Relazioni tra variabili: Correlazione e regressione lineare

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Relazioni tra variabili: Correlazione e regressione lineare"

Transcript

1 Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare

2 Anals d relazon tra varabl 6 Produzone d granella (kg ha - ) Correlazone Regressone Dose azoto (kg ha - ) Cloroflla totale (mg fogla - ) sem panta - Azoto proteco soluble (mg fogla - ) denstà (pante m - )

3 Anals d relazon tra varabl Correlazone: analzza se esste una relazone tra due varabl (come e quanto due varabl varano nseme) Regressone: analzza la forma della relazone tra varabl

4 Covarazone d varabl

5 Analzzare la correlazone coeffcent d correlazone: Pearson product-moment (parametrco) Spearman rank correlaton (non parametrco) Entramb vanno da - (correl.negatva) a + (correl.postva). 0 corrsponde ad assenza d correlazone

6 Coeffcente d correlazone d Pearson: r PARAMETRICO Assunzon: entrambe le varabl devono essere contnue dat devono essere secondo una scala a ntervall o razonale entrambe le varabl devono segure una dstrbuzone normale la relazone tra le varabl è lneare

7 Tpo d dat Scala nomnale: categore non ordnabl (es. ambente:maccha/pneta/faggeta; forma fogla:ellttca/lanceolata...) Scala ordnale: categore ordnabl (es. alto/medo/basso; raro/comune/abbondante) Scala per ntervall: dstanza quantfcable tra categore, è possble sottrarre ma non sommare (es. date, temperature) Scala razonale: possble tutte le operazon (+ - * ), varabl quanttatve (es. lunghezza)

8 Procedura: Calcolo d r tra le varabl X e Y: Y Y X X Y X X Y r ) ( ) ( Coeffcente d correlazone d Pearson: r

9 Esempo: come calcolare l coeffcente d correlazone d Pearson Esempo: funzone Pearson o Correlazone Calcolo matrce d correlazone n Excel: Strument - >Anals dat -> Correlazone

10 Coeffcente d correlazone d Pearson: r La correlazone è sgnfcatva? Il valore d r è stato calcolato da un campone e non dalla popolazone ( r ) Il valore calcolato ndca una correlazone sgnfcatva?

11 Coeffcente d correlazone d Pearson: r La correlazone è sgnfcatva? Ipotes nulla: ρ 0 (ρ è l coeffcente d correlazone della popolazone, r del campone). Calcolare t: t r n r Valutare sgnfcatvtà d t per GDL -

12 Coeffcente d correlazone d Pearson: r OK: la correlazone è sgnfcatva ma. Le varabl sono dstrbute normalmente? La relazone tra le varabl è lneare? (cf. trasformazone de dat) Rcordars che anche se c e correlazone non vuol dre che c e nesso d causa-effetto osservare la frazone d varabltà spegata (coeffcente d determnazone) r

13 Coeffcente d correlazone d Spearman: r s O PARAMETRICO : dat non devono avere dstrbuzone normale. S possono usare dat da scala ordnale S possono utlzzare anche campon pccol (da 7 a 30 coppe d dat)

14 Coeffcente d correlazone d Spearman: r s Procedura: Ordnare dat dal pù pccolo al pù grande. Calcolare r s come per r (Pearson) non su dat ma su rangh (coe numer d ordne).b. se pù dat hanno lo stesso rango usare la meda de rangh. Valutare la sgnfcatvtà d r s calcolando l valore d t con la stessa formula usata per r

15 Esempo: come calcolare l coeffcente d correlazone d Spearman Esempo: calcolo r Spearman n Excel

16 Interpretare rsultat della correlazone Attenzone. Anche se c e correlazone non vuol dre che c sa nesso d causa-effetto ed altre varabl possono essere la causa delle varazon

17 Anals d regressone Lo scopo dell anals d regressone è d determnare la forma della relazone funzonale tra varabl (relazone causa-effetto) Regressone semplce (lneare o non lneare): determnare la forma della relazone tra varabl (una ndpendente ed una dpendente) Regressone multpla: determnare la forma della relazone tra pù varabl (pù ndpendent ed una dpendente)

18 Anals d regressone Perché è mportante: C permette d costrure un modello funzonale della rsposta d una varable (effetto) ad un altra (causa) Conoscendo la forma della relazone funzonale tra varable ndpendente e dpendente è possble stmare l valore della varable dpendente conoscendo quello della varable ndpendente (nterpolazone) solo nel range d dat X usato per la regressone (non è corretto estrapolare)

19 Regressone lneare (semplce) ella regressone lneare la relazone tra varabl (causa-effetto) è rappresentata da una lnea retta 8000.B: se samo ndecs su quale delle nostre varabl è dpendente e quale ndpendente, allora l anals d regressone non è adatta! Produzone d granella (kg ha - ) y x r Dose azoto (kg ha - )

20 Regressone lneare La relazone tra varabl è espressa dall equazone: Y a+bx dove X è la varable ndpendente, Y la varable dpendente, a è l ntercetta (l valore d Y quando X0) e b è la pendenza (quanto aumenta Y per ogn aumento d un untà d X)..B: La retta passa per l punto delle mede delle due varabl X,Y ( )

21 PARAMETRICO : Assunzon: Regressone lneare Dat da scala per ntervall o scala razonale La varable ndpendente (X) è msurata senza errore (è fssata dallo spermentatore) La varable dpendente (Y) è camponata ndpendentemente ad ogn valore d X Ad ogn valore d X dat Y seguono la dstrbuzone normale ed hanno la stessa varanza

22 Regressone lneare

23 Regressone lneare Procedura: metodo de mnm quadrat (least squares)

24 Procedura:. Stma della pendenza b Regressone lneare X X Y X X Y b ) (. Stma dell ntercetta a bx Y a

25 Regressone lneare Varazone (devanza) spegata / non spegata dalla regressone ne dat Y ( Y Y ) ( Yˆ Y ) + ( Yˆ Y ) La varazone totale ne dat Y n parte è spegata dalla regressone ed n parte non è spegata dalla regressone (varazone resdua)

26 Regressone lneare

27 Regressone lneare

28 Regressone lneare Come quantfcare la bontà della regressone? Il coeffcente d determnazone (va da 0 a ) r devanza _ spegata ( Yˆ Y ) devanza _ tot ( Y Y )

29 Regressone lneare La regressone è sgnfcatva? L equazone è stata rcavata da un campone e non dalla popolazone. Test t sull err.standard della pendenza b: Ipotes nullala pendenza è uguale a 0. Anals della varanza: s esamna l rapporto tra varanza spgata dalla regressone e varanza resdua.

30 Regressone lneare La regressone è sgnfcatva?. Test t sull errore standard della pendenza b (con n- GDL): t b H o Err. St b H o potes nulla;

31 Regressone lneare Errore standard della pendenza b : b X X n X X Y Y X X Y Y St Err ) ( ) ( ) ( ) )( ( ) (.

32 Regressone lneare. Anals della varanza: test F del rapporto tra varanza spegata dalla regressone e varanza resdua. Font d varazone Devanze Descrzone Grad d lbertà Spegata dalla regressone on spegata dalla regressone (resdua) ( Yˆ Y ) ( Yˆ Y ) Somma de quadrat delle devazon de valor stmat d Y rspetto alla meda d Y Somma de quadrat delle dfferenze tra valor stmat ed osservat d Y k n-k- Totale ( Y Y ) Somma de quadrat delle devaazon tra valor osservat d Y e la meda d Y n- dove: n numero d osservazon k sempre per la regressone lneare

33 Regressone lneare Errore standard e lmt d confdenza L errore standard de valor stmat d Y è uguale alla devazone standard de resdu: S XY ( Y Anals de resdu n Yˆ ) Per pccol campon s usa: Standardzzazone (dvsone per S XY ) Yˆ ) n Dstrbuzone casuale sopra e sotto la lnea (+/-)? S XY ( Y

34 Regressone lneare Esempo: dat granella-azoto calcolo regressone lneare n Excel

35 Regressone lneare OK la regressone è sgnfcatva ma assunzon! La varable dpendente (Y) è camponata ndpendentemente ad ogn valore d X? Cf. es. anals d crescta d ndvdu Ad ogn valore d X, dat Y hanno la stessa varanza? Cf. aumento d varanza tra ndvdu d maggor dmenson Ad ogn valore d X, dat Y seguono la dstrbuzone normale? La varable ndpendente (X) è msurata senza errore (è fssata dallo spermentatore)?

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI METODI PER LO STUDIO DEL LEGAME TRA VARIABILI IN UN RAPPORTO DI CAUSA ED EFFETTO I MODELLI DI REGRESSIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari REGRESSIONE LINEARE Ha un obettvo mportante: nvestgare sulle relazon emprche tra varabl allo scopo d analzzare le cause che possono spegare un determnato fenomeno È caratterzzata da semplctà: modell utlzzat

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Regressione e correlazione

Regressione e correlazione Regressone e correlazone Corso d statstca socale prof. Natale Carra - Unverstà degl Stud d Bergamo a.a. 005-06 Regressone Questo modello d anals bvarata esamna le relazon fra coppe d varabl contnue. Un

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

PIANIFICAZIONE DEI TRASPORTI

PIANIFICAZIONE DEI TRASPORTI Unverstà d Caglar DICAAR Dpartmento d Ingegnera Cvle, Ambentale e archtettura Sezone Trasport PIANIFICAZIONE DEI TRASPORTI Eserctazone su modell d generazone A.A. 2016-2017 Ing. Francesco Pras Ing. Govann

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

materiale didattico I incontro

materiale didattico I incontro Pano Nazonale Lauree Scentfche (PLS 2016-2017) Statstca Laboratoro d Statstca Le relazon tra varabl prof.ssa Angela Mara D'Uggento angelamara.duggento@unba.t materale ddattco I ncontro Dall anals statstca

Dettagli

Oltre la regressione lineare

Oltre la regressione lineare Oltre la regressone lneare Modello d regressone lneare (semplce o multpla: - varabl esplcatve X quanttatve e qualtatve (nserte tramte uso d varabl dummy - varable dpendente Y è quanttatva Y = b + b X +

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

Correlazione, Regressione, Test non parametrici

Correlazione, Regressione, Test non parametrici Correlazone, Regressone, Test non parametrc Correlazone 1 Anals della Correlazone L anals della Correlazone è usata per msurare la forza dell assocazone (relazone lneare) tra due varabl Correlazone rguarda

Dettagli

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl Le Inferenze sul modello d regressone PREVEDONO: Assunzone d normaltà degl error e nferenza su parametr Anals della Varanza Inferenza per la rsposta meda e la prevsone Anals de resdu Valor anomal Captolo

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Ran mran@unpr.t http://www.ran.t Rcham sulla regressone MODELLO DI REGRESSIONE y a + b + e dove: 1,, n a + b rappresenta una retta: a ordnata all orgne ntercetta b coeff.

Dettagli

Regressione lineare con un singolo regressore

Regressione lineare con un singolo regressore Regressone lneare con un sngolo regressore Eduardo Ross 2 2 Unverstà d Pava (Italy) Marzo 2013 Ross Regressone lneare semplce Econometra - 2013 1 / 45 Outlne 1 Introduzone 2 Lo stmatore OLS 3 Esempo 4

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statstca - metodologe per le scenze economche e socal /e S Borra, A D Cacco - McGraw Hll Es Soluzone degl esercz del captolo 7 In base agl arrotondament effettuat ne calcol, s possono rscontrare pccole

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Statistica Descrittiva

Statistica Descrittiva Statstca Descrttva Corso d Davd Vettur Dat osservat Sano note le seguent msure dello spessore d una lastra d materale polmerco espresse n mllmetr 3.71 3.83 3.85 3.96 3.84 3.8 3.94 3.55 3.76 3.63 3.88 3.86

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

TIPI DI ANALISI DEI DATI ORGANIZZATI IN MATRICI CASI X VARIABILI

TIPI DI ANALISI DEI DATI ORGANIZZATI IN MATRICI CASI X VARIABILI TIPI DI AALISI DEI DATI ORGAIZZATI I MATRICI CASI X VARIABILI A) AALISI MOOVARIATA: prende n esame una sola varable per volta (sngol vettor d colonna della matrce) B) AALISI BIVARIATA: prende n esame l

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Analisi della Varianza

Analisi della Varianza Anals della Varanza Esempo: Una ndustra d carta usata per buste per salumere vuole mglorare la resstenza alla trazone del propro prodotto. S rtene che resstenza alla trazone = f(concentrazone d legno nella

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

1) Le medie e le varianze calcolate su n osservazioni relative alle variabili quantitative X ed Y sono tali che. σ x

1) Le medie e le varianze calcolate su n osservazioni relative alle variabili quantitative X ed Y sono tali che. σ x TEORIA 1) Le mede e le varanze calcolate su n osservazon relatve alle varabl quanttatve X ed Y sono tal che 1 e. Consderando le corrspondent varabl standardzzate delle seguent affermazon rsulta vera 1

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

L analisi della correlazione lineare

L analisi della correlazione lineare L anals della correlazone lneare Corso d STATISTICA Prof. Roberta Sclano Ordnaro d Statstca, Unverstà d apol Federco II Professore supplente, Unverstà della Baslcata a.a. 20/202 Prof. Roberta Sclano Statstca

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 23 e 30 marzo 2017

Tutorato di Complementi di Analisi Matematica e Statistica 23 e 30 marzo 2017 Tutorato d Complement d Anals Matematca e Statstca 23 e 30 marzo 2017 Gl esercz con l smbolo eo sono tratt da prove d esame del 2016 ( eo gorno/mese eo) Esercz dagl ncontr precedent 3. Una varable X può

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

La regressione nella stima immobiliare

La regressione nella stima immobiliare La regressone nella stma mmoblare Paolo Rosato Dpartmento d Ingegnera Cvle e Archtettura Pazzale Europa 1-34127 Treste. Itala Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mal: paolo.rosato@da.unts.t 26/04/2017

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat 6 Y Rcaptolo generale Dato un nsee d sure sperental d una varable dpendente al varare d una varable ndpendente è possble edante l crtero de

Dettagli

PRIMA PROVA INTERMEDIA DI STATISTICA (COD /6045/5047/4038/371/377) 26 ottobre 2015 COMPITO D

PRIMA PROVA INTERMEDIA DI STATISTICA (COD /6045/5047/4038/371/377) 26 ottobre 2015 COMPITO D FIRMA DELLO STUDENTE Cognome PRIMA PROVA INTERMEDIA DI STATISTICA (COD. 3000/6045/5047/4038/37/377) 26 ottobre 20 Nome Numero d matrcola Corso d Laurea Cod. corso COMPITO D A fn della valutazone s terrà

Dettagli

Test delle Ipotesi e Analisi della Varianza (ANalysis Of VAriance: ANOVA)

Test delle Ipotesi e Analisi della Varianza (ANalysis Of VAriance: ANOVA) delle Ipotes e Anals della Varanza (ANalyss Of VArance: ANOVA) delle Ipotes sulla meda Introduzone Defnzon baslar Teora per l caso d varanza nota Rsch nel test delle potes Teora per l caso d varanza non

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

MODELLO DI REGRESSIONE LINEARE MULTIPLA

MODELLO DI REGRESSIONE LINEARE MULTIPLA MODELLO DI REGRESSIONE LINEARE MULTIPLA E la generalzzazone del modello d regressone lneare semplce: per spegare l fenomeno d nteresse Y vengono ntrodotte k, con k >, varabl esplcatve. Tale generalzzazone

Dettagli

L analisi di studi con variabili di risposta multiple

L analisi di studi con variabili di risposta multiple X1 X X 3 Quando un confronto venga effettuato per tre lvell d un fattore, sembrerebbe ntutvo effettuare l confronto con l test t d Student a pù lvell: X X X 1 1 vs vs vs X X X 3 3 Metodologa per l anals

Dettagli

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100 Dstrbuzon d frequenza Varable x Frequenze Frequenze Frequenze Frequenze % cumulate relatve x 1 n 1 n 1 n 1 / n 1 /*100 x n n 1 +n n / n /*100 x k n k n 1 +.+n k = n k / n k /*100 totale 1 100 Indc sntetc

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

Misure Ripetute ed Indipendenti

Misure Ripetute ed Indipendenti Msure Rpetute ed Indpendent Una delle metodologe pù semplc per valutare l affdabltà d una msura consste nel rpeterla dverse volte, nelle medesme condzon, ed esamnare dvers valor ottenut. Ovvamente, una

Dettagli

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000 Gennao 006 classe A VERIFICA DI STATISTICA fla A )Nel Lceo scentfco G.Bruno c sono 5 class seconde, cu alunn sono dstrbut per sezone e per sesso n base alla seconda tabella: Sesso\ A B D E F sezone Calcola

Dettagli

y. E' semplicemente la media calcolata mettendo

y. E' semplicemente la media calcolata mettendo COME FUNZIONA L'ANOVA A UN FATTORE: SI CONFRONTANO TANTE MEDIE SCOMPONENDO LA VARIABILITA' TOTALE Per testare l'potes nulla che la meda d una varable n k popolazon sa la stessa, s suddvde la varabltà totale

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

ANALISI ESPLORATIVA DI SERIE DI OSSERVAZIONI

ANALISI ESPLORATIVA DI SERIE DI OSSERVAZIONI ANALISI ESPLORATIVA DI SERIE DI OSSERVAZIONI Rappresentazone tabellare della sere storca Sequenza cronologca Sequenza ordnata Osservazon d massmo annuo d pogga n un gorno 2 Rappresentazone grafca della

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986

Analisi degli errori. Introduzione J. R. Taylor, Introduzione all analisi degli errori, Zanichelli, Bo 1986 Anals degl error Introduzone J. R. Taylor, Introduzone all anals degl error, Zanchell, Bo 1986 Sstem d untà d msura, rappresentazone numerca delle quanttà fsche e cfre sgnfcatve Resnck, Hallday e Krane

Dettagli

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing http://www.mauroennas.eu Element d lnear dscrmnant analyss per la classfcazone e l poszonamento nelle rcerche d maretng Mauro Ennas Lnear Dscrmnant Analyss http://www.mauroennas.eu ADL_fnale_confronto_Ecel.sav

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Regressioni con variabili strumentali

Regressioni con variabili strumentali Regresson con varabl strumental 3 mportant mnacce alla valdtà nterna del modello: Bas dovuta alle varabl omesse, varabl correlate con X ma non osservate e che per questo non possono essere ncluse nella

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Test d potes e soothng Rsultat dell eserctazone Legenda: A = copto eccellente; B = copto buono; C = copto suffcente; D = copto scarso; E = copto nsuffcente.

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

I MODELLI LINEARI GENERALIZZATI GLM

I MODELLI LINEARI GENERALIZZATI GLM METODI E TECNICHE DELLA RICERCA IN PSICOLOGIA CLINICA E LABORATORIO AA 018/019 PROF. V.P. SENESE http://psclab.altervsta.org/mettecpscclnca019/018_019.html Unverstà della Campana «Lug Vanvtell» (UCLV)

Dettagli

Modelli con varabili binarie (o qualitative)

Modelli con varabili binarie (o qualitative) Modell con varabl bnare (o qualtatve E( Y X α + βx + ε quando Y è una varable benoullana Y 1 0 s ha l modello lneare d probabltà Pr( Y 1 X α + βx + ε dove valor stmat della Y assumono l sgnfcato d probabltà.

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Esame di Statistica TEMA B Corso di Laurea in Economia Prof.ssa S. Giordano 15 Febbraio 2013

Esame di Statistica TEMA B Corso di Laurea in Economia Prof.ssa S. Giordano 15 Febbraio 2013 Esame d Statstca TEMA B Corso d Laurea n Economa Prof.ssa S. Gordano Febbrao 03 Cognome Nome Matr. (n stampatello) Eserczo Nella tabella seguente sono rporta dat rguardant la produzone lorda d energa elettrca

Dettagli

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

si utilizzano per confrontare le distribuzioni

si utilizzano per confrontare le distribuzioni Dspersone o Varabltà Defnzone: Le Msure d Dspersone: sono par a zero n caso d dspersone nulla s utlzzano per confrontare le dstrbuzon permettono d valutare la rappresentatvtà delle msure d centraltà. 89

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

MODELLI STOCASTICI DELLA CLASSE GLM

MODELLI STOCASTICI DELLA CLASSE GLM MODELLI STOCASTICI DELLA CLASSE GLM S possono consderare GLM con dstrbuzone specfcata o modell con quas-verosmglanza, quest ultm sono modell d tpo semparametrco. Illustramo l loro uso come: strumento d

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30).

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30). ODELLO ONOINDICE Il rendmento d un ttolo uò essere scrtto come: R = a + β R (1) dove: R = rendmento dell -mo ttolo; a = comonente aleatora del rendmento, ndendente dall andamento del mercato; R = è varable

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli