Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati."

Transcript

1 Indice 1 Descriviamo i Dati L Informazione in Statistica Variabili Qualitative Distribuzioni di Frequenza Rappresentazioni Grafiche Sintesi dei Dati Variabili Quantitative Tabelle di Frequenza per Classi Frequenze cumulate e Funzione di Ripartizione Empirica Sintesi dei Dati Domande di Auto Verifica i

2 ii INDICE

3 Capitolo 1 Descriviamo i Dati Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati. 1.1 L Informazione in Statistica Dopo la rilevazione dei dati si ha la fase di codifica in variabili delle informazioni rilevate. Per variabile si intende una caratteristica di interesse che viene osservata sulle unità statistiche selezionate e che presenta una naturale attititudine a variare da unità ad unità. Quasi sempre infatti è proprio la variabilità delle osservazioni che ci interessa studiare. Una particolare unità presenterà una specifica modalitá della variabile. Pertanto si parla di carattere o variabile per riferirsi a un concetto rilevato, e a modalità per riferirsi ad un valore che la variabile può assumere. Così, se consideriamo la variabile sesso dell intervistato, questa può assumere modalità Maschio o Femmina, e su ciascuna specifica unità si sarà rilevata ovviamente una sola di queste due modalità. Le informazioni rilevate vengono quindi opportunamente organizzate secondo una tipica struttura unità per variabili, o matrice di dati. Su ciascuna riga si pongono le informazioni riguardanti ciascuna unità, sempre nello stesso ordine, in modo da ottenere che ciascuna colonna rappresenti tutti i valori osservati per una variabile. Ad esempio, la Tabella 1.1 è la matrice di dati che utilizzeremo come esempio in questo capitolo. I dati riguardano un gruppo di utenti dei SerT del Friuli. Ciascuna colonna rappresenta una variabile, che risponde ad un nome sintetico spiegato in Tabella 1.2. Ciascuna riga corrisponde ad un 1

4 2 CAPITOLO 1. DESCRIVIAMO I DATI soggetto (si tratta nel caso specifico di tossicodipendeti che sono registrati presso il SerT), su cui sono state rilevate (in ordine) le modalità di ciascuna variabile. Così il soggetto numero 3 ha iniziato a drogarsi a 19 anni e possiede un titolo di studio equivalente alla Media Inferiore. La riga 3 contiene tutte le informazioni rilevate sul soggetto numero 3; e la colonna 3 contiene le età in cui tutti i soggetti rilevati hanno cominciato a fare uso di droga, cioè i valori della variabile eta1uso. Si notino le celle vuote, ad indicare un dato mancante o non applicabile. Ad esempio, si ha una cella vuota nella colonna relativa alla variabile etaover quando l intervistato ha avuto episodi di overdose ma non ricorda la sua età in corrispondenza del primo episodio (dato mancante) oppure non ha mai avuto episodi di overdose e pertanto l informazione non è pertinente (dato non applicabile). In verità l informazione contenuta in questo tipo di dati è semplicemente incompleta; sappiamo che l individuo fino al momento dell intervista (e quindi alla sua età al momento dell intervista) non ha avuto nessun episodio di overdose, ma non sappiamo se e quando ne avrà nel futuro. Le variabili vengono classificate in tipologie: Qualitative su scala nominale Qualitative su scala ordinale Quantitative su scala ad intervallo Quantitative su scala di rapporto. Questa classificazione corrisponde, come vedremo tra breve, a diversi livelli di ` misurabilità delle variabili. In altre parole è la natura stessa delle variabili a determinare quale delle operazioni elementari (uguale/diverso, inferiore/superiore, differenza, rapporto) saremo in grado di fare e quindi condizionerà direttamente le metodologie statistiche applicabili La prima grande distinzione è tra variabili qualitative e quantitative. Le variabili qualitative assumono modalità non numeriche, mentre le quantitative assumono modalità numeriche (nel continuo, cioè valori in un intervallo o nel discreto, ovvero solo numeri naturali). Si parla di variabile qualitativa nominale quando le modalità della variabile non solo non sono numeriche, ma neanche ordinabili (per esempio, la variabile colore dei capelli assume modalità castani, rossi, ecc. e non esiste un ordinamento naturale). Si parla di variabile qualitativa ordinale quando le modalità della variabile

5 1.1. L INFORMAZIONE IN STATISTICA 3 eta eta1uso etaover etatrt sesso statciv titstud Femmina Vedovo Media Superiore Maschio Celibe/Nubile Media Inferiore Maschio Celibe/Nubile Media Inferiore Maschio Celibe/Nubile Media Inferiore Maschio Convivente Media Inferiore Femmina Celibe/Nubile Media Inferiore Maschio Coniugato Corsi Professionali Maschio Coniugato Media Inferiore Femmina Separato Media Inferiore Maschio Celibe/Nubile Media Inferiore Maschio Coniugato Media Inferiore Maschio Celibe/Nubile Media Inferiore Maschio Separato Media Inferiore Maschio Separato Corsi Professionali Maschio Celibe/Nubile Corsi Professionali Maschio Celibe/Nubile Media Inferiore Femmina Separato Media Inferiore Femmina Convivente Licenza Elementare Maschio Celibe/Nubile Laurea Maschio Celibe/Nubile Licenza Elementare Femmina Separato Media Inferiore Maschio Separato Media Superiore Maschio Celibe/Nubile Media Superiore Maschio Celibe/Nubile Media Inferiore Maschio Separato Media Inferiore Femmina Convivente Media Superiore Femmina Celibe/Nubile Media Inferiore Femmina Separato Corsi Professionali Maschio Celibe/Nubile Media Inferiore Femmina Separato Media Inferiore Tabella 1.1: Dati relativi a tossicodipendenti del Friuli qualitativa, pur non essendo numeriche, presentano un ordinamento (ad esempio, la variabile grado nell esercito ha un ordinamento dato dagli stati di avanzamento della carriera).

6 4 CAPITOLO 1. DESCRIVIAMO I DATI eta = età dell intervistato eta1uso = età al primo uso di eroina etaover = età al primo episodio di overdose non fatale etatrt = età al primo trattamento sesso = sesso dell intervistato statciv = stato civile titstud = titolo di studio Tabella 1.2: Descrizione Variabili Nel nostro esempio, la variabile statciv, lo stato civile, è una variabile qualitativa nominale in quanto non è possibile determinare un ordinamento tra le sue modalità non numeriche. La variabile titstud, il titolo di studio, è invece una variabile qualitativa su scala ordinale in quanto è possibile affermare che il diploma di scuola media superiore è inferiore al diploma di laurea. Per le variabili qualitative nominali, dati due individui, siamo in grado di stabilire soltanto se, rispetto a quella variabile, sono uguali o diversi. In base a questa semplice operazione possiamo classificare le nostre osservazioni in gruppi omogenei.nel caso della variabile sesso, possiamo creare due sottogruppi omogenei, i soggetti di sesso maschile e quelli di sesso femminile. Se la variabile è ordinabile, diventa possibile, oltre che stabilire uguaglianza o diversità, anche ordinare gli individui per esempio in base al loro titolo di studio. Un posto particolare è occupato dalle variabili qualitative dicotomiche, quelle cioè che possono assumere solo due modalità. Queste variabili (come nel nostro esempio il sesso ) sono per definizione nominali, anche se può essere talvolta comodo codificare le due modalità con i numeri 0 ed 1 ad indicare presenza/assenza di una caratteristica. In questo caso è divertente osservare come la media dei livelli osservati coincide con la proporzione di osservazioni corrispondenti al livello 1. Le variabili quantitative sono variabili che assumono valori (modalità) numerici, come le età in Tabella 1.1. Per le variabili quantitative si parla di scala ad intervallo quando è possibile effettuare confronti tra le modalità (numeriche) tramite differenze ma non tramite rapporto. Ha senso, ad esempio, affermare che l individuo numero 3 in Tabella 1.1 ha avuto la prima overdose non fatale (26 16) = 10 anni dopo il primo uso di droga, ma non ha senso

7 1.2. VARIABILI QUALITATIVE 5 fare il rapporto tra questi valori e ottenere il numero 26/16 = Pertanto le variabili eta1uso, etaover ed etatrt sono variabili quantitative su scala ad intervallo. Si parla di variabili quantitative su scala di rapporto quando sia possibile effettuare sia confronti tramite differenza, sia tramite rapporto. Un esempio tipico riguarda le quantità monetarie: è possibile fare il rapporto tra il Prodotto Interno Lordo (PIL) di un paese e quello di un altro, ed affermare ad esempio che il rapporto tra il PIL di tutti i paesi del terzo mondo e quello dei 15 paesi originali dell unione europea è di 1,06; cioè i paesi del terzo mondo tutti insieme hanno un PIL circa uguale a quello dei soli quindici paesi dell unione europea. Le informazioni contenute nella matrice di dati, al fine di essere interpretate e/o comunicate in maniera efficace, vengono in seguito sintetizzate. Ogni manipolazione, anche semplice, della matrice di dati, corrisponde a una perdita di parte dell informazione in essa contenuta. Si accetta di perdere informazioni al fine di poter interpretare quelle che ci interessano. Scglieremo il modo di sintettizzare i dati (o parte di essi) di volta in volta, secondo gli aspetti che ci interessa indagare e secondo il punto di vista che sceglieremo. Le prime informazioni che si perdono sono in generale quelle che riguardano ciascuna specifica individualità: la sintesi, a meno di casi particolari, porta solamente informazioni generali sulla globalità degli individui considerati. Presentiamo ora le principali tecniche descrittive su singole variabili della matrice di dati. La scelta degli strumenti descrittivi da utilizzare dipende dal tipo di variabile che si sta analizzando. 1.2 Variabili Qualitative Presentiamo in questa sezione le principali tecniche descrittive da utilizzare su variabili qualitative singolarmente considerate Distribuzioni di Frequenza La prima sintesi che possiamo fare, sulle variabili qualitative, è la distribuzione di frequenza. Diciamo fin da ora che non è utile in generale fare distribuzioni di frequenza su variabili quantitative, a meno di una piccola modifica che presenteremo nella prossima sezione.

8 6 CAPITOLO 1. DESCRIVIAMO I DATI La costruzione di una distribuzione di frequenza implica l operazione più elementare che si compie in statistica, ovvero il conteggio. Costruiamo una semplice tabella che riporta il numero delle unità rilevate che presentano ciascuna delle possibili modalità della variabile in esame. Ad esempio, la variabile sesso in Tabella 1.1 ha la seguente distribuzione di frequenza: Modalità Frequenza Maschio 20 Femmina 10 Totale 30 Abbiamo complessivamente 20 individui di sesso maschile e 10 di sesso femminile (per un totale di 30 osservazioni). I valori 20 e 10 prendono il nome di frequenze assolute e sono generalmente indicate con il simbolo n i. La perdita di informazione è evidente: dalla tabella di frequenza non è possibile risalire a quali individui siano di sesso maschile e quali di sesso femminile. È anche evidente il vantaggio di una tale sintesi: è stata scoperta un informazione non palese dalla Tabella 1.1, ovvero che nel nostro campione si hanno molti più maschi tossicodipendenti che femmine tossicodipendenti. Per poter confrontare insiemi di dati con numerosità totale differente, si ha l abitudine di riportare, oltre alle frequenze assolute, anche le così dette Frequenze relative ottenute dividendo le frequenze assolute il numero totale di osservazioni Modalità Frequenza assoluta Frequenza Relativa Maschio Femmina Totale 30 1 Il valore 0.66 si ottiene dal rapporto 20/30 = L idea alla base di questo semplice calcolo è quella di ottenere la frazione, su un totale unitario, che corrisponde alla quota di 20 su un totale di 30 osservazioni. Possiamo infatti impostare una semplice proporzione 20 : 30 = x : 1 per ottenere esattamente lo stesso risultato. Per migliorare ulteriormente la interpretabilià dei valori, spesso le frequenze assolute vengono moltiplicate per 100 (frequenze percentuali): il 66% dei soggetti rilevati è di sesso maschile. Due sono i vantaggi offerti dalla frequenze relative rispetto a quelle assolute: trasmettono un messaggio più semplice e diretto e permettono di confrontare la distribuzione della stessa variabile tra insiemi di dati differenti. Supponiamo ad esempio di ottenere, da un altro ipotetico collettivo, la

9 1.2. VARIABILI QUALITATIVE 7 seguente distribuzione per sesso: Modalità Frequenza Frequenza Relativa Maschio Femmina Totale Potremmo cchiederci: in quale dei due collettivi è più elevata la presenza di tossicodipendenti di sesso maschile? Una lettura affrettata delle sole frequnze assolute potrebbe portare a concludere erroneamente che la presenza maschile è maggiore nel secondo gruppo (55 soggetti rispetto a 20). Osserviamo tuttavia che anche la numerosità assoluta del secondo gruppo è maggiore (100 rispetto a 30) e i 55 individui maschi costituiscono solo il 55% del totale a fronte del 66% di maschi presenti nel primo collettivo esaminato. Anche nel passaggio dalle frequenze assolute a quelle relative abbiamo perso una parte dell informazione; dalle sole frequenze relative, ricondotte ad un totale unitario, non siamo in grado di ricavare la dimensione originaria del campione. L informazione persa non è in questo caso trascurabile. Pur non entrando nel merito della questione, è evidente che i risultati di uno studio condotto su 30 individui non sono paragonabili a quelli di una indagine che coinvolga 3000 soggetti (a parità delle altre condizioni. È allora auspicabile che, qualora si riporti soltanto la distribuzione delle frequenze relative o percentuali (come spesso accade di leggere!), si aggiunga, in qualche angolino, anche il dato relativo alla numrosità dell insieme osservato (cosa che capita di leggere meno spesso) Rappresentazioni Grafiche Uno strumento descrittivo molto utilizzato, per la sua immediatezza e chiarezza, sono le rappresentazioni grafiche. I grafici più utilizzati per le variabili qualitative sono le torte e i grafici a barre. Una torta che rappresenti la variabile statciv, lo stato civile delle unità in Tabella 1.1 è mostrata in Figura 1.1. L area di ciascuna fettina della torta è proporzionale alla frequenza relativa della rispettiva modalità. È evidente al primo sguardo che la maggioranza delle unità sono celibi o nubili. Una rappresentazione grafica spesso più utile è data dal grafico a barre, in cui viene rappresentata una barra per ciascuna modalità della variabile, e la barra è tanto alta quanto è la frequenza assoluta della modalità. Questo permette di risalire immediatamente ai valori numerici, e inoltre è molto più

10 8 CAPITOLO 1. DESCRIVIAMO I DATI Celibe/Nubile Coniugato Vedovo Convivente Separato Figura 1.1: Diagramma a torta difficilmente ingannevole per l occhio di un grafico a torta. Un esempio, sulla stessa variabile statciv, è in Figura Sintesi dei Dati La sintesi numerica dei dati si divide in tre aree: indicatori di posizione, indicatori di variabilità, indicatori di forma (o distribuzione). Noi ci concentreremo sui primi due casi.

11 1.2. VARIABILI QUALITATIVE Celibe/Nubile Coniugato Convivente Separato Vedovo Figura 1.2: Grafico a barre In generale, si vuole sintetizzare in un unico numero (o, talvolta, coppia di numeri) delle specifiche caratteristiche dell intero collettivo. Gli indici di posizione sintetizzano, appunto, la posizione del collettivo statistico, il suo ordine di grandezza, e possono essere considerati come un valore rappresentativo del collettivo. Gli indici di variabilità sintetizzano l attitudine a variare, la mutevolezza (o la concentrazione) di un collettivo. Indici di Posizione L indice di posizione più utilizzato per una variabile qualitativa nominale è la moda. La moda di una variabile è la modalità che ha maggiore frequenza. Nel caso vi siano due o più modalità con stessa frequenza, vengono in generale

12 10 CAPITOLO 1. DESCRIVIAMO I DATI indicate tutte come moda. È possibile quindi che una variabile abbia più di una moda. Nel nostro esempio, dalla tabella di frequenza per il sesso si vede che la classe modale della variabile è maschio. Per quel che riguarda il titolo di studio, la classe modale è Media Inferiore, avendo frequenza assoluta superiore alle frequenze assolute di tutte le altre modalità della variabile titstud. Se la variabile qualitativa è ordinata, allora oltre alla moda è possibile utilizzare la mediana. La mediana di una variabile qualitativa ordinata è la modalità che occupa il posto centrale nell elenco ordinato delle osservazioni. Accade quindi che la metà dei casi ha valore pari od inferiore alla mediana, che quindi bipartisce la distribuzione delle unità. Per il calcolo si procede in questo modo: 1. Si ordinano le unità in base alle modalità. 2. Se si ha un numero dispari di unità, il posto centrale è quello che lascia a destra (valori inferiori) e a sinistra (valori superiori) lo stesso numero di casi (es. il quinto su undici). La modalità che occupa il posto centrale è la mediana. 3. Nel caso si abbiano un numero pari di unità, il posto centrale è occupato da due unità; quella che occupa il posto dato dal numero di unità diviso per due, e la successiva. Ad esempio, su dieci unità, il posto centrale è dato dal quinto e del sesto caso, perchè lasciano a destra e a sinistra quattro unità. Se i due posti sono occupati dalla stessa modalità, quella è la (singola) mediana. Se i due posti sono occupati da due modalità differenti, si hanno due mediane. Ovviamente, non si potranno mai avere tre mediane. Nel nostro esempio, si ha che le unità sono ordinate per titolo di studio in questo modo: Licenza Elementare, Licenza Elementare, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Media Inferiore, Corsi Professionali, Corsi Professionali, Corsi Professionali, Corsi Professionali, Media Superiore, Media Superiore, Media Superiore, Media Superiore, Laurea.

13 1.2. VARIABILI QUALITATIVE 11 Le unità sono trenta. La quindicesima e la sedicesima unità hanno come modalità Media Inferiore. Pertanto la mediana per il titolo di studio è Media Inferiore. Naturalmente il fatto che moda e mediana siano uguali per la variabile titolo di studio è un puro caso. Inoltre, la moda di una variabile non rappresenta necessariamente il 50% o oltre delle modalità di una variabile. Si pensi al caso delle elezioni politiche: il partito che prende il numero maggiore di voti (in questo caso, Media Inferiore ) è la moda, ma raramente (al contrario che in questo caso) rappresenta da solo la maggioranza e per poter avere una coalizione di maggioranza è necessario appunto che si aggreghi con altri partiti. Torneremo in seguito sul significato e l interpretazione della mediana. Misure di Variabilità Esistono naturalmente molte misure di variabilità per variabili qualitative, sia nominali (ad esempio, misure di entropia) che ordinate. Tuttavia si tende ad utilizzare misure di variabilità quasi esclusivamente per variabili quantitative (almeno ad un livello semplice); per cui si rimanda la trattazione delle misure di variabilità alla prossima sezione.

14 12 CAPITOLO 1. DESCRIVIAMO I DATI 1.3 Variabili Quantitative Sulle variabili quantitative è possibile effettuare operazioni aritmetiche, e questo permette di utilizzare strumenti più raffinati nella descrizione delle informazioni Tabelle di Frequenza per Classi In generale una tabella di frequenza per variabili quantitative non ha molta utilità, in quanto molto spesso le unità presentano modalità differenti una dall altra. La tabella di frequenza si ridurrebbe quindi a un elenco dei valori assunti dalle unità per la variabile in esame, con conteggi quasi sempre pari ad 1. Ad esempio, la variabile etatrt ha la seguente distribuzione di frequenza: Modalità Frequenza Totale 30 La tabella sopra non ha molta utilità in quanto le modalità (le righe della tabella) sono troppe, e hanno tutte più o meno lo stesso conteggio. Questo non permette di cogliere informazioni utili. Vogliamo pertanto ottenere conteggi piú differenziati tra loro, e un minor numero di righe della tabella. Per fare ciò ed ottenere una tabella di frequenza più sensata, che tenga inoltre

15 1.3. VARIABILI QUANTITATIVE 13 conto della natura numerica della variabile, si dividono i valori possibili in opportune classi. Può essere infatti considerata l informazione contenuta nella distanza, o vicinanza tra le modalità. La costruzione di classi di modalità consiste nella aggregazione dei possibili valori numerici in un numero limitato di classi. Dividiamo ad esempio l età in classi di ampiezza di dieci anni, a partire dal valore 10. Tutte le unità con modalità compresa tra 10 e 20 contribuiranno al conteggio della prima classe, quelle tra 21 e 30 alla seconda, e così via. La tabella di frequenza per la variabile etatrt diventa così: Modalità Frequenza Totale 30 La tabella di frequenza così ottenuta permette di cogliere più informazioni. Naturalmente, l operazione di divisione in classi è arbitraria e se avessimo un criterio diverso (ad esempio, di diversa ampiezza) avremmo ottenuto una diversa tabella di frequenza. Si noti che non è necessario che le classi siano di ampiezza uniforme. In alternativa, è possibile definire classi di ampiezza eterogenea, ma che portino a conteggi uguali (o comunque molto prossimi): Modalità Frequenza Totale 30 Chiaramente le frequenze di classi diverse non sono confrontabili. In generale è opportuno scegliere una divisione che porti ad un numero nè troppo grande nè troppo piccolo di classi. Si tende inoltre ad accorpare le classi con conteggi troppo piccoli (ad esempio, le classi estreme) ad una delle classi più prossime. Rappresentazioni grafiche: L Istogramma Dalla tabella di frequenza è possibile costruire una rappresentazione grafica chiamata istogramma. Un istogramma è un grafico in cui si hanno dei rettangoli (o barre) affi-

16 14 CAPITOLO 1. DESCRIVIAMO I DATI ancate, con base sull asse delle ascisse in corrispondenza di ciascuna classe della variabile quantitativa, e con altezza calcolata in modo che l area sia proporzionale alla frequenza delle unità che appartengono alla classe stessa. Un istogramma per la variabile etatrt, con divisione in classi ( 10-20, e ) è rappresentato in Figura 1.3. Facciamo un esempio di determinazione dell altezza dell istogramma relativo ad una delle classi. L area di un istogramma è pari al prodotto della lunghezza della base per l altezza. Noi sappiamo che l area del rettangolo con base sull intervallo è pari ad 8. L ampiezza della base è = 10. L altezza del rettangolo è pertanto proporzionale al rapporto tra l area e l ampiezza della base: 8/10 = 0.8. Allo stesso modo sono calcolate le altezze degli altri due rettangoli. Nell istogramma in Figura 1.3, dato che era possibile, le altezze sono state riscalate in modo da essere numeri interi. In generale, nella costruzione di un istogramma viene utilizzato un numero maggiore di classi, per avere una idea più chiara della forma della distribuzione delle modalità. Un istogramma tipico per la variabile etatrt è quello in Figura 1.4, dove sono state utilizzate classi di ampiezza 5 anni. Si noti che c è una fondamentale differenza tra l istogramma e il grafico a barre descritto nella Sezione 1.2.2: pur essendo vero che in entrambe i casi si utilizzano dei rettangoli di area pari ad una funzione delle frequenze delle unità, nel caso del grafico a barre la distanza tra questi rettangoli, che sono in generale staccati tra loro, non ha alcun significato, dal momento che sull asse delle ascisse sono rappresentate modalità non numeriche Frequenze cumulate e Funzione di Ripartizione Empirica Alle frequenze è ora possibile affiancare le frequenze cumulate. Si definisce frequenza cumulata di una classe il numero di unità con modalità inferiore o uguale al limite superiore della classe, ovvero il numero di unità che appartengono alla classe o a una classe con valori più piccoli. Per calcolare le frequenze cumulate a partire da una tabella di frequenza è sufficiente sommare le frequenze delle righe superiori (corrispondenti a modalità inferiori) a ciascuna riga nella tabella di frequenza. Sommando le frequenze assolute si ottengono le frequenze cumulate assolute, mentre sommando le frequenze relative si ottengono le frequenze cumulate relative. Nel nostro esempio:

17 1.3. VARIABILI QUANTITATIVE 15 Histogram of etatrt Frequency etatrt Figura 1.3: Istogramma di etatrt su tre classi Modalità Frequenza Freq. Relativa Freq. Cumulata Freq. Cum. Rel Totale 30 E appunto la frequenza cumulata per la classe è stata ottenuta sommando 8 e 17. Le frequenze cumulate sono calcolabili anche per variabili qualitative ordinate.

18 16 CAPITOLO 1. DESCRIVIAMO I DATI Histogram of etatrt Frequency etatrt Figura 1.4: Istogramma di etatrt su sei classi La Funzione di Ripartizione Empirica Il concetto di funzione di ripartizione empirica è fortemente legato al concetto di frequenza cumulata. La funzione di ripartizione empirica F (x) associa ad ogni numero reale x la frequenza cumulata relativa alla modalità x della variabile, cioè la proporzione di unità con modalità inferiore o uguale ad x. Ad esempio, per la variabile etatrt si ha che F (12) = 0, F (20) = 2/30 e F (100) = 1. Ovviamente si ha che F (x) = 0 per tutti gli x minori della più piccola modalità osservata, e F (x) = 1 per tutti gli x maggiori della più grande modalità osservata. La funzione di ripartizione empirica ha anche altre proprietà: È sempre compresa tra zero e uno

19 1.3. VARIABILI QUANTITATIVE 17 È una funzione costante a tratti, cioè fatta a scalini La funzione di ripartizione empirica per la variabile etatrt è rappresentata in Figura 1.5. Si noti che qui non interviene il concetto di divisione in classi, ma che la funzione è definita per ogni numero reale. F(x) di etatrt F(x) x Figura 1.5: Funzione di ripartizione empirica di etatrt In pratica il calcolo avviene a partire dalla tabella di frequenza per la variabile non divisa in classi, come quella riportata alla pagina Si ha un salto di ampiezza pari alla frequenza relativa di ciascuna modalità in corrispondenza delle modalità osservate, e una linea costante tra modalità osservate.

20 18 CAPITOLO 1. DESCRIVIAMO I DATI La Funzione di Sopravvivenza La funzione di sopravvivenza viene utilizzata quando si hanno variabili che descrivono durate di vita. Questa funzione associa ad ogni numero reale (tempo) x la proporzione di unità la cui modalità è superiore ad x. Se non ci fossero osservazioni censurate, la funzione di sopravvivenza S(x) sarebbe semplicemente calcolabile come S(x) = 1 F (x), cioè come complemento ad 1 della funzione di ripartizione empirica. In realtà è necessario tenere conto del fatto che il collettivo si riduce nel tempo. In questo ambito, appunto, la variabile in esame indica un tempo di fallimento (ad esempio, tempo in settimane dopo il quale un paziente è deceduto). Le modalità registrate sono i tempi a cui si ha un fallimento, pertanto a ciascuna modalità corrisponde anche una diminuzione di (almeno) un individuo rispetto al totale iniziale. Supponiamo ad esempio di avere un totale di 18 pazienti, e di osservare i seguenti 4 tempi di fallimento, in giorni, dopo un mese: 13, 20, 22, 28. Dopo 30 giorni, quindi, rimangono un totale di 14 pazienti. Questi quattordici pazienti rappresentano un dato censurato, ovvero, per il quale non è noto il tempo di fallimento (che è necessariamente successivo al trentesimo giorno). Per calcolare la funzione di sopravvivenza al tempo x è necessario contare tutti gli eventi precedenti il tempo x. Per ciascuno di questi eventi si calcola il valore (1 1 ), dove np è il numero di pazienti rimasti prima dell ultimo np evento. S(x) sarà pari al prodotto di tutti i valori calcolati. Se si ha più di un evento in contemporanea, ad esempio d eventi, il valore da calcolare è (1 d. Nel nostro esempio il calcolo di S(x) passa attraverso il calcolo della np seguente tabella: Tempi np (1 1/np) S(x) Il valore per S(22) è appunto calcolato come S(22) = Come la funzione di ripartizione empirica, la funzione di sopravvivenza è costante negli intervalli in cui non si hanno eventi osservati. La funzione di sopravvivenza relativa al nostro esempio è rappresentata in Figura 1.6.

21 1.3. VARIABILI QUANTITATIVE 19 S(x) tempo in giorni Figura 1.6: Funzione di sopravvivenza Sintesi dei Dati Indici di Posizione Tra gli indici di posizione più utilizzati per le variabili quantitative figurano la media e la mediana. La moda, introdotta per variabili qualitative, non è molto informativa in questo caso per lo stesso motivo per cui non è molto informativa la tabella di frequenza. Ovviamente, si può utilizzare la moda su variabili quantitative divise in classi. La media (o media aritmetica ) è la somma delle modalità osservate

22 20 CAPITOLO 1. DESCRIVIAMO I DATI divisa per il totale. La media della variabile etatrt è 24.93, ottenuta come somma dei valori osservati divisa per 30: ( )/30 = 748/30 = La media aritmetica possiede molte proprietà: È sempre compresa tra il minimo e massimo valore osservato Se si aggiunge una costante a tutte le osservazioni, la media risulta modificata della stessa costante. Ad esempio, se aggiungiamo 5 anni a ciascun valore di etatrt, la media diventa Se si moltiplica ciascuna osservazione per una costante, la media risulta moltiplicata per la stessa costante. Ad esempio, se moltiplichiamo ciascun valore di etatrt per 5, la media diventa La somma degli scarti dalla media è sempre nulla. Ovvero, se si calcolano le differenza tra ciascuna modalità osservata e la media, la loro somma è sempre pari a zero. È associativa: la media di una variabile su più collettivi è la media delle medie in ciascun collettivo, tenendo conto eventualmente della diversa numerosità. Equidistribuisce il totale: il totale di un collettivo di unità con modalità pari alla media è lo stesso del collettivo originale. Se avessimo osservato un valore pari a per ciascuna delle 30 unità, il totale sarebbe ancora 748. L ultima proprietà della media è anche una limitazione comune a tutti gli indici di posizione: non riassumono in nessun modo la variabilità insita al collettivo. Per questo è importante affiancare sempre indici di variabilità agli indici di posizione. Su questo torneremo nella prossima sezione. Una limitazione invece specifica della media artimetica è la sua sensibilità ai valori estremi, o mancanza di robustezza. Se nel collettivo si hanno pochi valori molto differenti dalla maggioranza delle modalità, questi risultano molto influenti sul valore della media. Se ad esempio moltiplichiamo per 10 l unità con valore più elevato, la media risulta molto differente, e in sintesi meno rappresentativa della posizione del collettivo. Nel nostro caso, la media diventa La mediana è un indice più robusto: nell esempio portato, risulta invariata e rimane pari a 24.

23 1.3. VARIABILI QUANTITATIVE 21 Si noti che per definizione la mediana è la modalità al di sotto della quale cade il 50% delle unità. In termini di funzione di ripartizione empirica, quindi, si ha che F (Mediana) = 0.5, ovvero: Mediana = F 1 (0.5). Da un punto di vista pratico, dal momento che le variabili quantitative (continue) possono assumere qualunque valore reale, si ha sempre una sola mediana (contrariamente al caso di variabili qualitative o quantitative con modalità discrete). Se il numero di unità è dispari, la mediana è il valore centrale tra i valori ordinati. Se il numero di unità è pari, la mediana è la media aritmetica del valore alla posizione totale diviso 2 e totale diviso 2 più uno. Nel nostro caso si ha un collettivo di 30 unità. La mediana è pertanto la somma delle modalità alla posizione 15 e 16, divisa per due. La variabile etatrt, se ordinata, ha valori: e pertanto le posizioni 15 e 16 sono occupate dai valori 24 e 24. La mediana è pertanto 24+24/2 = 48/2 = 24, come già detto. La mediana viene utilizzata spesso in sostituzione della media quando si ha un collettivo con unità valori anomali, e pertanto si ritiene necessario l utilizzo di un indice robusto. Misure di Variabilità Gli indici di posizione non sintetizzano informazioni legate alla variabilità delle modalità osservate. Si considerino ad esempio i seguenti gruppi di individui A, B e C, su cui sono rilevate le età: A: (22, 22, 23, 23, 24, 25, 26, 27, 27, 28, 28) B: (22, 22, 22, 22, 22, 25, 28, 28, 28, 28, 28) C: (25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25) Si ha che la media e la mediana di tutti e tre i gruppi è pari a 25, ma i gruppi sono molto diversi tra loro, dal momento che le età in C sono costanti (variabilità nulla) e gli altri due gruppi sono differenti tra loro. Infatti le unità in B sono quasi tutte lontane dall indice di posizione 25, rispetto ad A, dove alcune unità sono vicine al valore 25. Per questo ci si aspetta che un buon indice di posizione dia un valore più grande in B che in A, o almeno pari. Introduciamo due indici di variabilità: l intervallo di variazione, o range, e la varianza. La varianza è la media aritmetica degli scarti al quadrato dalla

24 22 CAPITOLO 1. DESCRIVIAMO I DATI media. Per il calcolo della varianza si calcola la media della variabile, poi le differenze (o scarti) dalla media per ciascuna osservazione. Gli scarti vengono poi elevati al quadrato, sommati e divisi per il totale, secondo l esempio per il collettivo A nella seguente tabella: Valore x x media (x media) Totale La prima colonna rappresenta i valori osservati. Nella seconda sono stati calcolati gli scarti dalla media. Ad esempio, alla terza riga, il valore 2 è ottenuto come = 2. Nella terza colonna sono stati calcolati i quadrati degli scarti. Ad esempio, alla terza riga, il valore 4 è ottenuto come 2 2 = 4. Si noti che la somma degli scarti (il loro totale) è pari a zero, come noto dalle proprietà della media. La varianza per il collettivo A è pari al totale degli scarti al quadrato, 54, diviso per il numero delle unità 11, ovvero 54/11 = La varianza viene spesso indicata con il simbolo σ 2, che si legge sigma quadro. Si noti che la varianza del collettivo B è pari a 8.18 e quella del collettivo C è pari a 0; e questo rispetta le nostre aspettative. Naturalmente, maggiore è la varianza maggiore è la variabilità del collettivo. L unità di misura della varianza è pari alla stessa unità di misura della variabile elevata al quadrato. Ad esempio, la varianza di etatrt è pari a anni al quadrato. Per facilitare l interpretazione dell indice, e per esprimerlo in una unità di misura più sensata, si ricorre spesso alla radice quadrata della varianza, indicata con il simbolo σ e chiamata deviazione standard. La deviazione standard per la variabili etatrt è pari a La varianza possiede le seguenti proprietà:

25 1.3. VARIABILI QUANTITATIVE 23 È sempre positiva o nulla. Mai negativa. Può essere interpretata come misura della accuratezza della media aritmetica. Maggiore la varianza, meno rappresentativa la media. Il range è invece calcolato come la differenza tra il minimo e il massimo valore osservato, e rappresenta l ampiezza dell intervallo di valori osservati. Ad esempio, il range del gruppo A è 6, il range del gruppo B è ancora pari a 6 e il range del gruppo C è pari a 0. Il range è molto meno robusto della varianza, essendo molto sensibile ai dati estremi. La Tabella 1.3 riassume gli strumenti che è abbiamo introdotto, in funzione del tipo di variabile. Tipo di variabile Qualitativa Nominale Qualitativa Ordinale Quantitativa Indici di posizione Moda Moda Mediana Media Mediana Indici di variabilità Varianza Range Grafici Torta Grafico a barre Torta Grafico a barre Istogramma Funzione di ripartizione Funzione di sopravvivenza Altri sommari Frequenze assolute Frequenze relative Frequenze assolute Frequenze relative Frequenze assolute cumulate Frequenze relative cumulate Per classi: Frequenze assolute Frequenze relative Frequenze assolute cumulate Frequenze relative cumulate Tabella 1.3: Scelta degli strumenti descrittivi

26 24 CAPITOLO 1. DESCRIVIAMO I DATI Domande di Auto Verifica 1. Vero o falso: Una modalità di una variabile è il suo valore per un particolare individuo Se le unità sono in numero pari si hanno sempre due mediane. Se le unità sono in numero dispari si ha sempre una sola mediana. Si possono avere tre mediane La mediana è sempre una delle modalità Non si può calcolare la mediana di una variabile qualitativa nominale Non si può calcolare la mediana di una variabile qualitativa ordinale Non si può calcolare la moda di una variabile quantitativa Non si può calcolare la media di una variabile qualitativa Il totale delle frequenze è sempre 1. Il totale delle frequenze relative è sempre Costruire una tabella di frequenza, con frequenze relative, per la seguente variabile Regione di appartenenza rilevata su dieci individui: (Lazio, Lazio, Calabria, U mbria, Lazio, M arche, Lazio, P uglia, Lazio, U mbria). Qual è la moda? 3. Quale è un grafico appropriato per descrivere la variabile alla precedente domanda? 4. Costruire una opportuna tabella di frequenza, con frequenze relative, per la seguente variabile Peso in Kg rilevata su dieci individui: (80, 58, 62, 49, 76, 72, 70, 82, 67, 72). Fornire un indice di posizione. 5. Quale è un grafico appropriato per descrivere la variabile alla precedente domanda? 6. Calcolare la varianza e il campo di variazione per la seguente variabile Reddito Mensile in Euro, rilevata su dieci individui: (800, 2300, 1950, 930, 880, 950, 2400, 2000, 810). Che conclusioni si traggono dagli indici di variabilità calcolati su questi dati?

27 1.3. VARIABILI QUANTITATIVE Quando è preferibile utilizzare la mediana rispetto alla media? Perchè? 8. Elencare le proprietà della media aritmetica. 9. Cosa è la funzione di ripartizione empirica? 10. Cosa è e a che serve la funzione di sopravvivenza? Perchè non è esattamente uguale al complemento a 1 della funzione di ripartizione empirica?

28 26 CAPITOLO 1. DESCRIVIAMO I DATI

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale di Area Tecnica Corso di Statistica e Biometria Statistica descrittiva 1 Statistica Funzioni Descrittiva Induttiva (inferenziale) Statistica

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA a.a. 2009-2010 Facoltà di Economia, Università Roma Tre Archivio Statistico delle Imprese Attive (ASIA) L archivio è costituito dalle unità economiche che

Dettagli

Conoscenza. Metodo scientifico

Conoscenza. Metodo scientifico Conoscenza La conoscenza è la consapevolezza e la comprensione di fatti, verità o informazioni ottenuti attraverso l'esperienza o l'apprendimento (a posteriori), ovvero tramite l'introspezione (a priori).

Dettagli

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio2_dati.xls.

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unina.it

Statistica. Alfonso Iodice D Enza iodicede@unina.it Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3

Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3 LEZIONE ELEMENTI DI STATISTICA DESCRITTIVA PROF. CRISTIAN SIMONI Indice 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3 1.1. Popolazione --------------------------------------------------------------------------------------------

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 2.1 Statistica descrittiva (Richiami) Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) LABORATORIO EXCEL

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica descrittiva Cernusco S.N., giovedì 21 gennaio 2016 (9.00/13.00)

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

LA STATISTICA NEI TEST INVALSI

LA STATISTICA NEI TEST INVALSI LA STATISTICA NEI TEST INVALSI 1 Prova Nazionale 2011 Osserva il grafico seguente che rappresenta la distribuzione percentuale di famiglie per numero di componenti, in base al censimento 2001. Qual è la

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI

METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI 1.1 La Statistica La Statistica è la scienza che raccoglie, elabora ed interpreta i dati (informazioni) relativi ad un dato fenomeno oggetto di osservazione.

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio1_dati.xls.

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

Esercitazione di riepilogo 23 Aprile 2013

Esercitazione di riepilogo 23 Aprile 2013 Esercitazione di riepilogo 23 Aprile 2013 Grafici Grafico a barre Servono principalmente per rappresentare variabili (caratteri) qualitative, quantitative e discrete. Grafico a settori circolari (torta)

Dettagli

TRACCIA DI STUDIO. Concetto di misura. Variabilità biologica

TRACCIA DI STUDIO. Concetto di misura. Variabilità biologica TRACCIA DI STUDIO Variabilità biologica In natura si osservano differenze non solo tra soggetti, ma anche in uno stesso individuo per svariati fattori endocrini, metabolici, emozionali, patologici, da

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE Laboratorio Stefania Porchia Incontri e argomenti trattati nel laboratorio 29 marzo 14.00 15.30 l indagine qualitativa come strategia di formulazione

Dettagli

1 La Matrice dei dati

1 La Matrice dei dati Dispense sull uso di Excel Daniela Marella 1 La Matrice dei dati Un questionario è costituito da un insieme di domande raccolte su un determinato supporto (cartaceo o elettronico) e somministrate alla

Dettagli

RAPPRESENTAZIONE DEI DATI

RAPPRESENTAZIONE DEI DATI Rappresentazione dei Dati RAPPRESENTAZIONE DEI DATI Quando si dispone di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente Quandoil si loro dispone

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I

INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I CeSe.Di. - Riorientamento nel primo anno delle superiori INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I dati Sezione 1 - AFFERMAZIONI GENERALI (10 item): affermazioni che afferiscono alle percezioni

Dettagli

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 INTRODUZIONE 1.0 PREVENZIONE CONTRO INDIVIDUAZIONE. L'approccio tradizionale nella fabbricazione dei prodotti consiste nel controllo

Dettagli

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone Lezione 1- Introduzione Cattedra di Biostatistica Dipartimento di Scienze sperimentali e cliniche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Statistica medica e Biometria

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

1. Introduzione. 2. I metodi di valutazione

1. Introduzione. 2. I metodi di valutazione 1. Introduzione La Riserva Sinistri è l accantonamento che l impresa autorizzata all esercizio dei rami danni deve effettuare a fine esercizio in previsione dei costi che essa dovrà sostenere in futuro

Dettagli

Appunti di complementi di matematica

Appunti di complementi di matematica Appunti di complementi di matematica UITA STATISTICA: è l unità su cui si raccolgono le informazioni oggetto dell indagine e possono essere individui, famiglie, oggetti. UIVERSO STATISTICO O POLAZIOE STATISTICA

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno Parte II Indice Operazioni aritmetiche tra valori rappresentati in binario puro somma sottrazione Rappresentazione di numeri con segno modulo e segno complemento a 2 esercizi Operazioni aritmetiche tra

Dettagli

Analisi e diagramma di Pareto

Analisi e diagramma di Pareto Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo

Dettagli

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto.

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto. «Possiamo conoscere qualcosa dell'oggetto di cui stiamo parlando solo se possiamo eseguirvi misurazioni, per descriverlo mediante numeri; altrimenti la nostra conoscenza è scarsa e insoddisfacente.» (Lord

Dettagli