LA VERIFICA DELLE IPOTESI SUI PARAMETRI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA VERIFICA DELLE IPOTESI SUI PARAMETRI"

Transcript

1 LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività umaa e che cosiste el dover scegliere fra due sole possibilità sulla base di iformazioi di atura campioaria. IPOTESI STATISTICA: assuzioe su u parametro; la distribuzioe di ua variabile casuale; la relazioe itera fra le compoeti di ua variabile casuale doppia o di ordie superiore. La teoria della verifica delle ipotesi cosiste ello stabilire se l assuzioe fatta si possa cosiderare esatta o meo, sulla base delle osservazioi codotte su u campioe. TEST: è u criterio od ua regola che cosete di accettare o respigere l ipotesi i base alle risultaze di u determiato campioe. 1

2 Ipotesi parametriche Soo le ipotesi su u parametro θ di ua popolazioe distribuita secodo ua fuzioe di probabilità o di desità ota. L ipotesi statistica idividua u sottoisieme dello spazio dei parametri Θ i cui è defiito θ, cioè cosiste ell affermare che θ Θ, co Θ sottoisieme di Θ. Le ipotesi parametriche soo dette semplici se specificao completamete P(x) o f(x), e composte i caso cotrario. Quidi, se l ipotesi è semplice Θ si riduce ad u solo valore. L ipotesi sottoposta a verifica viee geeralmete idicata co H e viee chiamata ipotesi ulla. Ad essa verrà cotrapposta u ipotesi detta alterativa ed idicata co H 1. Se l ipotesi ulla specificata è H :θ Θ, si avrà geeralmete che H 1 :θ Θ C, dove C Θ è il sottospazio dei parametri complemetare a Θ. Le decisioi su H e H 1 si prederao, dopo aver osservato il campioe, seguedo ua regola che specifica: 1. per quali campioi si accetta H come vera;. per quali campioi si rifiuta H e si accetta H 1.

3 Il sottoisieme dello spazio dei campioi χ per cui H è rifiutata è detto regioe di rifiuto o regioe critica, metre lo spazio ad esso complemetare è detto regioe di accettazioe. Tipicamete, u test d ipotesi viee specificato i termii di ua statistica del test T = t(,x,..., ) X che è ua statistica 1 X campioaria. I metodi per costruire test d ipotesi portao alla scelta delle statistiche del test e delle regioi di rifiuto. Il giudizio di accettazioe o di rifiuto dell ipotesi ulla, essedo basato sui dati di u campioe, è di atura iduttivo, per cui o può essere espresso i termii di certezza, ma solo di probabilità. Ne cosegue che o si può evitare il rischio di commettere due tipi di errori: - errore di prima specie, che cosiste el rifiutare l ipotesi ulla quado è vera; - errore di secoda specie, che cosiste ell accettare l ipotesi ulla quado è falsa, cioè è vera l ipotesi alterativa. 3

4 Le opzioi soo illustrate el seguete prospetto. IPOTESI GIUDIZIO ALTERNATIVO H Accettazioe Rifiuto Vera Falsa GIUDIZIO CORRETTO Probabilità = ERRORE DI ª SPECIE Probabilità = ERRORE DI 1ª SPECIE Probabilità = GIUDIZIO CORRETTO Probabilità = Covezioalmete si idicao co α la probabilità di compiere u errore di primo tipo e co β la probabilità di compiere u errore del secodo tipo, ovvero: α = P(Rifiutare H H è vera) β = P(Accettare H H 1 è vera) Di cosegueza: P(Accettare H H è vera) = P(Rifiutare H H 1 è vera) = POTENZA DEL TEST I geerale vorremmo che etrambe le probabilità di commettere errori, α e β, siao basse. Tuttavia, come vedremo meglio i seguito, le due probabilità soo iversamete legate: se dimiuisce la probabilità di commettere u tipo di errore ecessariamete aumeta la probabilità di commettere l altro. 4

5 La strategia che si sceglie è quella di fissare a priori la probabilità di compiere u errore di primo tipo (i geerale uguale a,5 o,1) e miimizzare l ampiezza dell errore di secodo tipo. La giustificazioe deriva dal fatto che, di solito, l errore di primo tipo è riteuto più grave. Riassumedo, i passi decisioali che soo comui a tutte le situazioi i cui si verificao ipotesi soo: 1. Scelta della statistica T = t(,x,..., ) X da utilizzare. Ua 1 X scelta aturale è lo stimatore di θ di cui si è parlato ell ambito della teoria della stima, la cui distribuzioe sarà fuzioe di θ.. Scelta della regola di decisioe su H, sulla base del comportameto di T sotto l ipotesi ulla (se è vera H ) e sotto l ipotesi alterativa (se è vera H 1). 3. Uso di α per determiare i valori di T che portao a rifiutare H e quelli che portao ad accettare H. 5

6 Verifica di ipotesi su µ Possiamo trovarci i diverse situazioi. Partiamo da alcue ipotesi per vedere u primo caso. Suppoiamo: X N(µ;σ ) σ ota H :µ = µ (ipotesi semplice) Alterativa a destra cioè: H 1 :µ = µ 1 coµ 1 > µ, oppure, H1 :µ > µ (ipotesi composta) Quale statistica del test scegliamo? Come si distribuisce sotto H? Se H è vera, tederà ad assumere valori vicii a µ ; se è vera H 1, tederà ad assumere valori superiori a µ rifiuteremo H per valori elevati della statistica. Dobbiamo fissare ua soglia tale che, se la statistica assume u valore superiore, rifiuteremo H. Ma come? 6

7 La determieremo tramite α, la probabilità di rifiutare H quado questa è vera. Cioè cercheremo quel valore x α tale che: α = P( X xα H è vera) GRAFICO Come trovo il valore umerico di x α? Stadardizzo X : α = P( X xα H è vera) = 7

8 x co Z ~ N(;1). Il valore α µ = z σ α corrispoderà al quatile o ascissa della Z che lascia a destra ua probabilità pari ad α. Lo trovo sulle tavole della N(;1). GRAFICO Trovato z α posso calcolare il valore di x α che cercavo: Di cosegueza accettiamo H se il valore otteuto dal campioe x (valore empirico) è iferiore a x α (valore critico), e rifiutiamo H altrimeti: - se - se σ x < µ + zα accetto H ; σ x µ + zα rifiuto H. 8

9 I questo modo abbiamo ua probabilità bassa, pari ad α, di rifiutare H quado questa è vera. Il valore x α è detto valore critico e l itervallo { x : x } A = < x α è detto zoa di accettazioe, metre l itervallo B = { x : x } x α è detto zoa di rifiuto. Alterativa a siistra H :µ = µ H1 :µ = µ 1 coµ 1 (ipotesi semplice) < µ, oppure, H1 :µ < µ (ipotesi composta) Si usa la stessa statistica del test, che sotto H si distribuirà come segue: GRAFICO 9

10 I questo caso si tede a rifiutare per valori di X piccoli, iferiori a µ. Si cerca pertato quel valore x1 α tale che α = P( X x1 α H è vera ). Ache questo valore si trova attraverso le tavole della ormale stadardizzata: α = P( X x1 α H è vera )= x Il valore 1 α µ = z σ α si trova sulle tavole della ormale stadardizzata: corrispode al quatile o ascissa che lascia a siistra ua probabilità pari ad α. GRAFICO 1

11 Trovato zα, posso calcolare il valore x1 α che cercavo: VALORE CRITICO Di cosegueza accettiamo H se il valore otteuto dal campioe x (valore empirico) è superiore a rifiutiamo H altrimeti: x1 α (valore critico), e - se σ x > µ zα accetto H ; - se σ x µ zα rifiuto H. GRAFICO Alterativa bidirezioale H :µ = µ H1 :µ µ I questo caso rifiutiamo per valori di X sia elevati maggiori di µ che bassi iferiori a µ. 11

12 Essedo α la probabilità di compiere u errore di primo tipo, si cercherao due valori x α 1 e x α tali che: 1 - α = P( x α 1 < X xα ) = Per cui si avrao due valori critici: E accettiamo H se il valore otteuto dal campioe x (valore empirico) è itero all itervallo x α ;xα : 1 σ µ zα < x < µ + zα σ metre rifiutiamo H per valori esteri all itervallo: 1

13 13 σ z µ x σ z µ x α α + GRAFICO Vediamo come si modifica il procedimeto quado la variaza σ è icogita. σ icogita Si procede come prima ma occorre sostituire σ co ( ) 1 X X S 1 i i = = (o ache ( ) X X S 1 i i = = se è elevato).

14 Sappiamo che la statistica X µ ha ua distribuzioe t di Studet co 1 gradi di libertà, per cui useremo i valori delle ascisse della t ( 1) per calcolare i valori critici. Tuttavia per elevato ( > 3) la t ( 1) può essere approssimata co la N(;1). Quidi distiguiamo due casi: 1. σ icogita, piccoli campioi ( 3) Alterativa a destra H :µ = µ H1 :µ > µ accetto H per rifiuto H per x < µ + tα, 1 ; x µ + tα, 1. Alterativa a siistra H :µ = µ H1 :µ < µ accetto H per rifiuto H per x > µ tα, 1 ; x µ tα, 1. 14

15 Alterativa bidirezioale H :µ = µ H1 :µ µ accetto H per µ tα, 1 < x < µ + tα, 1 ; rifiuto H per x µ x µ tα, + tα, σ icogita, gradi campioi ( > 3) Alterativa a destra H :µ = µ H1 :µ > µ accetto H per x < µ + zα ; rifiuto H per x µ + zα. Alterativa a siistra H :µ = µ H1 :µ < µ accetto H per x > µ zα ; rifiuto H per x µ zα. 15

16 16 Alterativa bidirezioale 1 µ :µ H µ :µ H = accetto H per S z µ x S z µ α α + < < ; rifiuto H per + S z µ x S z µ x α α.

17 P-VALUE O LIVELLO DI SIGNIFICATIVITA OSSERVATO Otteuta ua stima x dal campioe, il p-value è il livello di sigificatività osservato associato a tale valore. Si cosideri ad esempio il caso della verifica di ipotesi sulla media di ua popolazioe ormale co alterativa a destra. Abbiamo defiito il livello di sigificatività α come: x µ X α = P Z α σ α = P( x H è vera) metre il p-value è dato da: x µ X = P Z σ p-value = P( x H è vera) e si desume ach esso dalle tavole della ormale stadardizzata. Se il p-value è superiore ad α siamo ella zoa di accettazioe, altrimeti siamo ella zoa di rifiuto. GRAFICO 17

18 ESERCIZIO Su u campioe casuale di uità di u tipo di batterie per auto soo state rilevate le segueti durate i ai:,1, 1,8 1,6 3,,9 1,,5,5,,9 1,1 3, 3,1,4,7,8,7, 1,5 Si verifichi ad u livello di sigificatività del 5% l affermazioe del produttore che garatisce, per quel tipo di batterie, ua durata media pari a,5 ai cotro l alterativa che sia iferiore, suppoedo che tale durata possa riteersi distribuita ormalmete ella popolazioe. 18

19 ESERCIZIO Si suppoga di sapere che il voto medio preso all esame di Statistica dagli studeti di tutte le Facoltà di Ecoomia d Italia sia 3. Da u campioe casuale di 4 studeti della Facoltà di Ecoomia dell Uiversità di Bologa la media dei voti presi all esame di Statistica è risultata pari a 7 e la variaza campioaria corretta pari a 9. Assumedo che i voti si distribuiscao ormalmete, si verifichi l ipotesi che il voto medio di Statistica per la popolazioe degli studeti bologesi sia 3, cotro l alterativa che sia superiore a 3, per u livello di sigificatività del 5%. 19

20 ESERCIZIO Per u campioe di 8 siistri registrati per icideti stradali i ua provicia ua compagia di assicurazioe ha pagato u risarcimeto medio di 4 euro, co uo scarto quadratico medio di 15 euro. Si verifichi l ipotesi che tale campioe provega da ua popolazioe a cui corrispode u risarcimeto medio di 3 euro, fissado u livello di sigificatività pari al 5%.

21 ESERCIZIO Da u campioe casuale di 34 portieri che hao giocato el campioato di calcio di serie A del 1991/9 è stato rilevato il peso corporeo i kg, dado luogo ai segueti risultati: Peso i kg. di portieri a) Si calcolio ua stima corretta della media ed ua stima corretta della variaza del peso ella popolazioe dei portieri. b) Si sottopoga a verifica l ipotesi che il peso medio ella popolazioe sia uguale a 76 kg cotro l alterativa che sia iferiore a 76 kg, scegliedo u ragioevole livello di sigificatività e specificado l assuzioe che è ecessario effettuare per procedere co tale verifica. c) Si calcoli ua stima dello scarto quadratico medio dello stimatore impiegato per la media della popolazioe. 1

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007 Tecica delle misurazioi applicate Esame del 4 dicembre 7 Problema 1. Il propulsore Mod. WEC viee prodotto da ACME Ic. mediate u processo automatizzato: dati storici cofermao che la lavorazioe di ogi elemeto

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione Questi esempi vi potrao essere utili come riferimeto ella ricerca di itervalli di cofideza e test di ipotesi statistiche. Per gli aggiorameti potete visitare i siti www.boch.et o www.feaor.com. Per dubbi

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

STIME E LORO AFFIDABILITA

STIME E LORO AFFIDABILITA TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

STATISTICA A K (63 ore)

STATISTICA A K (63 ore) STATISTICA A K (63 ore) Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto =400 X =34.000 Km; s cor =9000 Km Calcolare l

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE CAPITOLO SETTIMO GLI INDICI DI FORMA SOMMARIO: 1. Itroduzioe. - 2. Asimmetria. - 3. Grafico a scatola (box plot). - 4. Curtosi. - Questioario. 1. INTRODUZIONE Dopo aver aalizzato gli idici di posizioe

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

Formula per la determinazione della Successione generalizzata di Fibonacci.

Formula per la determinazione della Successione generalizzata di Fibonacci. Formula per la determiazioe della uccessioe geeralizzata di Fiboacci. A cura di Eugeio Amitrao Coteuto dell articolo:. Itroduzioe......... uccessioe di Fiboacci....... 3. Formula di Biet per la successioe

Dettagli

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA METODO DELLE PIOGGE PER IL CALCOLO DEI OLUMI DI INASO PER L INARIANZA IDRAULICA 1. Premessa I queste brevi ote si preseta il metodo semplificato delle piogge illustradoe l implemetazioe i u foglio di calcolo

Dettagli

Esempio. Le variabili casuali/3. X = x i è un evento. Si supponga che che le seguenti coppie di lettere siano equiprobabili

Esempio. Le variabili casuali/3. X = x i è un evento. Si supponga che che le seguenti coppie di lettere siano equiprobabili E u prodotto dell esperimeto Le variabili casuali/3 La variabile casuale è ua fuzioe che associa ad ogi eveto dell'uiverso degli eveti uo ed u solo umero reale. Esempio Si suppoga che che le segueti coppie

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE Capitoo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE 3.1 LA TEORIA DI WEIBULL I comportameto meccaico dee fibre di giestra e di juta è stato caratterizzato mediate o studio dea resisteza a trazioe dee fibre

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S S0 X k, co X k k co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti e ideticamete

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche Itroduzioe alla Statistica descrittiva Defiizioi prelimiari È la scieza che studia i feomei collettivi o di massa. U feomeo è detto collettivo o di massa quado è determiato solo attraverso ua molteplicità

Dettagli

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ARGOMENTI TRATTATI: VARIABILI CASUALI DISCRETE VARIABILI CASUALI CONTINUE DISEGUAGLIANZA DI TCHEBYCHEFF TEOREMA DEL LIMITE CENTRALE

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

INFERENZA SU UNA O DUE MEDIE CON IL TEST

INFERENZA SU UNA O DUE MEDIE CON IL TEST CAPITOLO VI INFERENZA SU UNA O DUE MEDIE CON IL TEST t DI STUDENT 6.. Dalla popolazioe ifiita al campioe piccolo: la distribuzioe t di studet 6.. Cofroto tra ua media osservata e ua media attesa co calcolo

Dettagli

Soluzioni esercizi Capitolo 7

Soluzioni esercizi Capitolo 7 Soluzioi esercizi Capitolo 7 Quado si valuta la relazioe fra due variabili, occorre prestare particolare attezioe al fatto che i modelli statistici specifici per ogi scala di misura siao applicabili: i

Dettagli

Analisi Fattoriale Discriminante

Analisi Fattoriale Discriminante Aalisi Fattoriale Discrimiate Bibliografia Lucidi (materiale reperibile via Iteret) Lauro C.N. Uiversità di Napoli Gherghi M. Uiversità di Napoli D Ambra L. Uiversità di Napoli Keeth M. Portier Uiversity

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ES 1 I u collettivo di 40 pazieti osservati, la media dei globuli biachi era pari a.9 ( 1000/ml 3 ) e la variaza era pari a 0.336. Forire ua

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli