INTEGRATORE E DERIVATORE REALI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTEGRATORE E DERIVATORE REALI"

Transcript

1 INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza da 33kΩ - 1 condensatore da 470pF - 1 condensatore da 1nF - 1 amplificatore operazionale TL081 Elenco strumenti utilizzati : - alimentatore duale ±15V - generatore di funzioni - oscilloscopio - breadbord Scopo dell esperienza :

2 Verificare in laboratorio il funzionamento di integratore e derivatore reali. Cenni teorici: -Integratore invertente: L integratore è un circuito che permette di ottenere in uscita l integrale rispetto al tempo del segnale di ingresso. Il circuito dell integratore ideale di Miller, è il seguente: Esso ricorda la connessione invertente di un operazionale, in cui però la resistenza di reazione R2 è stata sostituita da un condensatore, C, nel quale, per il fatto che un operazionale ideale non assorbe corrente ai propri ingressi, scorre la stessa corrente (i) che scorre nella resistenza R. Inoltre, sempre perché l operazionale viene considerato ideale, la differenza di potenziale fra i terminali invertente e non invertente è uguale a zero e perciò il terminale invertente è come se fosse collegato a massa virtuale; la corrente circolante in R vale quindi : ricordando che la tensione ai capi di un condensatore (considerandolo inizialmente scarico) è data da: e sapendo che la tensione di uscita è otteniamo: E dimostrato quindi che la tensione di uscita di questo circuito è l integrale del segnale di ingresso moltiplicato per un certo fattore. Se il condensatore fosse inizialmente carico a una certa tensione, otteniamo : L inconveniente di questo circuito è che può andare facilmente in saturazione, a causa di disturbi a basse frequenze che potrebbero arrivare all ingresso dell operazionale; infatti per la frequenza del disturbo che tende a zero, la reattanza del condensatore tende a infinito, il condensatore diventa quindi un circuito

3 aperto; l operazionale è come se fosse connesso in catena aperta e la sua amplificazione è quindi infinita, arrivando così alla saturazione. Per ovviare a questo fenomeno, si inserisce in parallelo al condensatore una resistenza (e questo è il circuito da noi utilizzato, che ho inserito all inizio), in modo che il guadagno massimo dell operazionale sia limitato al valore Av = -R2/R1. La R2 deve essere dimensionata in maniera tale che alla frequenza di lavoro dell integratore la sua resistenza sia trascurabile (e quindi molto maggiore) rispetto alla reattanza del condensatore; possiamo scrivere che perché il circuito funzioni da integratore dobbiamo avere: Dove f è la frequenza di lavoro dell integratore; si noti che il circuito da noi considerato, svolge anche la funzione di filtro passa basso, infatti è proprio la frequenza di taglio del filtro; possiamo dire quindi che perché questo circuito funzioni da integratore, la frequenza del segnale di ingresso deve essere molto maggiore della frequenza di taglio, detta anche frequenza critica. In genere si pone la frequenza di lavoro a 10*fc, con fc la frequenza critica. -Derivatore invertente: Il derivatore è un circuito che permette di ottenere in uscita la derivata rispetto al tempo del segnale di ingresso. Il circuito del derivatore ideale è il seguente : Esso parte sempre dalla connessione invertente di un operazionale, in cui però la resistenza R1 è stata sostituita da un condensatore, C; nella resistenza di reazione R scorre la stessa corrente che scorre nel condensatore, per la stessa considerazione effettuata per l integratore e cioè che gli ingressi

4 dell operazionale ideale non assorbono corrente. Inoltre, dato che il potenziale invertente è come se fosse connesso a massa virtuale, la tensione sul condensatore coincide con la tensione di ingresso e la tensione di uscita è data da R*i. Ricordando che la relazione che lega la corrente circolante nel condensatore alla tensione ai suoi capi è: otteniamo: Abbiamo così dimostrato che in questo circuito il segnale di uscita è la derivata rispetto al tempo del segnale di ingresso; anche il derivatore ideale, appunto perché tale, non può essere usato così com è ma ha bisogno di opportune modifiche perché funzioni correttamente. Infatti, se ipotizziamo che in ingresso abbiamo un disturbo ad alta frequenza, l operazionale va in saturazione, perché il condensatore diventa un cortocircuito e l amplificazione diventa infinita; per ovviare a questo problema, si pone una resistenza in serie al condensatore C, in modo da ottenere il circuito da noi utilizzato che ho inserito alla prima pagina; l amplificazione risulta così limitata al rapporto R2/R1 anche nel caso in cui vi siano disturbi di alta frequenza all ingresso dell operazionale. Lo stesso discorso fatto per l integratore, vale per il derivatore: alla frequenza di lavoro, la resistenza R1 deve avere valore trascurabile rispetto alla reattanza del condensatore, e quindi dato che i due elementi sono in serie, la reattanza del condensatore deve essere molto maggiore rispetto alla resistenza. Otteniamo quindi: Dove f è la frequenza di lavoro del derivatore; si noti che il circuito da noi considerato, svolge anche la funzione di filtro passa alto, infatti è proprio la frequenza di taglio del filtro; possiamo dire quindi che perché questo circuito funzioni da derivatore, la frequenza del segnale di ingresso deve essere molto minore della frequenza di taglio, detta anche frequenza critica. In genere si pone la frequenza di lavoro a 1/10 della frequenza di taglio. Ci è stato richiesto di progettare un integratore e un derivatore, avendo la frequenza di taglio di ciascuno e di verificare il loro comportamento per diverse frequenze del segnale in ingresso.

5 -Dimensionamento dei componenti dell integratore: Per l integratore, ci è stata richiesta una frequenza di taglio di 10kHz; abbiamo posto l amplificazione, cioè il rapporto R2/R1 uguale a dieci, in modo che in banda passante (cioè prima dei 10kHz, dato che l integratore è un filtro passa basso) il circuito potesse accettare in ingresso tensioni di 1Vmax (cioè 2Vpp), ottenendo in uscita 10Vmax, senza correre il rischio che l operazionale vada in saturazione. Abbiamo posto R1 = 3,3k e R2 = 33k, mantenendo tali valori di resistenze anche per il derivatore. Ci siamo calcolati poi il valore della capacità da porre in parallelo alla R2, in modo da ottenere la frequenza di taglio richiesta: Abbiamo approssimato al valore commerciale 470pF; la frequenza di taglio varia di poco, dai 10kHz richiesti ci ritroviamo : Di ciò terremo conto nell effettuare le misure, considerando la frequenza di taglio non più 10kHz ma 10,26kHz. -Dimensionamento dei componenti del derivatore: Per il derivatore, ci è stata richiesta una frequenza di taglio di 50kHz; abbiamo mantenuti invariati i valori di R1 e R2; ci siamo calcolati il valore della capacità da porre in serie alla R1, in modo da ottenere la frequenza di taglio richiesta: Abbiamo approssimato al valore commerciale 1nF; la frequenza di taglio varia, dai 10kHz richiesti ci ritroviamo : Di ciò terremo conto nell effettuare le misure, considerando la frequenza di taglio non più 50kHz ma 48,23kHz. Effettuare le misure sull integratore:

6 Una volta progettato e montato il circuito su breadbord, applichiamo all ingresso dell integratore un segnale ad onda quadra, con le frequenze riportate in tabella; ci siamo ricavati quindi, per ogni valore di frequenza, la forma d onda in uscita al circuito e la tensione d uscita picco-picco. Se non fosse stata inserita la R2, e sarebbe stato quindi possibile utilizzare un integratore ideale, il circuito avrebbe funzionato da integratore per tutte le frequenze del segnale di ingresso, e quindi da un onda quadra avremmo ottenuto sempre un onda triangolare, per qualsiasi frequenza del segnale di ingresso : si ricordi infatti che l integrale di una costante rispetto al tempo è una retta di equazione m*t, dove m è il coefficiente angolare della retta; quindi applicando al circuito un segnale ad onda quadra, a valor medio nullo e con duty cycle del 50%, in uscita otterremo un onda triangolare, cioè un segnale formato da due rampe, una crescente (ottenuta quando l onda quadra assume valori negativi, perché il derivatore è invertente) e una decrescente (ottenuta quando l onda quadra assume valori positivi, per lo stesso motivo di prima). Tuttavia noi abbiamo utilizzato l integratore reale, e quindi il circuito non funzionerà da integratore per tutte le frequenze del segnale di ingresso; il nostro compito è quello di verificare a che frequenza il circuito inizia a funzionare da integratore. Effettuare le misure sul derivatore: Una volta progettato e montato il circuito su breadbord, applichiamo all ingresso del derivatore un segnale ad onda triangolare, con le frequenze riportate in tabella; ci siamo ricavati quindi, per ogni valore di frequenza, la forma d onda in uscita al circuito e la tensione d uscita picco-picco. Se non fosse stata inserita la R1, e sarebbe stato quindi possibile utilizzare un derivatore ideale, il circuito avrebbe funzionato da derivatore per tutte le frequenze del segnale di ingresso, e quindi da un onda triangolare avremmo ottenuto sempre un onda quadra, per qualsiasi frequenza del segnale di ingresso : si ricordi infatti che la derivata di una retta rispetto al tempo è il suo coefficiente angolare m; quindi applicando al circuito un segnale ad onda triangolare, a valor medio nullo e con duty cycle del 50%, in uscita otterremo un onda quadra, che sarà positiva quando la rampa che forma l onda triangolare sarà decrescente, e negativa quando la rampa che forma l onda triangolare sarà crescente ( si ricordi che il derivatore è invertente). Tuttavia noi abbiamo utilizzato il derivatore reale, e quindi il circuito non funzionerà da derivatore per tutte le frequenze del segnale di ingresso; il nostro compito è quello di verificare a che frequenza il circuito inizia a funzionare da derivatore. Nelle pagine successive, riporto le misure effettuate sui due circuiti, riportando per ciascuno di esso, per ogni valore di frequenza del segnale di ingresso, i grafici delle forme d onda ottenute in uscita e il loro valore di ampiezza picco-picco. In ingresso, ad entrambi i circuiti è stato applicato un segnale di 2Vpp, per essere certi di non mandare in saturazione l operazionale. Misure sull integratore ( ft = 10,26kHz) :

7 Frequenza Grafico delle forme d onda Tensione di uscita piccopicco 1/20 ft 510 Hz 20Vpp 1/10 ft 1026Hz 20Vpp ft 10,26kHz 18Vpp 2*ft 20,52kHz 13Vpp 10*ft 102,61kHz 3,2Vpp 20*ft 205,2kHz 1,8Vpp

8 Misure sul derivatore ( ft = 48,23kHz) : Frequenza Grafico delle forme d onda Tensione di uscita piccopicco 20 ft 964,6kHz 20Vpp 10 ft 482,3kHz 20Vpp ft 48,23kHz 11,5Vpp 1/10 ft 4,82kHz 1,3Vpp 1/20 ft 2,41kHz 0,65Vpp -Commenti sulle misure effettuate sull integratore :

9 Nell integratore, si può notare come per basse frequenze del segnale di ingresso ad onda quadra, il segnale di uscita rimane più o meno un onda quadra, sfasata di 180 gradi rispetto a quella in ingresso (per l uso della connessione invertente), di ampiezza 10 volte maggiore (infatti l amplificazione è 10) e con i fianchi in salita e in discesa leggermente arrotondati; ciò avviene perché il circuito, essendo un filtro passa basso, elimina le componenti più alte del segnale ad onda quadra, e quindi il segnale in uscita risulta leggermente distorto rispetto a quello in ingresso; ciò avviene fino alla frequenza 1/10 ft. Trascurando la leggera distorsione dell onda quadra, possiamo dire che questo circuito fino alla frequenza 1/10 ft funziona come amplificatore invertente, perché la reattanza del condensatore è trascurabile rispetto alla resistenza R2. Alla frequenza di taglio invece, il segnale in uscita non è più quadro, perché sempre più armoniche dell onda quadra vengono eliminate e il segnale di uscita risulta parecchio distorto rispetto al segnale in ingresso; qui inoltre la reattanza del condensatore non è più trascurabile rispetto alla resistenza R2: all aumentare della frequenza, la reattanza del condensatore diminuisce, e quindi anche l amplificazione diminuisce; infatti l ampiezza picco-picco del segnale di uscita è inferiore rispetto alle ampiezze dei segnali precedenti, con frequenza minore di ft. Ora notiamo che man mano che aumentiamo la frequenza del segnale di ingresso, l ampiezza picco-picco del segnale di uscita tende a diminuire, e inoltre esso tende a diventare un onda triangolare; possiamo affermare che il circuito inizia a funzionare da integratore a una frequenza dieci volte quella di taglio, infatti a questa frequenza abbiamo in uscita un onda triangolare; il circuito funziona da integratore a 10*ft proprio perché la resistenza R2 è ora trascurabile rispetto alla reattanza del condensatore, e quindi è come se non ci fosse, riportandoci nella condizione di integratore ideale. Alla frequenza 20*ft, il segnale di uscita è sempre un onda triangolare, ma di ampiezza minore: questo perché il periodo dell onda quadra diminuisce all aumentare della sua frequenza, e siccome l ampiezza del segnale di uscita è data da si nota come, al diminuire del tempo considerato, e cioè il periodo dell onda quadra, diminuisce l ampiezza della tensione in uscita. Per cui la condizione di funzionamento dell integratore alla frequenza 10*ft è un buon compromesso fra la forma del segnale in uscita, che è perfettamente triangolare, e la sua ampiezza; nella pratica, la frequenza 10*ft viene considerata la frequenza di lavoro dell integratore. I risultati ottenuti in laboratorio coincidono con quelli ottenuti con la simulazione mediante software. -Commenti sulle misure effettuate sul derivatore: Nel derivatore, si può notare che per alte frequenze del segnale di ingresso ad onda triangolare, il segnale di uscita è sempre un segnale ad onda triangolare, sfasata di 180 gradi rispetto a quella in ingresso, sempre per lo stesso motivo di cui ho discusso nell integratore: per frequenze fino a 10*ft, nel derivatore il condensatore in serie alla R1 ha reattanza trascurabile rispetto alla resistenza stessa, e la configurazione circuitale approssima quella di un amplificatore invertente; alla frequenza ft, invece, la reattanza del condensatore inizia a farsi sentire : l ampiezza del segnale in uscita subisce una notevole attenuazione e anche una distorsione, dovuta alla modifica delle ampiezze di alcune componenti del segnale ad onda triangolare, soprattutto quelle più basse (perché il circuito è un filtro passa alto); ora notiamo che man mano che diminuiamo la frequenza del segnale di ingresso, il segnale di uscita approssima sempre più un onda quadra. Infatti già a 1/10 ft la resistenza R1 è trascurbile rispetto alla reattanza del condensatore in serie ad essa, e quindi si può non considerare, riportandoci alla condizione di derivatore ideale; tuttavia notiamo che il segnale in onda quadra in uscita a 1/10 ft ha ancora i fianchi leggermente arrotondati; per

10 avere dei fianchi un po più ripidi, dobbiamo passare a 1/20 ft; nella pratica questa viene considerata la frequenza di lavoro del derivatore; anche qui, tuttavia, aumentando la frequenza, diminuisce l ampiezza del segnale in uscita per le stesse osservazioni effettuate sull integratore (utilizzando naturalmente le formule del derivatore). I risultati ottenuti in laboratorio coincidono con quelli ottenuti con la simulazione mediante software.

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Studio nel dominio del tempo. Le correnti sulla resistenza e sul condensatore, considerando che il punto M è a massa virtuale, valgono:

Studio nel dominio del tempo. Le correnti sulla resistenza e sul condensatore, considerando che il punto M è a massa virtuale, valgono: INTEGRATORE E DERIVATORE Oltre le quattro operazioni matematiche (addizione, sottrazione, moltiplicazione, divisione) l A.O. è in grado di compiere anche altre operazioni tra le quali parecchio importanti

Dettagli

L amplificatore operazionale 1. Claudio CANCELLI

L amplificatore operazionale 1. Claudio CANCELLI L amplificatore operazionale Claudio CANCELLI L amplificatore operazionale Indice dei contenuti. L'amplificatore...3. L'amplificatore operazionale - Premesse teoriche....5 3. Circuito equivalente... 5

Dettagli

M049 - ESAME DI STATO DI ISTITUTO PROFESSIONALE. Indirizzo: TECNICO DELLE INDUSTRIE ELETTRONICHE CORSO DI ORDINAMENTO

M049 - ESAME DI STATO DI ISTITUTO PROFESSIONALE. Indirizzo: TECNICO DELLE INDUSTRIE ELETTRONICHE CORSO DI ORDINAMENTO M049 - ESAME DI STATO DI ISTITUTO PROFESSIONALE Indirizzo: TECNICO DELLE INDUSTRIE ELETTRONICHE CORSO DI ORDINAMENTO Tema di: ELETTRONICA, TELECOMUNICAZIONI E APPLICAZIONI Il candidato, formulando eventuali

Dettagli

5 Amplificatori operazionali

5 Amplificatori operazionali 5 Amplificatori operazionali 5.1 Amplificatore operazionale: caratteristiche, ideale vs. reale - Di seguito simbolo e circuito equivalente di un amplificatore operazionale. Da notare che l amplificatore

Dettagli

BLOCCO AMPLIFICATORE. Amplificatore ideale. ELETTRONICA 1 per Ingegneria Biomedica Prof. Sergio Cova

BLOCCO AMPLIFICATORE. Amplificatore ideale. ELETTRONICA 1 per Ingegneria Biomedica Prof. Sergio Cova ELETTRONIC per Ingegneria Biomedica Prof. Sergio Cova BLOCCO MPLIFICTORE v i È un circuito integrato v i v v v i quindi v i mplificatore ideale resistenza di ingresso corrente assorbita dagli ingressi

Dettagli

Le reti elettriche possono contenere i componenti R, C, L collegati fra di loro in modo qualsiasi ed in quantità qualsiasi.

Le reti elettriche possono contenere i componenti R, C, L collegati fra di loro in modo qualsiasi ed in quantità qualsiasi. e reti elettriche in alternata (- ; - ; --) e reti elettriche possono contenere i componenti,, collegati fra di loro in modo qualsiasi ed in quantità qualsiasi. l loro studio in alternata parte dall analisi

Dettagli

Corso di orientamento. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI

Corso di orientamento. Indirizzo: ELETTRONICA E TELECOMUNICAZIONI M320 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE Corso di orientamento Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA (Testo valevole per i corsi di ordinamento e per i corsi sperimentali

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

GRMN VCO Rev 0 - Thermidor Technologies - Pagina 1. Note sul dimensionamento dei VCO Per sintetizzatore Germinimal

GRMN VCO Rev 0 - Thermidor Technologies - Pagina 1. Note sul dimensionamento dei VCO Per sintetizzatore Germinimal GRMN VCO Rev 0 - Thermidor Technologies - Pagina 1 Note sul dimensionamento dei VCO Per sintetizzatore Germinimal GRMN VCO Rev 0 - Thermidor Technologies - Pagina 1 Indice INDICE INDICE... 1 1. DESCRIZIONE...

Dettagli

Applicazioni dell amplificatore operazionale

Applicazioni dell amplificatore operazionale Capitolo 10 Applicazioni dell amplificatore operazionale Molte applicazioni dell amplificatore operazionale si basano su circuiti che sono derivati da quello dell amplificatore non invertente di fig. 9.5

Dettagli

Appendice Circuiti con amplificatori operazionali

Appendice Circuiti con amplificatori operazionali Appendice Circuiti con amplificatori operazionali - Appendice Circuiti con amplificatori operazionali - L amplificatore operazionale Il componente ideale L amplificatore operazionale è un dispositivo che

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Basetta per misure su amplificatori

Basetta per misure su amplificatori Basetta per misure su amplificatori Per le misure viene utilizzata una basetta a circuito stampato premontata, che contiene due circuiti (amplificatore invertente e noninvertente). Una serie di interruttori

Dettagli

L'amplificatore operazionale - principi teorici

L'amplificatore operazionale - principi teorici L'amplificatore operazionale - principi teorici Cos'è? L'amplificatore operazionale è un circuito integrato che produce in uscita una tensione pari alla differenza dei suoi due ingressi moltiplicata per

Dettagli

ELETTRONICA II. Circuiti misti analogici e digitali 2. Riferimenti al testo. Prof. Dante Del Corso - Politecnico di Torino

ELETTRONICA II. Circuiti misti analogici e digitali 2. Riferimenti al testo. Prof. Dante Del Corso - Politecnico di Torino ELETTRONICA II Circuiti misti analogici e digitali 2 Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 20 - E - 2: Oscillatori e generatori di segnale

Dettagli

Amplificatori in classe B

Amplificatori in classe B Amplificatori in classe B Lo schema semplificato di un amplificatore in classe B è mostrato in figura. Si tratta di una classica configurazione push-pull a simmetria complementare, nella quale i due componenti

Dettagli

CIRCUITO DI CONDIZIONAMENTO PER TRASDUTTORE DI UMIDITÀ 2322 Philips

CIRCUITO DI CONDIZIONAMENTO PER TRASDUTTORE DI UMIDITÀ 2322 Philips CICUIO DI CONDIZIONAMENO PE ASDUOE DI UMIDIÀ 2322 Philips Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DE POGEO: realizzare un circuito in grado di misurare una variazione di

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Relazione di laboratorio Gruppo: A08 Antona Maria Gabriella Matricola: 148211 Degno Angela Rita Matricola: 148155 Fiandrino Claudio Matricola:

Dettagli

2 Qual è il guadagno totale di due stadi amplificatori da 6 db e da 3 db : A 4,5 db B 9 db C 6 db

2 Qual è il guadagno totale di due stadi amplificatori da 6 db e da 3 db : A 4,5 db B 9 db C 6 db 3.- CIRCUITI 3.1.- Combinazione dei componenti: Circuiti in serie e in parallelo di resistori, bobine, condensatori, trasformatori e diodi - Corrente e tensione nei circuiti Impedenza. 3.2.- Filtri: Filtri

Dettagli

Tutori: Giovanni Corradi e Paolo Ciambrone. 1. Analisi nel dominio della frequenza

Tutori: Giovanni Corradi e Paolo Ciambrone. 1. Analisi nel dominio della frequenza INDICE: Filtri RC e CR 1. Analisi nel dominio della frequenza 1.1. Filtro PASSA BASSO 1.2. Filtro PASSA ALTO 1.3. Filtro PASSA ALTO + PASSA BASSO 1.4. Filtri PASSA BASSO IN CASCATA 2. Analisi nel dominio

Dettagli

X = Z sinj Q = VI sinj

X = Z sinj Q = VI sinj bbiamo già parlato dei triangoli dell impedenza e delle potenze. Notiamo la similitudine dei due triangoli rettangoli. Perciò possiamo indifferentemente calcolare: (fattore di potenza) Il fattore di potenza

Dettagli

E evidente che le carattteristiche dell OPAMP ideale non possono essere raggiunte da nessun circuito reale. Gli amplificatori operazionali reali

E evidente che le carattteristiche dell OPAMP ideale non possono essere raggiunte da nessun circuito reale. Gli amplificatori operazionali reali E evidente che le carattteristiche dell OPAMP ideale non possono essere raggiunte da nessun circuito reale. Gli amplificatori operazionali reali hanno però caratteristiche che approssimano molto bene il

Dettagli

Retroazione In lavorazione

Retroazione In lavorazione Retroazione 1 In lavorazione. Retroazione - introduzione La reazione negativa (o retroazione), consiste sostanzialmente nel confrontare il segnale di uscita e quello di ingresso di un dispositivo / circuito,

Dettagli

Esami di Stato 2008 - Soluzione della seconda prova scritta. Indirizzo: Elettronica e Telecomunicazioni Tema di ELETTRONICA

Esami di Stato 2008 - Soluzione della seconda prova scritta. Indirizzo: Elettronica e Telecomunicazioni Tema di ELETTRONICA Risposta al quesito a Esami di Stato 2008 - Soluzione della seconda prova scritta Indirizzo: Elettronica e Telecomunicazioni Tema di ELETTRONICA (A CURA DEL PROF. Giuseppe SPALIERNO docente di Elettronica

Dettagli

Fr = 1 / [ ( 2 * π ) * ( L * C ) ]

Fr = 1 / [ ( 2 * π ) * ( L * C ) ] 1.6 I circuiti risonanti I circuiti risonanti, detti anche circuiti accordati o selettivi, sono strutture fondamentali per la progettazione dell elettronica analogica; con essi si realizzano oscillatori,

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO

I.P.S.I.A. Di BOCCHIGLIERO I.P.S.I.A. Di BOCCHIGLIERO a.s. 2010/2011 -classe III- Materia: Telecomunicazioni ---- Oscillatori ---- alunna Serafini Rossella prof. Ing. Zumpano Luigi L'oscillatore L'oscillatore è l'elemento fondamentale

Dettagli

Arpa Laser. Progetto per il corso di Progettazione Elettronica. Realizzato da Caracciolo Etienne, Piccoli Riccardo, Porro Gabriele

Arpa Laser. Progetto per il corso di Progettazione Elettronica. Realizzato da Caracciolo Etienne, Piccoli Riccardo, Porro Gabriele Arpa Laser Progetto per il corso di Progettazione Elettronica Realizzato da Caracciolo Etienne, Piccoli Riccardo, Porro Gabriele 09/04/2009 DESCRIZIONE DELLO STRUMENTO Il progetto consiste nella costruzione

Dettagli

Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti

Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email:

Dettagli

MICROFONO MANI LIBERE PER AUTO

MICROFONO MANI LIBERE PER AUTO MICROFONO MANI LIBERE PER AUTO Tutto e nato dall idea di realizzare un microfono che mi permettesse di usare il ricetrasmettitore nel modo piu comodo e sicuro possibile. Navigando in rete ho trovato diverse

Dettagli

ELETTRONICA. L amplificatore Operazionale

ELETTRONICA. L amplificatore Operazionale ELETTRONICA L amplificatore Operazionale Amplificatore operazionale Un amplificatore operazionale è un amplificatore differenziale, accoppiato in continua e ad elevato guadagno (teoricamente infinito).

Dettagli

Esercitazione n 5: Stadi di uscita

Esercitazione n 5: Stadi di uscita Esercitazione n 5: Stadi di uscita 1) Per il circuito in Fig. 1 sostituire il generatore di corrente con uno specchio di corrente. Dimensionare quest'ultimo in modo tale da ottenere la massima dinamica

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

Rappresentazione grafica di un sistema retroazionato

Rappresentazione grafica di un sistema retroazionato appresentazione grafica di un sistema retroazionato La f.d.t. di un.o. ha generalmente alcune decine di poli Il costruttore compensa il dispositivo in maniera da dotarlo di un singolo polo (polo dominante).

Dettagli

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ Appunti di Elettronica Capitolo 3 Parte II Circuiti limitatori di tensione a diodi Introduzione... 1 Caratteristica di trasferimento di un circuito limitatore di tensione... 2 Osservazione... 5 Impiego

Dettagli

Nome e Cognome. 2 Calcolare il valore efficace di una tensione sinusoidale con Vmax = 18 V

Nome e Cognome. 2 Calcolare il valore efficace di una tensione sinusoidale con Vmax = 18 V VERIFICA SCRITTA DI ELETTRONICA Classe IVME A. S. 2013/2014 27 ottobre 2013 [1,5 punti per gli esercizi 1-5-7-8; 1 punto per gli esercizio (2, 3, 4, 6)] Nome e Cognome. 1 Calcolare il valore di Vx nel

Dettagli

FILTRI PASSIVI. Un filtro elettronico seleziona i segnali in ingresso in base alla frequenza.

FILTRI PASSIVI. Un filtro elettronico seleziona i segnali in ingresso in base alla frequenza. FILTRI PASSIVI Un filtro è un sistema dotato di ingresso e uscita in grado di operare una trasmissione selezionata di ciò che viene ad esso applicato. Un filtro elettronico seleziona i segnali in ingresso

Dettagli

PIANO DI STUDIO DELLA DISCIPLINA DISCIPLINA: ELETTRONICA PIANO DELLE UDA PER LA CLASSE 4IA

PIANO DI STUDIO DELLA DISCIPLINA DISCIPLINA: ELETTRONICA PIANO DELLE UDA PER LA CLASSE 4IA PIANO DI STUDIO DELLA DISCIPLINA DISCIPLINA: ELETTRONICA PIANO DELLE PER LA CLASSE 4IA della n. 1 correnti alternate Ore:20 settembre - ottobre Uso specifico del nella risoluzione dei problemi sia in classe

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI T3 CICUITI ISONANTI E AMPLIFICATOI SELETTIVI T3. Il fattore di merito di una bobina è misurato in: [a] henry. [b] ohm... [c] è adimensionale.. T3. Il fattore di perdita di un condensatore è misurato in:

Dettagli

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori

Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Teoria dei circuiti Esercitazione di Laboratorio Transitori e dominio dei fasori Esercizio T T V V on riferimento al circuito di figura, si assumano i seguenti valori: = = kω, =. µf, = 5 V. Determinare

Dettagli

Rifasare per un uso efficiente dell impianto utilizzatore

Rifasare per un uso efficiente dell impianto utilizzatore Antonello Greco Rifasare vuol dire ridurre lo sfasamento fra la tensione e la corrente introdotto da un carico induttivo (figura 1); significa aumentare il valore del fattore di potenza (cosϕ) del carico

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Generatore di forza elettromotrice f.e.m.

Generatore di forza elettromotrice f.e.m. Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

"Convertitore CC/CA per sistemi fotovoltaici connessi alla rete: progetto e realizzazione" Ing. Pierangelo Sandri settembre 2007 siepan@libero.

Convertitore CC/CA per sistemi fotovoltaici connessi alla rete: progetto e realizzazione Ing. Pierangelo Sandri settembre 2007 siepan@libero. Capitolo 6 Collaudo 6.1 Apparecchiature per il collaudo Per poter effettuare tutte le prove necessarie a verificare il corretto funzionamento dell inverter sperimentale si è utilizzata la strumentazione

Dettagli

Stadio di uscita o finale

Stadio di uscita o finale Stadio di uscita o finale È l'ultimo stadio di una cascata di stadi amplificatori e costituisce l'interfaccia con il carico quindi è generalmente un buffer con funzione di adattamento di impedenza. Considerato

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Convertitore DC DC Switching

Convertitore DC DC Switching Convertitore DC DC Switching A cosa può servire? Questo circuito è nato semplicemente per disporre di una tensione continua regolabile fra un minimo di 50V e un massimo di 500V, con correnti di uscita

Dettagli

SOMMARIO LUCI PSICHEDELICHE LX 749 5AI TIEE 1993-94. IPSIA Moretto Brescia

SOMMARIO LUCI PSICHEDELICHE LX 749 5AI TIEE 1993-94. IPSIA Moretto Brescia SOMMARIO Introduzione... 2 Schema a Blocchi... 2 Blocco Alimentazione.... 2 Blocco Preamplificatore... 2 Blocco Filtri... 2 Blocco di Potenza... 3 Curve di risposta dei tre filtri... 4 Schema Elettrico...

Dettagli

progettare & costruire di NICOLA DE CRESCENZO

progettare & costruire di NICOLA DE CRESCENZO progettare & costruire di NICOLA DE CRESCENZO GENERATORE di funzionilow-cost Vi proponiamo il progetto di un generatore di funzioni semplice ed economico, ideale per coloro che, essendo agli inizi, vogliono

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

Circuiti elettrici lineari

Circuiti elettrici lineari Circuiti elettrici lineari Misure con l oscilloscopio e con il multimetro Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 009 Elenco delle misurazioni. Circuito resistivo in corrente

Dettagli

Amplificatori Differenziali e specchi di corrente

Amplificatori Differenziali e specchi di corrente Amplificatori Differenziali e specchi di corrente Direttive di esecuzione dell esperienza: 1) Riportare sul quaderno tutto il presente contenuto; 2) Ricercare su datasheet il valore di h fe, Ic MAX,e la

Dettagli

INFORMATIVA AVVERTENZE

INFORMATIVA AVVERTENZE M.M.Electronics - http://www.mmetft.it M. M. Electronics Michele Marino - michele.marino@mmetft.it Sensore di prossimità a infrarossi V 0.1 Marzo 2008 INFORMATIVA Come prescritto dall art. 1, comma 1,

Dettagli

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito

Energia e potenza nei circuiti monofase in regime sinusoidale. 1. Analisi degli scambi di energia nel circuito Energia e potenza nei circuiti monofase in regime sinusoidale 1. Analisi degli scambi di energia nel circuito I fenomeni energetici connessi al passaggio della corrente in un circuito, possono essere distinti

Dettagli

Mariaconcetta Iasimone

Mariaconcetta Iasimone Istituto Tecnico Industriale Statale E. Majorana Cassino *** Corso Abilitante A034 Elettronica A.S.: 2000/2001 U.D. : Introduzione allo studio degli amplificatori operazionali. Proposta di un piano di

Dettagli

30 RISONANZE SULLE LINEE DI TRASMISSIONE

30 RISONANZE SULLE LINEE DI TRASMISSIONE 3 RISONANZE SULLE LINEE DI TRASMISSIONE Risuonatori, ovvero circuiti in grado di supportare soluzioni risonanti( soluzioni a regime sinusoidali in assenza di generatori) vengono largamente utilizzati nelle

Dettagli

Circuito di pilotaggio ON OFF con operazionale

Circuito di pilotaggio ON OFF con operazionale PREMESSA Circuito di pilotaggio ON OFF con operazionale A cura del Prof. Marco Chirizzi www.marcochirizzi.it Si supponga di dovere progettare un circuito di pilotaggio ON OFF in grado di mantenere un fluido

Dettagli

Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni 1. Seconda Prova

Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni 1. Seconda Prova Como 3 aprile 2004 Gara nazionale qualificati Operatore elettronico per le telecomunicazioni Si consiglia di leggere attentamente il testo proposto prima di segnare la risposta. Seconda Prova La prova

Dettagli

Raccolta di esercizi di elettronica

Raccolta di esercizi di elettronica Raccolta di esercizi di elettronica Esercitazione 1 1) Rappresentare analiticamente il segnale costituito da un impulso trapezoidale con fronte di salita di 1 s e fronte di discesa di 4 s, che mantiene

Dettagli

Test Pluridisciplinare di simulazione della Terza Prova. d Esame. 23 aprile 2003. Risposte esatte X 4. Risposte errate X 0. Risposte non date X 1

Test Pluridisciplinare di simulazione della Terza Prova. d Esame. 23 aprile 2003. Risposte esatte X 4. Risposte errate X 0. Risposte non date X 1 Test Pluridisciplinare di simulazione della Terza Prova d Esame aprile 00 1 4 5 6 7 8 9 10 11 1 1 14 15 16 17 18 19 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 40 Risposte esatte X 4 Risposte errate X 0 Risposte non

Dettagli

Lab 4 Filtri con amplificatori operazionali

Lab 4 Filtri con amplificatori operazionali Aggiungendo alcuni condensatori e resistenze ad un semplice circuito con amplificatore operazionale (Op Amp) si possono ottenere molti circuiti analogici interessanti come filtri attivi, integratori e

Dettagli

MISURATORE DI ELETTRICITA STATICA (Elettrometro)

MISURATORE DI ELETTRICITA STATICA (Elettrometro) Istituto Professionale di Stato per l Industria e l Artigianato MORETTO Via Apollonio n 21 BRESCIA MISURATORE DI ELETTRICITA STATICA (Elettrometro) Gruppo di lavoro : BERTAGNA FABIO PEZZOTTI DARIO Classe

Dettagli

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83 I convertitori c.c.-c.c. monodirezionali sono impiegati per produrre in uscita un livello di tensione diverso da quello previsto per la sorgente. Verranno presi in considerazione due tipi di convertitori

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

Descrizione del funzionamento di un Lock-in Amplifier

Descrizione del funzionamento di un Lock-in Amplifier Descrizione del funzionamento di un Lock-in Amplifier S.C. 0 luglio 004 1 Propositi di un amplificatore Lock-in Il Lock-in Amplifier é uno strumento che permette di misurare l ampiezza V 0 di una tensione

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di tensione Uscita

Dettagli

Amplificatori di potenza

Amplificatori di potenza Amplificatori di potenza Gli amplificatori di potenza sono quegli amplificatori che trasferiscono al carico una potenza rilevante; orientativamente da alcuni decimi di Watt in su. Di solito essi sono costituiti

Dettagli

Le applicazioni lineari dell amplificatore operazionale. Sommario

Le applicazioni lineari dell amplificatore operazionale. Sommario I.T.I.S. "Antonio Meucci" di Roma Le applicazioni lineari dell amplificatore operazionale a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. L'amplificatore operazionale (A.O.) ideale...3

Dettagli

Programmazione modulare

Programmazione modulare Programmazione modulare Indirizzo: ELETTROTECNICA ED ELETTRONICA Disciplina: ELETTROTECNICA ED ELETTRONICA Docenti: Erbaggio Maria Pia e Iannì Gaetano Classe: IV A e settimanali previste: 6 Prerequisiti

Dettagli

SECONDA ESERCITAZIONE

SECONDA ESERCITAZIONE POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo : Allievi: SECONDA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread-board

Dettagli

Tensioni variabili nel tempo e Oscilloscopio

Tensioni variabili nel tempo e Oscilloscopio ensioni variabili nel tempo e Oscilloscopio RIASSUNO: ensioni variabili e periodiche Ampiezza, valor medio, ed RMS Generatori di forme d onda ensioni sinusoidali Potenza : valore medio e valore efficace

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Esperienza n. 8 Uso dell oscilloscopio analogico

Esperienza n. 8 Uso dell oscilloscopio analogico 1 L oscilloscopio consente di visualizzare forme d onda e più in generale è un dispositivo che visualizza una qualunque funzione di 2 variabili. Per fare ciò esse devono essere o essere trasformate in

Dettagli

Radioastronomia. Come costruirsi un radiotelescopio

Radioastronomia. Come costruirsi un radiotelescopio Radioastronomia Come costruirsi un radiotelescopio Come posso costruire un radiotelescopio? Non esiste un unica risposta a tale domanda, molti sono i progetti che si possono fare in base al tipo di ricerca

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

FACSIMILE prova scritta intercorso 1 (per allenamento)

FACSIMILE prova scritta intercorso 1 (per allenamento) FACSIMILE prova scritta intercorso 1 (per allenamento) Laurea in Scienza e Ingegneria dei Materiali anno accademico -3 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione:

Dettagli

PROPRIETÀ DEI CIRCUITI DI RESISTORI

PROPRIETÀ DEI CIRCUITI DI RESISTORI CAPITOLO 5 PROPRIETÀ DEI CIRCUITI DI RESISTORI Nel presente Capitolo, verrà introdotto il concetto di equivalenza tra bipoli statici e verranno enunciati e dimostrati alcuni teoremi (proprietà) generali

Dettagli

CAPITOLO 10 ALIMENTATORI

CAPITOLO 10 ALIMENTATORI 194 CAPITOLO 10 ALIMENTATORI Per funzionare, la maggior parte dei dispositivi e dei circuiti elettronici richiede un alimentazione in tensione continua, singola o duale. Le tensioni richieste sono normalmente

Dettagli

Programma svolto nel laboratorio di elettronica

Programma svolto nel laboratorio di elettronica Classi 4ª B inf. e 4ª C inf. as 2008/09 Programma svolto nel laboratorio di elettronica Ripasso: circuiti in continua studiati con Thevenin Porte logiche OR e AND a diodi Circuiti RC e CR in regime sinusoidale

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana

( a ) ( ) ( Circuiti elettrici in corrente alternata. I numeri complessi. I numeri complessi in rappresentazione cartesiana I numeri complessi I numeri complessi in rappresentazione cartesiana Un numero complesso a è una coppia ordinata di numeri reali che possono essere pensati come coordinate di un punto nel piano P(a,a,

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei L OSCILLOSCOPIO L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei circuiti elettronici. Nel suo uso abituale esso ci consente di vedere le forme d onda

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Relazione di laboratorio Gruppo: A08 Antona Maria Gabriella Matricola: 482 Degno Angela Rita Matricola: 4855 Fiandrino Claudio Matricola: 38436

Dettagli

Elettronica I Circuiti nel dominio del tempo

Elettronica I Circuiti nel dominio del tempo Elettronica I Circuiti nel dominio del tempo Valentino Liberali Dipartimento di ecnologie dell Informazione Università di Milano, 2613 Crema e-mail: liberali@i.unimi.it http://www.i.unimi.it/ liberali

Dettagli

AMPLIFICATORI OPERAZIONALI: AO o OPAMP (in Inglese)

AMPLIFICATORI OPERAZIONALI: AO o OPAMP (in Inglese) AMPLIFICATORI OPERAZIONALI: AO o OPAMP (in Inglese) Gli AO sono degli amplificatori universali ideali utilizzati frequentemente nei circuiti elettronici perché, con l'aggiunta di pochi componenti esterni,

Dettagli

Fig. 3: Selezione dell analisi: Punto di polarizzazione. Fig. 4: Errori riscontrati nell analisi

Fig. 3: Selezione dell analisi: Punto di polarizzazione. Fig. 4: Errori riscontrati nell analisi Elettronica I - Sistemi Elettronici I/II Esercitazioni con PSPICE 1) Amplificatore di tensione con componente E (file: Amplificatore_Av_E.sch) Il circuito mostrato in Fig. 1 permette di simulare la classica

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Amplificazione DL 3155M14 DL 3155E14. Circuiti Amplificatori a Transistor AMPLIFICAZIONE. Blocchi funzionali. Argomenti teorici.

Amplificazione DL 3155M14 DL 3155E14. Circuiti Amplificatori a Transistor AMPLIFICAZIONE. Blocchi funzionali. Argomenti teorici. Amplificazione Amplificazione lineare di corrente, tensione e potenza Amplificatori BJT: configurazioni EC, CC e BC Stabilità termica di un amplificatore lineare Linea di carico statica e dinamica Pre-amplificatori

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Miller e l effetto Miller: dai triodi a vuoto agli operazionali. Giovanni Vittorio Pallottino

Miller e l effetto Miller: dai triodi a vuoto agli operazionali. Giovanni Vittorio Pallottino Miller e l effetto Miller: dai triodi a vuoto agli operazionali Giovanni Vittorio Pallottino Fra i pionieri della radio, John Milton Miller è uno dei meno noti, sebbene il suo nome ricorra abbastanza di

Dettagli

4. Amplificatori lineari a transistors

4. Amplificatori lineari a transistors orso: Autronica (LS Veicoli Terrestri) a.a. 2005/2006 4. Transistor JT 4. Amplificatori lineari a transistors Analizziamo ora uno stadio per amplificazione dei segnali basato su transistori bipolari JT

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli