Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07"

Transcript

1 Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Pianetagalileo - (ultimo aggiornamento: 23/07/07)

2 Introduzione: L equazione logistica uò descrivere lo sviluo di una oolazione biologica (batteri, animali ecc.) che cresce fino al raggiungimento di un valore costante nel temo. Tale crescita sarà rovocata da una fonte energetica da cui tale oolazione si nutre. E lecito suorre che sia una singola fonte energetica rinnovabile erogata in modo costante nel temo in un ambiente rivo di materia inquinante verso una oolazione omogenea di una singola secie. Quindi er esemio in resenza di una fonte energetica rinnovabile (FER) costante e biologicamente assimilabile, una oolazione tenderà a sviluarsi nel temo con un certo tasso di crescita fino a raggiungere un livello massimo M dato dalla seguente equazione differenziale del tio Bernoulli: d k = M () La cui soluzione orta alla seguente: M = (2) [ k( t t )] + ex 0 Come abbiamo detto questo sviluo diende dall energia erogata dalla nostra fonte, cioè fornendo una variazione Q di energia nell unita di temo, otterremo il flusso energetico f della nostra FER. Quindi er definizione: ( t ) f ( t ) dq = (3) Stabiliamo adesso er la (2) che la oolazione raggiunga il livello M sotto l effetto fornito di un flusso costante f, e che sia quindi: f = c M (4) Dove c è una costante ositiva. Avremo quindi secondo la (4) una diretta roorzionalità tra un flusso energetico costante e il numero della oolazione stabilizzata. Questo significa che se er esemio vogliamo raddoiare la oolazione dovremo raddoiare anche il flusso energetico erché ogni singolo elemento della oolazione della secie biologica considerata avrà bisogno er vivere di una recisa razione ro-caite di energia c nell unita di temo. Il calcolo di questa razione energetica si otrà fare agevolmente una volta raggiunto l equilibrio tra il numero di nascite e morti usando semre la (4). La domanda che ci ossiamo orre adesso è se sia ossibile una generalizzazione della () che descriva la crescita di una oolazione in resenza dell erogazione di una FER variabile nel temo, e dell effetto di un generico ambiente di dimensioni limitate che certamente influisce sullo sviluo demografico. Per oter trovare una risosta dobbiamo rima chiarire che la dinamica dello sviluo di una oolazione biologica risentirà non solo delle dimensioni dell ambiente nel quale si svilua, ma anche di una roria inerzia che chiameremo: inerzia demografica. Tale inerzia non è altro che la resistenza alla crescita o alla decrescita numerica (descritta dalla funzione di evoluzione demografica (t) er una oolazione di una singola secie) quando una secie biologica si trova 2

3 sottoosta ad un flusso energetico, del quale si nutre, variabile nel temo. Stabiliamo adesso la seguente legge di sviluo isodinamico: In assenza di fenomeni di inerzia demografica e di limitazioni dello sazio ambientale, la funzione che descrive l evoluzione numerica di una oolazione nel temo è uguale, a meno di una costante moltilicativa, al flusso energetico che ermette tale sviluo. Quindi abbiamo: ( t ) c( t ) f = (5) Con: c > 0. Notiamo subito che la (5) è molto iù generale della (4) e ci fornirà la chiave er risolvere il nostro roblema, dato che dovrà essere una soluzione articolare dell equazione differenziale che dobbiamo trovare. La rima idea che ci otrebbe venire in mente er tener in debito conto l inerzia demografica è di usare la (5) nella () in modo da avere: ( t ) d ( t ) ( ) c = k( t )? (6) f t Così se il flusso energetico è costante allora la (6) mediante la (4) sarà nuovamente uguale alla (). Sebbene questa sia un iotesi semlice e suggestiva in realtà non soddisfa la legge di sviluo isodinamico. t un flusso energetico continuo tale Infatti se suoniamo di avere in un intervallo di temo ] ;t 2 [ che: ( t ) 0 dovrà essere: d ( t ) 0. Alicando erò la (5) nella (6) si ottiene: ( t ) = 0 df in tutto l intervallo considerato, avremo allora che in assenza di inerzia er la (5) d in tutto l intervallo, che è una contraddizione ovvero la (5) non è in generale una soluzione articolare della (6). Notiamo che la () uò essere riscritta anche nel seguente modo: d ( ) + k M = 0 (7) Questo ci otrà aiutare er costruire il nostro modello. Modello matematico Stabiliamo adesso er definizione la seguente funzione d inerzia: u ( t ) c = a (8) ( t ) f ( t ) 3

4 Dove a è una costante che nel nostro caso è ositiva o nulla, e che chiameremo costante ambientale. Allora un buon modello matematico che descriverà la crescita di una oolazione biologica con la (5) come soluzione articolare, che fornisce la (2) nel caso di flusso energetico costante, e che tiene conto dell inerzia demografica e delle dimensioni finite dell ambiente uò essere descritto dalla seguente equazione differenziale lineare omogenea a coefficienti costanti. ( n ) h0 u + hu + h 2u + h3u h n u = 0 (9) Le costanti h i (con i = 0; ; 2; 3;...n) saranno stabilite serimentalmente in base al roblema studiato. Le ossibili soluzioni della (9) sono ben note: u λt λ2t λ3t λnt ( t ) = s e + s e + s e s e 2 3 n (0) Se λ è radice multila di ordine r dell equazione caratteristica associata alla (9), allora le r funzioni: λt λt 2 λt r λt e, xe, x e,..., x e () sono integrali dell equazione (9). Se oi esistono radici comlesse dell equazione caratteristica allora sono ossibili soluzioni del tio: x m e bt m bt cos βt ; x e sin βt (2) con: m = 0 ;; 2 ;...; r La legge di sviluo isodinamico in questo caso è verificata, infatti: u ( t ) = 0 è una soluzione della (9). Quindi er a = 0 mediante la (8) è facile vedere che si ottiene la relazione (5). Suonendo di avere un flusso energetico costante f ( t ) = q ; se rendiamo: u( t ) = s ex( kt) e a 0 otterremo mediante la (8) l equazione (2). Cioè tale modello è riconducibile alla soluzione dell equazione logistica classica. Esemi: ) Dato un flusso energetico costante f ( t ) = c ; se una oolazione ha un inerzia tale che: u ( t ) = 3ex( 2t) ex( ) ed inoltre a = 0, (cioè non ci sono limitazioni dello sazio ambientale t alla crescita) avremo allora mediante la (8) la seguente funzione: nella figura la funzione in verde. = + 3ex ( 2t ) ex( t ). Vedi 2) Se una oolazione è sottoosta ad un flusso energetico costante f ( t ) = c, con un inerzia tale che: u ( t ) = 3ex( 4t) +.5ex( t)sin( 4t ), e con a = 0 ; allora si avrà la seguente funzione: 2 =. Vedi nella figura la funzione in rosso. + 3ex ( 4t ) +.5ex( t ) sin ( 4t ) 4

5 Figura - Due esemi di sviluo di una oolazione con un inerzia u (t) e u 2(t). Conclusioni Nel semlice modello di crescita esonenziale di Malthus er esemio una oolazione di una secie qualsiasi se uò avere accesso ad una fonte energetica illimitata e ad un ambiente rivo di limitazioni seguirà una crescita in relazione ad una funzione di inerzia comosta da un singolo esonenziale. Nel caso della funzione logistica l inerzia della oolazione rimane la stessa di quella del modello di Malthus, ma in iù si tiene conto di limitazioni tali da stabilizzare il fenomeno di crescita (o decrescita). Il concetto fondamentale qui è la funzione di inerzia demografica, che nella maggior arte dei casi non è comosta da una singola funzione esonenziale, ma bensì dalla somma di una serie di funzioni descritte dalle ossibili soluzioni della (9). Questo uò valere naturalmente anche er il caso di dinamiche di libero sviluo di tio Maltusiano, solo che nella maggioranza dei casi con il assare del temo da un unto di vista ratico c è un semlice esonenziale che revalendo su tutte le altre funzioni fornisce al fenomeno la sua evoluzione tiica. Bibliografia Zwirner G.- Lezioni di analisi matematica: arte seconda, Ed. Cedam Padova 976 Comincioli V - Problemi e modelli matematici nelle scienze alicate, Ed. Ambrosiana 993 Murray J.D. : Mathematical Biology I: An Introduction, Sringer Verlag

CALCOLO DELLE PROBABILITÀ. 1. La probabilità che una candela accesa si spenga è p = 1, perché è assolutamente certo che si esaurirà.

CALCOLO DELLE PROBABILITÀ. 1. La probabilità che una candela accesa si spenga è p = 1, perché è assolutamente certo che si esaurirà. CALCOLO DELLE PROBABILITÀ -Definizione di robabilità -Legge additiva (eventi disgiunti) -Probabilità totale -Eventi comosti -Eventi indiendenti -Legge moltilicativa -Probabilità comoste - -Definizione

Dettagli

Problemi sulle equazioni parametriche

Problemi sulle equazioni parametriche A Problemi sulle equazioni arametriche Le soluzioni di un equazione letterale sono funzioni dei arametri che in essa comaiono e ci si uò chiedere er quali valori di tali arametri un equazione ha delle

Dettagli

Comportamento asintotico delle Catene di Markov

Comportamento asintotico delle Catene di Markov Comortamento asintotico delle Catene di Markov In queste note analizzeremo il comortamento asintotico della catene di Markov a temo discreto omogenee, con sazio degli stati di dimensione finita. I risultati

Dettagli

TEORIA DELLA PROBABILITÁ

TEORIA DELLA PROBABILITÁ TEORIA DELLA PROBABILITÁ Cenni storici i rimi arocci alla teoria della robabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli) gli ambiti di alicazione sono i giochi d azzardo e roblemi

Dettagli

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA V appello 12/2/2019 1

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA V appello 12/2/2019 1 ANNO ACCADEMICO 07/08 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA V aello //09 Esercizio. Una oolazione P è c o m o s t a a l 5 % d a f e m m i n e e a l 8 % d a m a s c h i. La malattia M ha un incidenza

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnica delle Marche Facoltà di ngegneria ng. nformatica e Automatica ng. delle Telecomunicazioni Teledidattica ANALS NUMERCA TEMA D (Prof. A. M. Perdon) Ancona, 7 luglio 6 PARTE - SOLUZONE

Dettagli

la parola binaria che è è la parola di dati e p venuta fuori, in trasmissione, a seguito dell esecuzione delle 4 prove di parità;

la parola binaria che è è la parola di dati e p venuta fuori, in trasmissione, a seguito dell esecuzione delle 4 prove di parità; Aunti di Elettronica Digitale Circuiti er il codice Hamming Circuito er la decodifica Hamming Vogliamo realizzare un circuito cominatorio che rilevi e corregga l errore singolo su arole di codice Hamming.

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 2

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 2 Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 2 ESERCIZI CON SOLUZIONE 1. Risolvere il seguente problema di Cauchy: 1 2 1 2 L equazione differenziale

Dettagli

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza ANALISI MATEMATICA 1 - Parte B Commissione F Albertini, L Caravenna e M Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Vicenza, 4 luglio 017 TEMA1 Esercizio 1 [1 unti] Si consideri la funzione

Dettagli

SOLUZIONE = p 4 x = 1 4 x2 +

SOLUZIONE = p 4 x = 1 4 x2 + SOLUIONE (a) Per rovare che F () = + arcsin è una rimitiva di f() = sull intervallo (, ) è su ciente rovare che F () =f(), er ogni (, ) F () = + + / / = + + = = + + = + = f() (b) Sicuramente G() è una

Dettagli

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità;

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità; ANALISI MATEMATICA Commissione L. Caravenna, V. Casarino, S. occante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 27 Gennaio 25 TEMA - arte B Esercizio ( unti). Si consideri la funzione

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica ANALISI NUMERICA TEMA C (Prof. A. M. Perdon) Ancona, 7 luglio 6 PARTE

Dettagli

Schedulazione di dettaglio Macchine in parallelo

Schedulazione di dettaglio Macchine in parallelo Lezione 8 Schedulazione di dettaglio Macchine in arallelo Dati: Una lista di lotti (job) che devono essere rocessati da un sistema roduttivo comosto da un set di macchine in arallelo. Siano i lotti caratterizzati

Dettagli

4 Interi somma di più di due quadrati

4 Interi somma di più di due quadrati 4 Interi somma di iù di due quadrati Abbiamo già osservato, risolvendo l equazione diofantea X 2 + Y 2 = n, che non ogni intero ositivo si uò scrivere come somma di due quadrati di interi (ad esemio: 3

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

IIASS International Institute for Advanced Scientific Studies

IIASS International Institute for Advanced Scientific Studies IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Diartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 Prova scritta del 21/7/2010

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 Prova scritta del 21/7/2010 Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 009/0 Prova scritta del /7/00 Nota. E obbligatorio sia scegliere le risoste (numeriche, o le formule nali a seconda del

Dettagli

Traccia dello svolgimento di alcuni esercizi del compito del 15/04/08

Traccia dello svolgimento di alcuni esercizi del compito del 15/04/08 Traccia dello svolgimento di alcuni esercizi del comito del //8 Esercizio.. L esercizio richiede di risolvere in generale il seguente sistema lineare @ A = b a. Il sistema ^A = b ammette soluzioni se Rg(

Dettagli

ESERCIZIO 1: Vincolo di bilancio lineare

ESERCIZIO 1: Vincolo di bilancio lineare Microeconomia rof. Barigozzi ESERCIZIO 1: Vincolo di bilancio lineare Si immagini un individuo che ha a disosizione un budget di 500 euro e deve decidere come allocare tale budget tra un bene, che ha un

Dettagli

LA PARABOLA E LE DISEQUAZIONI

LA PARABOLA E LE DISEQUAZIONI LA PARABOLA E LE DISEQUAZIONI DI SECONDO GRADO 6 Per ricordare H Una funzione di secondo grado la cui equazione assume la forma y ˆ a b c si chiama arabola. Le sue caratteristiche sono le seguenti (osserva

Dettagli

Principi di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni

Principi di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni Princii di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni Daria Vigani Febbraio 2014 1. Assumiamo la seguente funzione di domanda di mercato er il gelato:

Dettagli

Capitolo 2. Funzioni

Capitolo 2. Funzioni Caitolo 2 Funzioni 2.1. De nizioni Un concetto di fondamentale imortanza è quello di funzione. roosito la seguente de nizione: Vale a questo De nizione 10 Dati due insiemi (non vuoti) X e Y, si chiama

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del terzo appello, 19 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del terzo appello, 19 febbraio 2018 Testi 1 Scritto del terzo appello, 9 febbraio 208 Testi Prima parte, gruppo.. Per ciascuno dei seguenti punti dare le coordinate (polari o cartesiane) che mancano: a) = 0, = ; r = α = b) = 3, = 3; r = α = c) r

Dettagli

B = {n N : n primo} (3) allora l intersezione di B e P è l insieme dei numeri naturali che sono sia primi che pari, quindi

B = {n N : n primo} (3) allora l intersezione di B e P è l insieme dei numeri naturali che sono sia primi che pari, quindi Lezione n.1 - Insiemi e numeri La matematica è innanzi tutto un linguaggio. Questo linguaggio è basato innanzi tutto sulla teoria degli insiemi. Un insieme è una collezione di oggetti, e uò essere secificato

Dettagli

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ANALISI MATEMATICA I Soluzioni Foglio 7 14 maggio 2009 7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ordine y + y = 1 determinarne tutte le soluzioni, determinare la soluzione y(x)

Dettagli

Le Tecniche di Data Mining

Le Tecniche di Data Mining Cluster Analysis Le Tecniche di Data Mining Le rinciali tecniche di data mining che vedremo sono: Ø Ø Cluster Analysis Alberi Decisionali Cluster Analysis La Cluster Analysis è una tecnica di data mining

Dettagli

Sia dato un corpo su cui agisce una forza. Supponiamo che inizialmente il corpo sia fermo, dalla relazione

Sia dato un corpo su cui agisce una forza. Supponiamo che inizialmente il corpo sia fermo, dalla relazione Lavoro ed energia Sia dato un coro su cui agisce una forza. Suoniamo che inizialmente il coro sia fermo, dalla relazione F = ma doo un certo intervallo di temo in cui la forza agisce sull oggetto, il coro

Dettagli

Deduzione della legge dell azione di massa per via cinetica

Deduzione della legge dell azione di massa per via cinetica L equilibrio chimico Reazioni reversibili o di equilibrio: reazioni che ossono avvenire sia in senso diretto che in senso inverso Deduzione della legge dell azione di massa er via cinetica A + B C + D

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0

Dettagli

Test di Ipotesi (su una singola popolazione)

Test di Ipotesi (su una singola popolazione) Test di Iotesi (su una singola oolazione) Dato un camione casuale estratto dalla oolazione F ( X, X,, X n ) X - Poolazione Osservati/misurati i dati x, x,, x n Decido la lausibilità di una iotesi formulata

Dettagli

EQUAZIONE LOGISTICA: MODELLO POLINOMIALE PER LA CRESCITA DEMOGRAFICA

EQUAZIONE LOGISTICA: MODELLO POLINOMIALE PER LA CRESCITA DEMOGRAFICA EQUAZIONE LOGISTICA: MODELLO POLINOMIALE PER LA CRESCITA DEMOGRAFICA L equazione logistica, anche nota come modello di Verhulst o curva di crescita logistica è un modello di crescita della popolazione,

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA Esercizio : Scelta ottimale di un monoolista e imoste Si consideri un monoolista con la seguente funzione di costo totale: C ( ) = 400 + + 0 0 La domanda

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Esercizio 1, 6 punti [ ] Sapendo che una grandezza P(t) è caratterizzata dalle seguenti proprietà:

Esercizio 1, 6 punti [ ] Sapendo che una grandezza P(t) è caratterizzata dalle seguenti proprietà: Modellistica Ambientale/Modelli Matematici Ambientali - A.A. 2014/2015 Quinta prova scritta, Appello estivo 23 Settembre 2015 Parte comune a Modellistica Ambientale e Modelli Matematici Ambientali Schema

Dettagli

Principi di Economia Microeconomia. Esercitazione 1 Domanda, Offerta ed Equilibrio. Soluzioni

Principi di Economia Microeconomia. Esercitazione 1 Domanda, Offerta ed Equilibrio. Soluzioni Princii di Economia Microeconomia Esercitazione 1 Domanda, Offerta ed Equilibrio Soluzioni Maria Tsouri Novembre 1 1. Raresentate graficamente le seguenti funzioni di domanda e di offerta: (a) d =1-P Calcoliamo

Dettagli

Istituzione di Fisica Statistica

Istituzione di Fisica Statistica Istituzione di Fisica Statistica Comito e rova arziale (December 9, 004) Mattia Donega 8 dicembre 006 Esercizio Un gas classico di N articelle di massa m in equilibrio alla temeratura T è riartito fra

Dettagli

Integrazione di funzioni goniometriche e irrazionali

Integrazione di funzioni goniometriche e irrazionali Integrazione di funzioni goniometriche e irrazionali In questo arofondimento resentiamo alcune tecniche er integrare articolari classi di funzioni goniometriche e irrazionali.. Integralidifunzionigoniometriche

Dettagli

Verifica di ipotesi: approfondimenti

Verifica di ipotesi: approfondimenti 1. Il -value Verifica di iotesi: arofondimenti Il test si uò effettuare: Determinando reventivamente le regioni di accettazione di H 0 e H 1 er lo stimatore considerato (sulla base del livello α e osservando

Dettagli

Numeri primi e serie

Numeri primi e serie Numeri rimi e serie Fabio Durastante 5 ottobre 0 Sommario Dimostrazione dell infinità dei numeri rimi, divergenza serie degli inversi dei rimi e teorema di Mertens. Infinità dei numeri rimi Iniziamo dal

Dettagli

Confronto tra le proporzioni in due popolazioni indipendenti (alcune note)

Confronto tra le proporzioni in due popolazioni indipendenti (alcune note) Confronto tra le roorzioni in due oolazioni indiendenti (alcune note) Finora abbiamo visto come verificare iotesi su un articolare arametro (indicatore di una caratteristica qualità) di una oolazione sulla

Dettagli

Laurea Triennale in Matematica, Università Sapienza Corso di Probabilità 2 A.A. 2010/2011 Prova scritta 10 giugno 2011 Soluzione degli esercizi

Laurea Triennale in Matematica, Università Sapienza Corso di Probabilità 2 A.A. 2010/2011 Prova scritta 10 giugno 2011 Soluzione degli esercizi Laurea Triennale in Matematica, Uniersità Saienza Corso di Probabilità A.A. 00/0 Proa scritta 0 giugno 0 Soluzione degli esercizi Esercizio. Un modello di cellulare iene enduto con una batteria istallata

Dettagli

CAPITOLO 1. Spazi metrici. 1. Definizioni ed esempi

CAPITOLO 1. Spazi metrici. 1. Definizioni ed esempi CAPITOLO 1 Sazi metrici 1. Definizioni ed esemi Definizione 1.1. Sia X un insieme qualsiasi. Una distanza su X è un alicazione d : X X R tale che i) d(x, y) 0 er ogni x, y in X, e d(x, y) = 0 se e solo

Dettagli

Processi. Giuseppe Sanfilippo. 30 novembre Processo di Bernoulli-Passeggiata aleatoria semplice (Simple Random Walk)

Processi. Giuseppe Sanfilippo. 30 novembre Processo di Bernoulli-Passeggiata aleatoria semplice (Simple Random Walk) Processi Giusee Sanfilio 30 novembre 005 1 Processo di Bernoulli-Passeggiata aleatoria semlice Simle Random Walk) vedi [5, ]) Analizziamo uno dei classici rocessi discreti. Sia E 1, E,..., E n,... una

Dettagli

Probabilità e tempi medi di assorbimento

Probabilità e tempi medi di assorbimento Probabilità e temi medi di assorbimento 6.1 Probabilità di assorbimento Consideriamo una catena con un numero finito di stati che indichiamo con S = {1, 2,... r}. Sia C una classe chiusa di S. Se la catena

Dettagli

CP110 Probabilità: Esonero 1

CP110 Probabilità: Esonero 1 Diartimento di Matematica, Roma Tre Pietro Cauto 2010-11, II semestre 12 arile, 2011 CP110 Probabilità: Esonero 1 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si uo usare durante l esame è una

Dettagli

Appunti della lezione del Prof. Stefano De Marchi del 12/02/16 a cura del Prof. Fernando D Angelo. Equazioni differenziali.

Appunti della lezione del Prof. Stefano De Marchi del 12/02/16 a cura del Prof. Fernando D Angelo. Equazioni differenziali. Appunti della lezione del Prof. Stefano De Marchi del /0/6 a cura del Prof. Fernando D Angelo. Premessa. Equazioni differenziali. In generale un equazione differenziale di ordine n si può scrivere nel

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1 Secondo compitino e primo appello, gennaio 7 Testi Prima parte, gruppo.. Determinare l insieme di definizione della funzione arcsin(e ).. Determinare lo sviluppo di Taylor di ordine 4 (in ) della funzione

Dettagli

Predittore di Smith. (Complementi di Controlli Automatici: prof. Giuseppe Fusco) y p (t) Figura 1: Schema di controllo in retroazione con ritardo.

Predittore di Smith. (Complementi di Controlli Automatici: prof. Giuseppe Fusco) y p (t) Figura 1: Schema di controllo in retroazione con ritardo. Predittore di Smith (Comlementi di Controlli Automatici: rof. Giusee Fusco) Lo schema a redittore di Smith ha come obiettivo il miglioramento delle restazioni di un sistema di controllo in cui è resente

Dettagli

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A.2009-2010 - Prof. G.Cupini Equazioni differenziali ordinarie del primo ordine (lineari, a variabili separabili, di Bernoulli) ed

Dettagli

Una proposizione è una affermazione di cui si possa stabilire con certezza il valore di verità

Una proposizione è una affermazione di cui si possa stabilire con certezza il valore di verità Logica 1. Le roosizioni 1.1 Cosa studia la logica? La logica studia le forme del ragionamento. Si occua cioè di stabilire delle regole che ermettano di assare da un'affermazione vera ad un'altra affermazione

Dettagli

Esercizi con martingale Pietro Caputo 23 novembre 2006

Esercizi con martingale Pietro Caputo 23 novembre 2006 Esercizi con martingale Pietro Cauto 23 novembre 2006 Esercizio 1. Sia {X n } la asseggiata aleatoria simmetrica su Z con X 0 = 0, vale a dire che Z k = X k X k 1, k = 1, 2,... sono indiendenti e valgono

Dettagli

I Giochi di Archimede - Soluzioni Triennio

I Giochi di Archimede - Soluzioni Triennio I Giochi di Archimede - Soluzioni Triennio dicembre 999 C E C A C B D C D C C B D D E A B E C D B C E B D 2 3 4 5 6 7 8 9 02345678920222232425 ) La risosta e (C). Infatti 39 = 723, quindi i lati sono lunghi

Dettagli

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4 Analisi Matematica A e B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 08-09 7 aprile 09. Determinare le soluzioni u(x) dell equazione differenziale u + u u = sin x + ex + e x. Soluzione.

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Richiami sulle Equazioni Differenziali

Richiami sulle Equazioni Differenziali Richiami sulle Equazioni Differenziali Ing. Alessio Merola Laboratorio di Biomeccatronica Università degli Studi Magna Græcia di Catanzaro II anno I semestre CdL in Informatica e Biomedica Generalità sulle

Dettagli

Istituzioni ed Esercitazioni di Matematica 2

Istituzioni ed Esercitazioni di Matematica 2 Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Corso di Laurea in Chimica Istituzioni ed Esercitazioni di Matematica 2 15 Marzo 2017 Schema Quinta Lezione Comunicazioni Esercitazioni

Dettagli

Modelli differenziali per le scienze della vita

Modelli differenziali per le scienze della vita Modelli differenziali per le scienze della vita Andrea Susa Agenda Modelli Matematici Crescita delle popolazioni isolate crescita di una cellula Decadimento radioattivo Modello Malthus Modello a crescita

Dettagli

Procedura per la Risoluzione di Integrali Razionali Fratti

Procedura per la Risoluzione di Integrali Razionali Fratti Procedura er la Risoluzione di Integrali Razionali Fratti Matteo Tugnoli Marc, 0 Di seguito illustriamo una breve rocedura da alicare nel caso di integrazione di frazioni comoste da olinomi di differenti

Dettagli

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 TN1 - Introduzione alla teoria dei numeri Appello A 8 giugno 2009.

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 TN1 - Introduzione alla teoria dei numeri Appello A 8 giugno 2009. Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 TN1 - Introduzione alla teoria dei numeri Aello A 8 giugno 2009 Cognome Nome Numero di matricola Avvertenza: Svolgere ogni

Dettagli

Equazioni differenziali lineari di ordine n

Equazioni differenziali lineari di ordine n Equazioni differenziali lineari di ordine n Si tratta di equazioni del tipo u (n) (t) + a 1 (t)u (n 1) (t) +... + a n 1 (t)u (t) + a n (t)u(t) = f(t), t I, (1) con n intero 2 ed I R intervallo reale, in

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 2 1 / 42 Equazioni differenziali Un equazione

Dettagli

IL MODELLO ESPONENZIALE

IL MODELLO ESPONENZIALE IL MODELLO ESPONENZIALE La crescita esponenziale è caratterizzata dal fatto che,a ogni istante, l accrescimento direttamente proporzionale al valore istantaneo della variabile è ovvero Suddivisa la durata

Dettagli

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2..

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2.. Matematica II 020304 Ogni sistema di m equazioni lineari in n incognite x 1 x 2 x n si uo raresentare nella forma a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1

Dettagli

Tre tipi di Sistema Un richiamo

Tre tipi di Sistema Un richiamo Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Programma: a che unto siamo? Lezioni 25-26 2010 re tii di Sistema Un richiamo Un aio di riferimenti matematici Sistema isolato:

Dettagli

AM Sett. 11. IL TEOREMA DI COMPATTEZZA DI RELLICH. u n p. c(r) sup. u n (x + h) u n (x) dx

AM Sett. 11. IL TEOREMA DI COMPATTEZZA DI RELLICH. u n p. c(r) sup. u n (x + h) u n (x) dx AM30 0- Sett.. IL TEOREMA DI COMPATTEZZA DI RELLICH. Sia u n C 0 (B R ), con su n ( u n ) < +. Allora (i) se < < N, u n ha una sottosuccessione convergente in L r (B R ) r < N N. (ii) se = N, u n ha una

Dettagli

Gli angoli e le funzioni goniometriche

Gli angoli e le funzioni goniometriche Gli angoli e le funzioni goniometriche A a. Poiché sin sin cos e cos Ö á Ücos l equazione diventa: cos cos cos b. Il grafico della funzione cos si ottiene dal grafico della funzione cos alicando rima una

Dettagli

Equazioni di erenziali

Equazioni di erenziali Equazioni di erenziali 1. Risolvere la seguente equazione y 0 = 2x cos 2 y. Risoluzione E un equazione di erenziale a variabili searabili. Sono integrali singolari y = 2 + k con k 2. Seariamo le variabili

Dettagli

Esercizi: circuiti dinamici con generatori costanti

Esercizi: circuiti dinamici con generatori costanti ezione Esercizi: circuiti dinamici con generatori costanti ezione n. Esercizi: circuiti dinamici con generatori costanti. Esercizi con circuiti del I ordine in transitorio con generatori costanti. ircuiti..

Dettagli

Le quantità chimiche un modo per contare gli atomi...

Le quantità chimiche un modo per contare gli atomi... Secondo la teoria atomica di Dalton la è un elemento distintivo tra atomi Le quantità chimiche un modo er contare gli atomi... ATOMI DIVERSI HANNO MASSA DIVERSA Ma come ossiamo determinare la di un atomo?

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ.

Dettagli

LE FUNZIONI ECONOMICHE

LE FUNZIONI ECONOMICHE M A R I O G A R G I U L O LE FUNZIONI EONOMIHE APPLIAZIONE DELL ANALISI MATEMATIA FUNZIONI EONOMIHE L economia è lo studio di come imiegare, con maggior convenienza, il denaro di cui si disone er raggiungere

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento della prova scritta - fuori corso - di Matematica II 11 Novembre 2010

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento della prova scritta - fuori corso - di Matematica II 11 Novembre 2010 UNIVERSITÀ DEGLI STUDI DI SALERNO della rova scritta - fuori corso - di Matematica II Novembre Esercizio In R si considerino i seguenti sottosazi vettoriali: V = (x; y; z) R j x y z = x z =, W = (x; y;

Dettagli

Capitolo 3 - Parte IV Complementi sui circuiti combinatori

Capitolo 3 - Parte IV Complementi sui circuiti combinatori Aunti di Elettronica Digitale Caitolo 3 - arte IV Comlementi sui circuiti combinatori Introduzione... Sommatori...2 Introduzione...2 Half-adder...3 Full-adder...4 Sommatore binario arallelo...7 roagazione

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali In un equazione differenziale l incognita da trovare è una funzione, di cui è data, dall equazione, una relazione con le sue derivate (fino ad un certo ordine) e la variabile libera:

Dettagli

Peso atomico (meglio massa atomica)

Peso atomico (meglio massa atomica) Nome file d:\scuola\corsi\corso fisica\termodinamica\leggi dei gas.doc Creato il 26/3/2 7.5 Dimensione file: 4864 byte Andrea Zucchini Elaborato il 22//22 alle ore 5.52, salvato il 22//2 7.52 stamato il

Dettagli

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione Diartimento di Matematica, Roma Tre Pietro Cauto 212-13, II semestre 2 settembre, 213 CP11 Probabilità: Esame 2 settembre 213 Testo e soluzione 1. (6 ts) Abbiamo due mazzi di carte francesi, il mazzo A

Dettagli

Modelli matematici sull evoluzione demografica mondiale

Modelli matematici sull evoluzione demografica mondiale Modelli matematici sull evoluzione demografica mondiale Autore: Antonello Urso (16/7/5) Pianetagalileo - (ultimo aggiornamento: 6/7/11) - SS/UN Introduzione Sappiamo che l'attuale popolazione mondiale

Dettagli

Proprietà matematiche. Relazioni differenziali Quadrato termodinamico Esempi E ancora esempi

Proprietà matematiche. Relazioni differenziali Quadrato termodinamico Esempi E ancora esempi Prorietà matematiche Relazioni differenziali Quadrato termodinamico Esemi E ancora esemi 1 Relazioni differenziali (1) Sommario delle rorietà matematiche di una generica funzione variabili z( x, ) di due

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 7-8 Scritto del secondo appello, 5 febbraio 8 Testi Prima parte, gruppo.. Trovare r > e α [ π, π] per cui vale l identità 3 sin 3 cos = r sin( + α)..

Dettagli

Le equazioni differenziali

Le equazioni differenziali Le equazioni differenziali Unità. Introduzione alle equazioni differenziali Nell Unità 5 abbiamo visto che il concetto di derivata di una funzione ha numerose interretazioni fisiche. Per esemio, se sðtþ

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccardo mail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

La probabilità. f n. evidentemente è 0 ( E)

La probabilità. f n. evidentemente è 0 ( E) La robabilità Definizione - Eserimento aleatorio Ogni fenomeno del mondo reale al quale associare una situazione di incertezza. Es: Lancio di un dado, estrazioni numeri della tombola, ecc. Definizione

Dettagli

Introduzione alle macchine termiche

Introduzione alle macchine termiche 1 Introduzione alle macchine termiche In questa nota 1 introduciamo il concetto di macchina termica che oera con trasformazioni cicliche er trasformare calore in lavoro. In generale questo argomento viene

Dettagli

Corso di Impianti Dispense a cura di Simone Lugli Realizzate a favore degli allievi dell Istituto C. Ferrini di Verbania. 1. Il teorema di Bernoulli 2

Corso di Impianti Dispense a cura di Simone Lugli Realizzate a favore degli allievi dell Istituto C. Ferrini di Verbania. 1. Il teorema di Bernoulli 2 Indice 1. Il teorema di Bernoulli. Strumenti er misure su tubazioni: generalità e metodi di utilizzo 3.1. Il Tubo di Pitot 3.. Il venturimetro 4.3 Il boccaglio 5.4 Il diaframma 6.5. ltri strumenti er la

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 17 Offerta dell industria

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 17 Offerta dell industria UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 17 Offerta dell industria Prof. Gianmaria Martini Offerta di un industria concorrenziale Ricordiamo che l industria è

Dettagli

LE EQUAZIONI IRRAZIONALI

LE EQUAZIONI IRRAZIONALI LE EQUAZIONI IRRAZIONALI Per ricordare H Data ua qualsiasi equazioe A B, saiamo che ad essa si ossoo alicare i ricii di equivaleza che cosetoo di aggiugere o togliere esressioi ai due membri oure moltilicare

Dettagli

Funzioni di due variabili e rappresentazioni grafiche nello spazio

Funzioni di due variabili e rappresentazioni grafiche nello spazio Funzioni di due variabili e raresentazioni grafiche nello sazio Obiettivi l l l l comrendere il significato di derivata arziale calcolare derivate arziali comrendere il concetto di differenziale totale

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi Corso di Progetto di Strutture POTENZA, a.a. 01 013 Serbatoi e tubi Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata marco.vona@unibas.it htt://www.unibas.it/utenti/vona/ CONSIDEAZIONI INTODUTTIVE

Dettagli

Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo periodo

Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo periodo Corso di Economia Politica rof. S. Paa Lezione 14 Il meccanismo della domanda e dell offerta. Breve e lungo eriodo Facoltà di Economia Università di Roma La Saienza L equilibrio tra domanda e offerta Sovraoniamo

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

NEl caso in cui il coefficiente di diffusione D sia costante,

NEl caso in cui il coefficiente di diffusione D sia costante, M. RUDAN APPUNTI SULLA DIFFUSIONE 1 Aunti sulla diffusione M. Rudan I. EQUAZIONE DELLA DIFFUSIONE NEl caso in cui il coefficiente di diffusione D sia costante, l equazione della diffusione si scrive =

Dettagli

5.3. Classificazione delle sezioni trasversali

5.3. Classificazione delle sezioni trasversali 5.3. Classificazione delle sezioni trasversali 5.3.1. Princii (1) Quando si adotti l'analisi lastica globale, le membrature devono essere in grado di formare cerniere lastiche aventi sufficiente caacità

Dettagli