Capitolo 5: Fattorizzazione di interi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 5: Fattorizzazione di interi"

Transcript

1 Captolo 5: Fattorzzazoe d ter Trovare fattor d u umero tero grade è ua mpresa assa ardua, e può essere mpossble co le rsorse ogg dspobl. No s cooscoo metod polomal per la fattorzzazoe, come vece accade per test d prmaltà. Ifatt mglor algortm d fattorzzazoe ot soo subespoezal ovvero, geerale, temp d elaborazoe soo dell orde d 3 l. Per essere pù precs temp d elaborazoe de mglor algortm d fattorzzazoe s comportao tutt come α ( lg) ( lglg ) ( α, ) α L = dove 0< α e geeralmete vale, è ua costate e o 3 è l umero da fattorzzare o u suo fattore. S ot che le mglore apportate agl algortm esstet vao orma a cdere solo sulla costate. Duque, se per fattorzzare u umero d 00 cfre occorre u tempo Q, per fattorzzare uo d 00 l tempo sale a crca Q, e per 300 arrvamo a Q. Se Q è u secodo, per u tero d 00 cfre occorre secodo, per 00 cfre pù d u ao e mezzo, per 300 cfre mlo d a. La RSA Securty Ic. gestsce ua sfda a lvello modale, ove vegoo premat coloro che fattorzzao gl ter propost da loro e pubblcat su WEB ua partcolare lsta. Recetemete, l 3 dcembre del 003, è stato fattorzzato l umero (chamato RSA576 quato costtuto da 576 bt par a 74 cfre decmal) prodotto d due prm etramb costtut da 87 cfre decmal: p= e q= Il l alla paga de factorg challege promoss dalla RSA Securty Ic. è: Test d prmaltà Prma d dare pasto u umero prmo ad u algortmo d fattorzzazoe è opportuo verfcare che l umero sa effettvamete composto. A tale scopo esstoo var test dett d prmaltà che, però, o garatscoo co certezza che l umero testato sa prmo. 43

2 I altre parole, se l test vee superato l umero è certamete composto, vceversa è probablmete prmo. Esstoo var test d prmaltà. Tra tutt, o vedremo quello che, al mometo, dscrma tra prm e compost co la maggor probabltà d successo. Tale test, dovuto a Mller e Rab, s basa sostazalmete sul seguete Pccolo Teorema d Fermat: se p è prmo allora Cosderamo l equazoe: (88) p a p a p mod =,, a mod Dremo che è pseudoprmo base a se è composto e soddsfa l equazoe (88) per u certo valore d a. + Il teorema d Fermat mplca che se è prmo deve soddsfare (88) a Z. Qud se, dato, ruscamo a trovare almeo u valore a per cu (88) o vale, potremo cocludere che è certamete composto. Per questa ragoe l valore a vee detto testmoe. Ua semplce test d prmaltà prevede l uso d a = come testmoe. Se (88) o è soddsfatta vee dcharato certamete composto, vceversa è caddato ad essere prmo. Sorpredetemete o è solo u caddato ma è ache u buo caddato. Ifatt cas cu u umero pseudoprmo base rsulta po composto soo veramete rar. Tato per dare u dea c soo solo valor d feror a 0ÿ000 per cu la procedura sbagla. I prm quattro valor soo 34, 56, 645 e 05. Ioltre è dmostrato che la probabltà d errore su u umero estratto a caso tra prm N ter tede a zero al crescere d N. Pù precsamete u umero costtuto da 5 bt scelto casualmete e dcharato prmo 0 ha ua probabltà su 0 d essere soltato pseudoprmo base metre per u 4 umero costtuto da 04 bt tale probabltà scede a ua su 0. Per quato, però, questo test possa essere raffato rpetedolo per altr valor del testmoe, o sarà ma possble rdurre a zero la probabltà d errore perchè esstoo ter che soddsfao (88) pur essedo compost. Quest ter, dett umer d Carmchael, soo estremamete rar: s pes che e esstoo solo 55 feror a prm tre de qual soo 56, 05 e 79. L ostacolo de umer d Carmchael può però essere aggrato facedo uso del seguete Teorema: se composto. x mod ammette soluzo o baal allora è certamete 44

3 Pochè umer d Carmchael, per motv che omettamo, o sfuggoo a questa regola, ruscremo a escludere gl error da ess geerat semplcemete seredo e ccl d calcolo della poteza a mod la verfca dell essteza delle soluzo o baal dell equazoe x mod. A questo puto però abbamo rcodotto temp d elaborazoe a quell d u qualsas algortmo d tral dvso perchè la certezza che sa prmo l avremo solo dopo aver escluso tutt possbl testmo. Ecco qud che el test d Mller Rab azchè tutte le bas e vegoo provate solo alcue scelte casualmete. Questa scelta fa rcadere l test tra gl algortm probablstc ma, rspetto al test base, la probabltà d errore o dpede pù da besì solo dal umero s d bas provate. Ifatt è possble dmostrare che per u qualsas tero > dspar e u qualsas tero postvo s la probabltà d errore o dpede da ed è al pù s. Duque ua scelta d s = 50 è suffcete per pratcamete qualsas applcazoe mmagable. Prma d presetare la procedura cocludamo la ostra aals (o esaustva) osservado che l test rchede al pù s volte l calcolo d ua poteza modulare che, a 3 O lg operazo bare. sua volta, rchede ( lg ) O operazo artmetche e ( ) Qud, complessvamete, l test d Mller Rab rchede O( slg ) 3 artmetche e O( slg ) operazo bare. Procedura MILLER-RABIN ( s, ) > dspar e 0<s<- for j to s ( ) a RND, f WIT ( a, ) the retur FALSE è certamete composto ext retur TRUE è quas scuramete prmo operazo Procedura RND ( ab, ) geera u umero casuale co dstrbuzoe uforme dscreta a x b retur x 45

4 Procedura WIT( a, ) ( ut, ) = BASE-SHIFT( ) x = ( au) 0 POWERMOD,, for to t x mod x f x = x x the retur TRUE ext f xt the retur TRUE retur FALSE Procedura BASE-SHIFT( ) calcola la coppa (, ) retur ( ut, ) ut tale che = t u dove t e u è par Procedura POWERMOD ( ab,, ) c 0 d b,, b = BINARY b ( ) ( ) 0 for dowto 0 c c d d mod f b = the c c+ d admod retur d Procedura BINARY( b ) calcola l espasoe bara del umero tero b b,, b retur ( ) 0. Algortm d fattorzzazoe Come abbamo gà detto la fattorzzazoe d umer ter molto grad c rporta alla teora (computazoale) de umer. 46

5 Dovedo fattorzzare u umero tero molto grade, l ostro prmo obettvo è quello d determare se l umero questoe è certamete composto o probablmete prmo. Cò abbamo vsto può essre rvelato da u test d prmaltà. Suppoamo qud d sapere che l ostro umero è certamete composto. Come c muovamo ora? La dffcoltà della fattorzzazoe cosste ( parte) el fatto che, a prescdere dal provare uo ad uo tutt fattor prm, o c soo altr mod ovv d procedere. Vedremo che o esste u uco algortmo valdo per qualsas tero da fattorzzare. Pertato la tecca pù effcace cossterà ello sceglere d volta volta l algortmo pù opportuo, fuzoe della tagla del umero da fattorzzare e delle altre formazo dspobl merto a tale umero..3 Algortmo Tral Dvso Il mglor puto d parteza è la fattorzzazoe per tetatv: usado ua lsta d umer prm geerata col crvello d Eratostee s tratta semplcemete d verfcare se quest dvdoo l tero da fattorzzare. Pochè l algortmo prova a dvdere l umero da fattorzzare per tutt gl ter prm feror a, rcordado che π ( ) è la fuzoe che cota umer prm l feror ad, l calcolo rchederà, el caso peggore, O( π ( ) ) = O l lg lglg operazo artmetche ovvero O( l ) O + = operazo bare. Seppur pù veloc geerale, essu algortmo d fattorzzazoe oto è effcete come l tral dvso ell dvduare fattor prm relatvamete pccol. D altro cato 7 però, questo algortmo dveta utlzzable per dvduare fattor pù grad d 0. Ua delle caratterstche dell algortmo tral dvso è che dato u fattore prmo è possble calcolare esattamete l tempo ecessaro ad dvduarlo. I altr term l tral dvso è u algortmo completamete determstco. Gl altr algortm d fattorzzazoe pù potet del tral dvso s basao, come vedremo, su ua certa casualtà. I questo caso, dato u fattore prmo, potremo fare prevso su temp med d elaborazoe ma o avremo certezza che temp effettv s mategao vc a temp med. Ioltre questa categora d algortm probablstc ha come peculartà l fatto che o v è alcua garaza che arrvo al rsultato atteso d trovare u fattore prmo. 47

6 Tutto cò che soo grado d fare è d scomporre l tero questoe due fattor pù pccol su qual è possble effettuare u test d prmaltà per po, el caso l test o vega superato, rpetere uovamete la rcerca che s coclude quado fattor dvduat rsultao probablmete prm. Gl algortm probablstc d fattorzzazoe s suddvdoo due categore. La prma è costtuta dagl algortm abl a scovare fattor prm d u umero a partre da dvsor pù pccol. I loro temp d elaborazoe dpedoo pù dalla tagla d questo dvsore che dalla tagla del umero da fattorzzare. I questa categora retrao ad esempo l algortmo Pollard rho che fu utlzzato per fattorzzare l umero d Fermat F 8 ( F = ), l algortmo Pollard p-, l algortmo Wllams p+ e l metodo delle curve ellttche usato per fattorzzare F 0 e F. Pochè quest algortm soo estremamete effcac per trovare dvsor che abbao tra 7 e 40 cfre decmal dado l meglo d loro per dvsor fo a 0 decmal sarebbe opportuo usarl sempre come secoda lea d attacco. Quado però s tratta d fattorzzare ter costtut da 00 o pù cfre decmal e gl algortm della prma categora o hao codotto ad alcu rsultato, allora è l mometo d passare agl algortm della secoda categora, detta Famgla d Kratch. D questa famgla d algortm estremamete compless da aalzzare dremo solo che s ab, tal che a b mod. basao sulla rcerca casuale d coppe ( ) I temp d elaborazoe soo essezalmete dpedet dalla tagla del pù pccolo fattore prmo ma dpedoo vece dalla tagla del umero da fattorzzare. Per questa ragoe è opportuo passare agl algortm d questa famgla solo dopo aver usato al meglo gl algortm d tral dvso e della prma categora. D altro cato, però, la dpedeza de temp d elaborazoe dalla tagla del umero e o de suo fattor fa s che quest algortm sao deal per la rcerca d fattor molto grad..4 Algortmo d Fermat Tral dvso o è l uco algortmo completamete determstco. Fermat propose u algortmo la cu peculartà cosste ella rcerca d fattor a partre da quell prossm alla radce quadrata del umero da fattorzzare. Uo de vatagg d questo algortmo è l asseza d dvso (trae ua alla fe). L dea d base è la seguete: se è dspar e composto allora = ab. Ioltre a+ b a b osservamo che se x = e y = allora = ab= ( x+ y)( x y) = x y. 48

7 Duque se ruscamo a scrvere rcavato ua fattorzzazoe = ( x+ y)( x y). = x y come dffereza d quadrat allora avremo L algortmo procede comcado co x= e y = 0. Po, og cclo cremeterà d uo o x o y a secoda che, rspettvamete, sa all dvduazoe della coppa cercata. x y < o x y > fo.5 Algortmo eurstco Pollard s rho Nel 975 J. M. Pollard pubblcò prm due algortm d fattorzzazoe d categora ogg ot come Pollard p- e Pollard rho l secodo de qual acora ogg è utlzzato per la rcerca d fattor prm d tagla compresa tra 7 e 0 cfre decmal. Sa l tero composto da fattorzzare. L algortmo, az tutto, geera u umero s a caso Z e su questo costrusce la successoe { s } defta da s0 = s e ( ) ( ) s = f s = s + mod. Da otare che l algortmo fuzoa ache co la rcorreza defta da s = ( s c) mod per tutt valor c ±Z (ache se valor c = 0 e c = dovrebbero essere evtat per rago che o approfodamo qu). Alcu test, ad esempo, rportao la successoe co c =. Per capre l fuzoameto dell algortmo vedamolo u caso partcolare. Sa duque = 5953 e suppoamo d aver geerato casualmete l umero s = 47. Suppoamo per u attmo d sapere che = pq, co p = 49 e q = 349 fattor prm d duque coprm tra loro, e vedamo come s comporta la successoe s mod p: s() mod 49 s() mod 49 s() mod 49 s() mod Come possamo otare s mod p e s mod 6 4 p soo ugual e pochè og terme della successoe è completamete determato dal precedete avremo che (89) s+ 8 mod p = s mod p 6. 49

8 Duque dopo u certo umero d term (dett coda ) la successoe modulo p etra u cclo. Ora rtoramo a quato c è oto ovvero alla successoe modulo e osservamo che la relazoe (89) mplca che p s 8 s + 6. Per ostra fortua q, essedo coprmo co p, o dvde s+ 8 s e da cò possamo mcd s s, = mcd ,5953 = 49. cocludere che ( ) ( ) 4 6 Ovvamete, torado al caso geerale, o o cooscamo è la lughezza della coda è quella del cclo. Tutto cò che fa l algortmo qud, è adare per tetatv e cotuare a calcolare prma la dffereza tra due term della successoe s h e s (co h < h + ) e po l mcd tra questa dffereza e ella speraza che o sa baale. Osservamo che l crtero d scelta de term da sottrarre o è uco. L mportate è che la successoe { h } degl dc sa mootoa crescete e tale che h+ h + per garatre da u lato che, poco alla volta, s esca dalla coda e dall altro che tutt possbl perod del cclo (o multpl del perodo del cclo) vegao verfcat. Nella ostra mplemetazoe adotteremo h h = e oltre calcoleremo l mcd ad og passo ache se, per veloczzare l algortmo, sarebbe possble raggruppare pù dffereze tra loro e calcolare u solo colpo u uco mcd. Ife useremo la rcorsoe ( ) ( ) f x = x mod otteuta poedo c =. E fodametale osservare che l algortmo o stampa ma rsultat errat: og umero stampato è effettvamete u fattore d. Però quato eurstco, o è assolutamete detto che l algortmo produca u rsultato. V soo due motv per cu questo algortmo potrebbe o comportars come c s aspetta. Iaz tutto l aals eurstca del tempo d esecuzoe o è rgorosa ed è possble che l cclo possa essere pù grade del prevsto. I questo caso l algortmo s comporta correttamete ma molto pù letamete del prevsto. I secodo luogo dvsor d prodott da questo algortmo potrebbero essere solo quell baal. I tal caso, se ecessaro, s può rlacare la procedura co u dverso valore d c ella rcorreza. 50

9 Procedura POLRHO ( ) x RND 0, ( ) y x whle TRUE l algortmo o terma ma! + x x mod ( ) ( ) d mcd y x, f d d the prt d f = the y x Ora occupamoc de temp d elaborazoe. Suppoamo che sa = pq co p e q coprm. Allora la successoe { s } duce ua corrspodete successoe { '} s modulo p dove s' = smod p. Osservamo che la successoe modulo p è ua versoe rdotta della successoe orgale modulo (e altrettato dcas per la successoe modulo q ). Ifatt: s ' = s mod p + + ( ) = f s mod p (( mod ) ) ( s mod ) p = s + mod p = + (( mod ) ) (( s ') mod ) p f ( s ') = s p + mod p = + = p Qud, ache se o stamo effettvamete calcolado la successoe dotta, questa è be defta e e segue le stesse regole della successoe zale. 5

10 C soo valde rago (certamete ote a ch ha dmestchezza col calcolo delle probabltà e coosce l paradosso de complea) per aspettars che se esste u dvsore p allora le lughezze del cclo e della coda modulo p sarao par a Θ ( p). I altr term c potremo ragoevolmete attedere ua rpetzoe dopo Θ ( p) pass ovvero che l algortmo stamp u fattore p d approssmatvamete dopo terazo del cclo whle. Se p è pccolo rspetto a la successoe modulo p potrà duque rpeters molto pù rapdamete d quella modulo. D cosegueza possamo attederc che l algortmo dvdu suffcet dvsor per 4 garatre la completa fattorzzazoe d dopo crca aggoramet pochè og fattore prmo d, eccetto evetualmete l pù grade, è ferore a. l lglg 4 Complessvamete, duque, l algortmo rchederà O + operazo bare. Cocludamo l argometo precsado che modo l algortmo può fallre presetado solo dvsor baal d. Osservamo che p s s + e q s s + mplcao pq s s + e, d cosegueza ( ) mcd s s, = pq =. + Cò capta costatemete se le lughezze d coda e cclo delle successo modulo p e modulo q soo detche. p 5

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

«MANLIO ROSSI-DORIA»

«MANLIO ROSSI-DORIA» «MANLIO ROSSI-DORIA» Collaa a cura del Cetro per la Formazoe Ecooma e Poltca dello Svluppo Rurale e del Dpartmeto d Ecooma e Poltca Agrara dell Uverstà d Napol Federco II 6 Nella stessa collaa:. Qualtà

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Problema della Ricerca

Problema della Ricerca Problema della Rcerca Pag. /59 Problema della Rcerca U dzoaro rappreseta u seme d formazo suddvso per elemet ad oguo de qual è assocata ua chave. Esempo d dzoaro è l eleco telefoco dove la chave è costtuta

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha:

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha: RENDITE. Pagamet rateal S defsce redta ua sere qualsas d somme rscuotbl (o pagabl a scadeze dverse, o, pù esattamete, u seme d captal co dspobltà scagloata el tempo. Tal captal soo dett rate della redta

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli

CALCOLO ECONOMICO E FINANZIARIO

CALCOLO ECONOMICO E FINANZIARIO CALCOLO ECONOMICO E FINANZIARIO 1. Iteresse e scoto La postcpazoe d ua dspobltà fazara rchede ua certa rcompesa (teresse), vceversa la sua atcpazoe comporta ua dmuzoe dell'mporto orgaro (scoto). Il rsparmatore,

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

L assorbimento e lo strippaggio

L assorbimento e lo strippaggio assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

Vantaggi della stratificazione

Vantaggi della stratificazione Lez. 4 0/03/05 etd Statstc per l aret - F. Bartlucc Uverstà d Urb Vata della stratfcaze I prcpal vata del campamet stratfcat s: mlramet ell effceza del stmatre del ttale e della meda; pssbltà d stmare

Dettagli

Criteri di scelta degli investimenti. Materiale didattico per il corso di matematica finanziaria II modulo

Criteri di scelta degli investimenti. Materiale didattico per il corso di matematica finanziaria II modulo Crter d scelta degl estmet Materale ddattco per l corso d matematca azara II modulo Itroduzoe La presete trattazoe s poe come obetto d aalzzare due prcpal crter d scelta degl estmet e de azamet per alutare

Dettagli

Avvertenza. Rendite frazionate

Avvertenza. Rendite frazionate Avverteza Quest lucd soo pesat solo come u auslo per l ascolto della lezoe. No sosttuscoo l lbro d testo Possoo coteere error e svste, che gl studet soo vtat a segalare Redte frazoate L tervallo tra ua

Dettagli

Statistica degli estremi

Statistica degli estremi Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 18 marzo 2015 Apput d ddattca della Matematca fazara Redte, costtuzoe d

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORO DI LAUREA IN ECONOMIA AZIENDALE Metod tatstc per le decso d mpresa (Note ddattche) Bruo Chadotto 7. Teora del test delle potes I questo captolo s affrota l problema della verfca d potes statstche

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA)

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA) UI CEI EV 3005 (GUIDA ALL ESPRESSIOE DELL ICERTEZZA DI MISURA Uverstà degl Stud d Bresca Corso d Fodamet della Msurazoe A.A. 00-03 Apput a cura d Gorgo Cor 3835 UI CEI EV 3005 0. ITRODUZIOE 0. COCETTO

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

Ammortamento americano. Ammortamento americano

Ammortamento americano. Ammortamento americano mmortameto amercao La cora lezoe abbamo vto che ell'ammortameto amercao l rmboro del debto zale avvee medate u uco verameto a cadeza, otteuto attravero ua operazoe d cottuzoe d u captale al tao attvo j;

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL

Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL Programmazoe No Leare: Algortm Evolutv Ig. Valero Lacaga Programmazoe o leare: metodche rsolutve METODI d PNL INDIRETTI DIRETTI Codzo ecessare Sstema d vcol Algortm I metod drett forscoo soltato codzo

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

13 Valutazione dei modelli di simulazione

13 Valutazione dei modelli di simulazione 3 Valutazoe de modell d smulazoe I modell d smulazoe o sosttuscoo la coosceza, ma soo puttosto u mezzo per orgazzarla. Quado l modello è utlzzato per aalzzare u sstema attuado smulazo, è mportate capre

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI

CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI CORSO DI STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI Idce I PARTE Sezoe I... Probabltà classca. Il problema d Galleo della somma del puteggo d tre dad... 3. Aagramm d parole co lettere rpetute o meo.

Dettagli

Lezione 3. Funzione di trasferimento

Lezione 3. Funzione di trasferimento Lezoe 3 Fuzoe d trasfermeto Calcolo della rsposta d u sstema damco leare Per l calcolo della rsposta (uscta) d u sstema damco leare soggetto ad gress assegat, s possoo segure due strade Calcolo el domo

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione.

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione. Dvsbltà e umer prm Sao a,b elemet dell seme Z degl ter relatv Dcamo che a dvde b, smbol a b, se b è multplo d a, ossa se esste u tero h Z tale che b ha Og tero a dvde 0 ( 0 0a ), metre l uco tero che dvde

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA I ECOOMIA AZIEDALE Metod Statstc per le decso d mpresa (ote ddattche) Bruo Chadotto 4 STATISTICA DESCRITTIVA I questo captolo s rtrovao espost, ua prospettva emprca, molt de cocett trodott

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Premessa... 1. Equazioni i differenziali lineari

Premessa... 1. Equazioni i differenziali lineari Apput d Cotroll Autoatc Captolo 3 parte I Sste dac lear Preessa... Equazo dfferezal lear... Evoluzoe lbera ed evoluzoe forzata... Uso della trasforazoe d Laplace... 3 Esepo... 7 Osservazo sulla rsposta

Dettagli

Le variabili casuali semplici

Le variabili casuali semplici 573 7 Le varabl casual semplc Nel captolo precedete s è prvlegato l eveto e la sua probabltà seza dugare sulle faltà dell espermeto e sulle attvtà coesse alle sue mafestazo. charo però che l espermeto

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale.

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale. III Eserctazoe: Stes delle dstrbuzo semplc secodo u carattere qualtatvo ordale. Eserczo 3 dvdu ao seguet ttol d studo: Lceza elemetare, Lceza elemetare, ploma, Lceza meda, Lceza elemetare, Lceza meda,

Dettagli

Analisi economica e valutazione delle alternative

Analisi economica e valutazione delle alternative Aals ecoomca e valutazoe delle alteratve Ig. Lug Cucca (Ph.D.) Producto Egeerg Research WorkGROUP Dpartmeto d Tecologa Meccaca, Produzoe e Igegera Gestoale Uverstà d Palermo Ageda Elemet d calcolo ecoomco

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Progressioni aritmetiche

Progressioni aritmetiche Progressioi aritmetiche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 7,, 5, 9, +4 +4 +4 +4 +4 La successioe è tale che si passa da u termie al successivo aggiugedo sempre +4. Si

Dettagli

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I Aldo Motesao PRINCIPI DI ANALISI ECONOMICA CAP. L ANALISI DELL'EQUILIBRIO GENERALE I L aals dell equlbro parzale, esaata el captolo precedete, è sa u utle troduzoe all aals dell equlbro geerale, sa uo

Dettagli

Calcolo delle Probabilità: esercitazione 4

Calcolo delle Probabilità: esercitazione 4 Argometo: Probabltà classca Lbro d testo pag. 1-7 e 7-77 e varable casuale uforme dscreta NB: asscurars d cooscere le defzo, le propretà rchamate e le relatve dmostrazo quado ecessaro Eserczo 1 S cosder

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli