parallelismo è una relazione di equivalenza. Essa gode delle proprietà: 1. riflessiva r// r 2. simmetrica r// s s// r
10 Teoria degli insiemi pag 10 Easy Matematica di dolfo Scimone r // s s// t r// t 3. transitiva ( ) Per cui possiamo effettuare una partizione in classi di equivalenza. Ciascuna classe sarà quindi una direzione (dove per direzione intendiamo una classe di rette parallele). Relazione d ordine Sia un insieme ed R una relazione su. Si dice che R è una relazione d ordine (parziale) se: 1. R è riflessiva ar a 2. R è antisimmetrica arb bra a = b 3. R è transitiva arb brc ar c Se la relazione vale a, b l insieme si dice totalmente ordinato. In generale una relazione d ordine viene indicata con. Definizione: Una relazione d ordine prende il nome di relazione d ordine stretto se gode delle proprietà: 1. transitiva x, yz, x< y y< z x< z 2. tricotomia x, y si verifica una ed una sola delle relazioni x= y x< y y< x pplicazioni o funzioni Definizione: Dati due insiemi e definiamo applicazione o funzione f di in una legge che associa ad ogni elemento x dell insieme uno e un solo elemento y dell insieme. Si ha: f f : o e si legge applicazione f di in. Il dominio della corrispondenza è tutto l insieme ; l immagine di ogni elemento di è un solo elemento di y = f ( x) ; l immagine di f che verrà indicata con imf è un sottoinsieme di che si chiama anche codominio di f. Im f = y : x : y = f( x) (non si può escludere che a più elementi di corrisponda lo stesso elemento in ) Funzioni suriettive Una funzione f : si dice suriettiva o applicazione di su se ogni elemento di immagine di almeno un elemento di. f( ) = o y x : f( x) = y
11 Teoria degli insiemi pag 11 Easy Matematica di dolfo Scimone Funzioni iniettive Si dice che f : è iniettiva se ad elementi distinti x corrispondono elementi distinti y, cioè y Im f! x : y = f( x) Funzioni biunivoche Una funzione f : si dice biiettiva o biunivoca se è contemporaneamente iniettiva e suriettiva. Risulta: f( ) = e x, x' f( x) f( x') ovvero: y! x : y = f( x) Funzioni composte
12 Teoria degli insiemi pag 12 Easy Matematica di dolfo Scimone Date le funzioni f : e g : C si dice che la funzione ϕ : C è funzione composta delle due funzioni f e g se esiste una legge f che fa corrispondere ad ogni elemento x uno e un solo y ed una legge g che fa corrispondere ad ogni y f( ) uno e un solo z C. vremo quindi: z ϕ( x) z = g f( x) = e quindi [ ] ovvero: ϕ = g f dove ϕ = g f( x) = g[ f( x) ] Funzioni inverse Se f : è una funzione biunivoca. Possiamo definire la funzione inversa di f f 1 : nel seguente modo. ssegnato un elemento y si ha che elemento x : y = f( x) x Se f : non è biunivoca la funzione inversa di f non può essere definita. f 1 ( y) è l unico Se f : non è suriettiva y per il quale non esistono elementi x : y = f( x), mentre se f : non è iniettiva esistono elementi y che sono immagini di diversi x
RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :
RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una
1 Insiemi e terminologia
1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le
Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:
Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano
4. Strutture algebriche. Relazioni
Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R
Fondamenti di Informatica II
Fondamenti di Informatica II Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Introduzione, A.A. 2009/2010 1/8
1. PRIME PROPRIETÀ 2
RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,
APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)
ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,
RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4
RELAZIONI E FUNZIONI 3 Per ricordare H Dati due insiemi A e B e una proposizione aperta px,y, con x 2 A e y 2 B, si dice che x eá in relazione con y, e si scrive x R y, sepx,y eá vera; si parla allora
Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI
Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni
Percorsi di matematica per il ripasso e il recupero
Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli
Prodotto elemento per elemento, NON righe per colonne Unione: M R S
Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può
Alcune nozioni preliminari di teoria elementare di insiemi e funzioni
Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
I Insiemi e funzioni
I Insiemi e funzioni 1. INSIEMI ED OPERAZIONI SU DI ESSI 1.1. Insiemi Dal punto di vista intuitivo, il concetto di insieme può essere fatto corrispondere all atto mentale mediante il quale associamo alcuni
Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)
Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti
Esercitazioni (a cura di R. Basili)
Esercitazioni (a cura di R. Basili) E1. Elementi di Algebra Insiemi Nozione intuitiva di insieme L'insieme vuoto Operazioni tra insiemi Domini Prodotto Cartesiano Proprieta' delle operazioni tra insiemi
R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto
PRODOTTO CARTESIANO Dati due insiemi non vuoti X e Y si definisce prodotto cartesiano: X Y ={ x, y x X, y Y } attenzione che (x,y) è diverso da (y,x) perchè (x,y)={x,{y}} e (y,x)={y,{x}} invece sono uguali
APPENDICE NOZIONI BASE E VARIE
pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della
APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA. Margherita Roggero
APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA Margherita Roggero A.A. 2005/2006 M. Roggero - Appunti ed Esercizi di Matematica Discreta Introduzione Queste note contengono gli appunti del corso di Matematica
Corrispondenze e relazioni - Complementi
PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan
Anello commutativo. Un anello è commutativo se il prodotto è commutativo.
Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e
Dispense del corso di ALGEBRA 1 a.a. 2007 2008. Parte 1: NOZIONI DI BASE
Dispense del corso di ALGEBRA 1 a.a. 2007 2008 Parte 1: NOZIONI DI BASE 1 Indice 1 Nozioni introduttive 3 1.1 Insiemi..................................... 3 1.2 Operazioni tra insiemi.............................
Se ad ogni elemento di A la relazione R associa un solo elemento di B, allora essa prende il nome di applicazione (funzione) di A in B.
6. APPLICAZIONI o FUNZIONI Dati due insiemi A e B, sia R A B una relazione di A in B. Fissato un elemento x A può capitare che ad esso la relazione R associ un solo elemento di B, o che ne associ più di
ALGEBRA E LOGICA (v1.5)
ALGEBRA E LOGICA (v1.5) Iniettività e suriettività: Per dimostrare che una funzione è iniettiva basta provare che se a1 = a2 => f(a1) = f(a2) per ogni valore di a (la cardinalità del codominio è maggiore
Trasformazioni Geometriche 1 Roberto Petroni, 2011
1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni
Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)
Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle
APPUNTI DEL CORSO DI ANALISI MATEMATICA 1
APPUNTI DEL CORSO DI ANALISI MATEMATICA 1 Gino Tironi Stesura provvisoria del 24 settembre, 2007. ii Indice 1 Insiemi e logica 1 1.1 Preliminari......................................... 1 1.2 Cenni di
Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento
TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una
Dispense del corso di ALGEBRA 1 a.a. 2008 2009
Dispense del corso di ALGEBRA 1 a.a. 2008 2009 2 Indice I INSIEMI E NUMERI 5 1 Insiemi e applicazioni 7 1.1 Insiemi..................................... 7 1.2 Operazioni tra insiemi.............................
4. Operazioni binarie, gruppi e campi.
1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in
2 FUNZIONI REALI DI VARIABILE REALE
2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento
Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE
Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica
Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá
Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non
G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia
G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia Definizione 1.1 Relazione. Dati due insiemi A e B un sottoisieme R A B è detto una relazione binaria tra A e B. Se A = B allora
Funzioni. Funzioni /2
Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme
Alcuni Preliminari. Prodotto Cartesiano
Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}
Insiemi con un operazione
Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è
L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami
L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S
Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)
Funzione reale di variabile reale
Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A
Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.
Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello
ALGEBRA I: CARDINALITÀ DI INSIEMI
ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito
Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:
Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
Anno 3. Classificazione delle funzioni
nno 3 Classificazione delle funzioni 1 Introduzione In questa lezione affronteremo lo studio delle principali proprietà delle funzioni, imparando a classificarle e a compiere alcune operazioni su esse.
LE FUNZIONI E LE LORO PROPRIETÀ
LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale
Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi:
Funzioni Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la temperatura
STRUTTURE ALGEBRICHE
STRUTTURE ALGEBRICHE 1. Operazioni algebriche binarie Dato un insieme M, chiamiamo operazione algebrica binaria definita su M una qualunque applicazione f che associa ad ogni coppia ordinata (a, b) di
Elementi di teoria degli insiemi
Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
0. Piano cartesiano 1
0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine
FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)
1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:
Elementi di topologia della retta
Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme
Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio
Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento
Variabili logiche e circuiti combinatori
Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato
Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio
Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 0 Preliminari.. Insiemistica e logica Il presente Capitolo introduttivo ha lo scopo di ripassare alcuni argomenti
Ancora sugli insiemi. Simbologia
ncora sugli insiemi Un insieme può essere specificato in vari modi; il più semplice è fare un elenco dei suoi elementi. d esempio l insieme delle nostre lauree triennali è { EOOM, EON, EOMM, EOMK EOTU}
G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ
G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ 1. Definizione di funzione Definizione 1.1. Siano X e Y due insiemi. Una funzione f da X a Y è un sottoinsieme del prodotto cartesiano: f X Y, tale che
Le funzioni reali di variabile reale
Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un
Corso di Laurea in Matematica. Dispense del corso di ALGEBRA I
Corso di Laurea in Matematica Dispense del corso di ALGEBRA I a.a. 2012 2013 2 Cos è l anima?. Al negativo è facile da definire: per l appunto ciò che si affretta a rintanarsi quando sente parlare di serie
Relazioni insiemistiche
G.Gorni 1993/94 Relazioni insiemistiche 1. Coppie ordinate. Se è vero che un insieme è un elenco di elementi, si può pensare di usarlo come strumento di registrazione. Si parte da. Se la prima informazione
Introduzione Ordini parziali e Reticoli Punti fissi
Introduzione Ordini parziali e Reticoli Punti fissi By Giulia Costantini (819048) & Giuseppe Maggiore (819050) Table of Contents ORDINE PARZIALE... 3 Insieme parzialmente ordinato... 3 Diagramma di Hasse...
APPUNTI ANALISI MATEMATICA
APPUNTI DEL CORSO DI ANALISI MATEMATICA PER IL DIPLOMA UNIVERSITARIO PARTE PRIMA INDICE Capitolo Primo: INSIEMI, APPLICAZIONI, RELAZIONI Gli insiemi... Pag 2 Operazioni fra insiemi... 3 3 Applicazioni...
SOLUZIONI DEGLI ESERCIZI SU RELAZIONI D EQUIVALENZA
SOLUZIONI DEGLI ESERCIZI SU RELAZIONI D EQUIVALENZA (1) Per ogni relazione binaria E su A = {0, 1, 2, 3, 4} descritta nel seguito, stabilire se E è una relazione d equivalenza. In caso negativo, indica
Coordinate Cartesiane nel Piano
Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso
Figura 2.1. A sottoinsieme di B
G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento
ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA
ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di
5. La teoria astratta della misura.
5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme
1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche
. Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi
SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO
SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina
RELAZIONI E PROPRIETA 1
C. De Fusco Relazioni e loro proprietà 1 RELAZIONI E PROPRIETA 1 Generalità. 2 Relazioni particolari tra insiemi.. 3 Relazioni tra numeri 6 Proprietà delle relazioni in un insieme 9 Relazioni di equivalenza.
Programma di Matematica
Programma di Matematica Modulo 1. Topologia in R 2. Funzioni in R 3. Limite e continuità di una funzione Unità didattiche Struttura algebrica di R Insiemi reali limitati e illimitati Intorno di un punto
STRUTTURE ALGEBRICHE
STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione
LE FUNZIONI MATEMATICHE
ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante
Lezioni di Matematica 1 - I modulo
Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può
4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI
119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO
Insiemi e funzioni. Lorenzo Pisani Facoltà di Scienze Mm.Ff.Nn. Università degli Studi di Bari
Insiemi e funzioni Lorenzo Pisani Facoltà di Scienze Mm.Ff.Nn. Università degli Studi di Bari ottobre 2007 Indice 1 Insiemi 3 1.1 Inclusione............................... 5 1.2 Famiglie di insiemi..........................
FUNZIONE REALE DI UNA VARIABILE
FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A
Prodotto libero di gruppi
Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto
SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI
SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un
ELEMENTI di TEORIA degli INSIEMI
ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)
UNIVERSITÀ DEGLI STUDI DI FERRARA
UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso
Anno 5 Funzioni inverse e funzioni composte
Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:
Per lo svolgimento del corso risulta particolarmente utile considerare l insieme
1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R
Calcolatori: Algebra Booleana e Reti Logiche
Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato
.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1
Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è
DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI
DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,
Un insieme si dice finito quando l operazione consistente nel contare i suoi elementi ha termine.
INSIEMI Insieme Le nozioni di insieme e di elemento di un insieme sono considerati come concetti primitivi, cioè non definibili mediante concetti più semplici, né riconducibili ad altri concetti definiti
ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI
ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI 1. CLASSI DI RESTO E DIVISIBILITÀ In questa parte sarò asciuttissimo, e scriverò solo le cose essenziali. I commenti avete potuto ascoltarli a lezione.
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione
11. Le funzioni composte
. Le funzioni composte Definizione Date le due funzioni f A B e g D C, dove f[ A] D, si dice funzione composta di f e g la funzione h A C che ad ogni elemento a Afa corrispondere l elemento g(()) f a Ce
Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari
Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle
2. Insiemi ed elementi di calcolo combinatorio
Dispense del corso di Ottimizzazione Combinatoria (IN440 2. Insiemi ed elementi di calcolo combinatorio Marco Liverani Università degli Studi Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea
Aritmetica: operazioni ed espressioni
/ A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da
ASSIOMI DELLA GEOMETRIA RAZIONALE
ASSIOMI DELLA GEOMETRIA RAZIONALE ASSIOMI DI APPARTENENZA A1 Per ogni coppia di punti A e B di un piano π esiste ed è unica la retta che li contiene. A2 Data nel piano π una retta r esistono almeno due
x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.
Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini
Applicazioni lineari
Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av
APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.
APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai
CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.
I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base