Urti tra due punti materiali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Urti tra due punti materiali"

Transcript

1 Uti ta due punti ateiali URTO: eento isolato nel quale una foza elatiaente intensa agisce pe un tepo elatiaente bee su due o più copi in contatto ta loo isultato di un contatto fisico F F isultato di una inteazione ta paticelle p He eteo-cate Le foze che, coe nel caso di un uto agiscono pe un tepo bee ispetto al 00 tepo di osseazione Uti su scale diese sono chiaate foza ipulsie A. Roeo Dinaica VII - Uti t 4 s α Ν

2 Uti ta due punti ateiali L oggetto L esecita su R una foza F(t) L oggetto R esecita su L foza F(t) F(t) può aee un intensità che aia nel tepo Nelle figue sono appesentati due possibili andaenti di F(t). L azione della foza si esplica nell inteallo τ t -t Le foze ipulsie che si anifestano duante un uto sono intene al sistea dei due punti ateiali inteagenti In assenza di foze estene si eifica duante l uto la conseazione della quantità di oto totale τ P P in,in +,in,fin +,fin Pfin Duante l uto la quantità di oto del cento di assa iane inaiata: P ( + ) P P costante CM in fin τ A. Roeo Dinaica VII - Uti

3 Uti ta due punti ateiali Il oto del cento di assa non iene alteato dall uto. Vaiano inece le quantità di oto di ciascun punto ateiale pe l effetto dell ipulso della foza di inteazione t f p f J F( t) dt dp p p t t i p i F ( t) dt F ( t) dt,fin,in J, Dato che : t P t F (E) ( t) F F, dt, t (E) F, p J J, J, e J,, pia consideati, pe le foze intene ipulsie che, t A. Roeo Dinaica VII - Uti 3 si siluppano nell uto, si possono sciee: τ f i,fin,in J, t t, p Le aiazioni di quantità di oto sono uguali ed opposte La conseazione della quantità di oto totale è possibile in pesenza di foze estene? Si se la duata dell ipulso τ è sufficienteente piccola e le foze estene non sono ipulsie. Infatti la aiazione della quantità di oto totale douta alle foze estene: J t F ( t) dt F τ

4 Uti ta due punti ateiali Conseazione della quantità di oto J t t F ( t) dt F τ τ τ F : alo edio della foza ipulsia nell inteallo τ Dato che J assue un aloe finito e che τ è olto bee, F può assuee aloi esteaente gandi, ispetto a cui F (E) è cetaente tascuabile La foza estena, se non è ipulsia, non odifica i singoli ipulsi duante l uto e quindi iane ea l uguaglianza J, -J,, e alida la conseazione della quantità di oto totale Nel caso dell uto la conseazione del oento angolae non aggiunge alcuna infoazione Infatti: duante l uto e quindi se Pin Pfin τ L in P in L fin P fin Nel caso dell uto il pincipio di conseazione della quantità di oto ed il pincipio di conseazione del oento angolae sono equialenti A. Roeo Dinaica VII - Uti 4

5 Uti ta due punti ateiali Enegia A pioi non è noto se le foze intene sono conseatie. Non si può assuee la conseazione dell enegia eccanica del sistea duante l uto nè che l Enegia cinetica si consei Dato che la posizione dei punti non aia nell uto, eentuali enegie potenziali non aiano nell uto e quindi: E E k L enegia cinetica del sistea può essee espessa utilizzando il secondo teoea di Konig: E k + ( + ) CM E' k Enegia cinetica del cento di assa: non aia se ale la conseazione della quantità di oto Enegia cinetica dei due punti ispetto al sistea del cento di assa. E ' k ' + ' Può ianee costante o aiae a seconda che le foze intene siano conseatie o non siano conseatie A. Roeo Dinaica VII - Uti 5

6 Sistea del laboatoio e sistea del cento di assa Sistei di ifeiento in cui può essee studiato l uto: Sistea del laboatoio (sistea ineziale) Sistea del cento di assa Legae ta le elocità nei due sistei, in qualsiasi istante: + ' CM ' + CM Coe già diostato, nel sistea del cento di assa, la quantità di oto totale è nulla: ' + ' ' + 0,in,in,fin ',fin p' p',in p',in,fin p',fin Dal cento di assa si edono i punti aiae eso il cento di assa con quantità di oto uguali in odulo ed opposte in eso. I punti si utano nella posizione occupata dal cento di assa e ipatono dopo l uto con quantità di oto ancoa uguali in odulo ed opposte in eso. In geneale pe ogni punto : p A. Roeo Dinaica VII - Uti 6 in ' fin p'

7 Uto copletaente anelastico L uto si chiaa copletaente anelastico quando i due punti estano attaccati dopo l uto, foando un unico copo puntifoe di assa + Se e sono le elocità dei due punti pia dell uto e la elocità coune iediataente dopo l uto si ha: ( + )' + ( + ) CM Le aiazioni di quantità di oto dei singoli punti sono: CM p p ( + + Subito dopo l uto i due punti si uoono con la elocità che aea il cento di assa un istante pia dell uto ( CM esta inaiata nell uto) CM ) CM Si eifica dalla elazione sopa, che queste due aiazioni sono uguali ed opposte: + ( + ) CM ( CM ) (CM ) A. Roeo Dinaica VII - Uti 7

8 Uto copletaente anelastico Enegia cinetica pia dell uto: E k,in + ( Enegia cinetica + )CM + E' k Applicando il teoea di Konig Enegia cinetica dopo l uto: E + k,fin ( ) CM < E k, in Enegia cinetica nel sistea del cento di assa In un uto copletaente anelastico, l enegia totale diinuisce. L enegia che iene assobita è E k e coisponde all enegia cinetica ispetto al cento di assa che i punti hanno pia dell uto : E k E k,fin E k,in NOTA: Doe finisce l enegia pesa?. E' k ( + ) CM I due copi duante l uto si defoano in odo peanente e estano copenetati. Il laoo copiuto, a spese dell enegia cinetica iniziale, pe fae aenie la defoazione non iene più ecupeato, oeo le foze intene che si siluppano non sono conseatie.

9 Esepio Un poiettile di assa p 0g si uoe oizzontalente con 400s - e peneta in un blocco di assa b 390g inizialente in quiete su una supeficie pia di attito.quali sono le elocità finali del poiettile e del blocco? y p Pia dell uto in b Dopo l uto b p fin Sol.: o x Quantità di oto totale iniziale P 3 in,x p in,x 0 400g s 4 0 gs 4kg s Quantità di oto totale finale P + fin,x ( p b ) fin, x 400g fin, x 0.4kg fin, x P in,x P fin,x 4kg s 0.4kg fin, x fin,x 0s A. Roeo Dinaica VII - Uti 9

10 Esepio - continuazione y Pia dell uto b Dopo l uto b p in fin p o x NOTA : NOTA : K p in, x 800J K f ( p + b ) fin, x 0J i L enegia non si consea: caloe, defoazione. Qual è la aiazione di quantità di oto del poiettile e del blocco? fin,x 0s Poiettile: P p p p,fin p p,in ( 0 Kg)( 0s ) ( 0 Kg)( 400s ) 3.9Ns Blocco: P ( 0.39Kg)( 0s ) ( 0) b +3.9Ns Opposti! A. Roeo Dinaica VII - Uti 0

11 Esepio: pendolo balistico Dispositio pe deteinae la elocità dei poiettili Una pallottola di assa, che iaggia oizzontalente con elocità,in uta il pendolo di assa ianendoi conficcata. Nessuna foza estena agisce sul sistea. f 0 h,in pe :,in 0 del sistea subito dopo l uto:,fin fin conseazione della quantità di oto P P in,x pe :,in del sistea subito dopo l uto:,fin fin fin,x,in ( + ) fin fin, in + A. Roeo Dinaica VII - Uti

12 Esepio: pendolo balistico - continuazione f 0 del sistea subito dopo l uto: fin,in fin +, in h Teinata la collisione, il pendolo con la pallottola inizia ad oscillae aggiungendo un altezza h, isuata ispetto alla posizione di equilibio, tale che l enegia potenziale eguagli l enegia cinetica del sistea subito dopo l uto Conseazione dell enegia eccanica ( + ) gh ( + ) fin,in ( + ),in + gh A. Roeo Dinaica VII - Uti

13 Esecizio: uto copletaente anelastico Un blocco di kg pate da feo, senza attito, lungo un piano inclinato di ispetto al piano oizzontale dall altezza di 0,65. All aio, sul piano a quota zeo, uta, attaccandoisi, un blocco di assa 3,5 kg. I due blocchi congiunti slittano pe una distanza di 0,57 sul piano oizzontale fino ad aestasi. Qual è il coefficiente di attito della supeficie oizzontale? kg h0,65 3,5 kg Sol.: 0,57 Moto del blocco di kg Pe toae la elocità finale di, pia dell uto con applichiao la conseazione dell enegia gh ( ) fin fin + + gh 9,8 0, 65 3,57 s Subito dopo l uto i due punti blocchi si uoono insiee con la elocità ( f ): 3,57 5,5,3 s fin,3 s 3

14 kg Esecizio: continuazione h0,65 3,5 kg fin,3 s Moto dei due blocchi l 0,57 Dall istante dopo l uto i due blocchi si uoono sul piano oizzontale con elocità iniziale f e deceleazione costante data dall attito dinaico: Utilizzando il legae ta aiazione dell enegia cinetica e laoo E W k at f µ k 0, 5 l g ( + ) µ ( + )g l f k A. Roeo Dinaica VII - Uti 4

15 h0,65 kg 3,5 kg Esecizio: continuazione Utilizzo le equazioni del oto fin,3 s Moto dei due blocchi l 0,57 Dall istante dopo l uto i due blocchi si uoono sul piano oizzontale con elocità iniziale f e deceleazione costante data dall attito dinaico: Utilizzando le equazioni del oto unifoeente deceleato: fk a µ k g a µ g k (t) x(t) f at Pe x(t)l, (t)0 f t at 0 f ( µ kg)t l f t µ ( g) t k t µ l f k f g µ k f g ( µ g) k µ k f g l µ f k g f µ k 0, 5 lg A. Roeo Dinaica VII - Uti 5

16 Uto elastico Si definisce uto elastico, un uto duante il quale si consea anche l enegia cinetica del sistea Le foze intene sono conseatie. I due copi che utano subiscono, duante l uto, delle defoazioni elastiche, ipendendo la configuazione iniziale subito dopo l uto. Nell uto elastico sono dunque alide le equazioni: P fin P in E E k,fin k,in Sistea di ifeiento del laboatoio Sistea di ifeiento del cento di assa 6

17 Uto elastico Caso unidiesionale I due copi si uoono pia e dopo l uto elastico lungo la stessa diezione. Supponendo di conoscee le asse e le elocità iniziali dei due copi che utano, attaeso le due equazioni di conseazione: possiao icaae il aloe delle due elocità finali incognite: P in P fin in in fin + fin + ( + ) CM P fin P in E E k,fin k,in E E k,fin k,in in + i, in, fin +, fin,fin ( ),in + +,in Sistea del laboatoio Sistea del cento di assa,fin,in + ( + ),in A. Roeo Dinaica VII - Uti 7

18 Sistea del laboatoio Uto elastico Caso unidiesionale,fin,fin ( ),in +,in + + ( ),in +,in Attenzione ai segni delle elocità!pendendo coe ifeiento il eso di,in, alloa,in a consideata con segno positio se è concode a,in, o negatio se è discode. Segno delle elocità finali: - positio elocità concode a,in - negatio elocità discode a,in Nel sistea del cento di assa pe l uto elastico si icaa: ',fin ',fin,in,in Sistea del cento di assa Velocità e quantità di oto di ciascun punto iangono inaiate in odulo, cabiano solo il eso 8

19 Esepio uto elastico Un neutone di assa uta fontalente, in odo elastico un besaglio costituito da un nucleo atoico di assa inizialente feo. Qual è la diinuzione pecentuale dell enegia del neutone? Fae il calcolo nei casi in cui il nucleo besaglio sia: ) Piobo; (assa atoica: A06) ) Cabonio; (assa atoica: A) 3) Idogeno. (assa atoica: A) Sol.: E,in k,in Ek,,in,in E k,,fin E k,,in E k,, fin + ( ),fin,in,in doe in questo caso,in 0,fin, in + + k,,fin 4, i E 4 k,,fin 4, fin Ek,,fin E ( ) k,,in + ( ) E ( ) + k,,in + E, fin Caso: ) Caso: ) Caso: 3) A 06: 06 A : A : E E E E E E k,,fin k,,in k,,fin k,,in k,,fin k,,in 4 ( + ) 4 ( + ) 4 ( + ) , 0 ( 07) ( 3) % 4 0, 8 8% 4 00% ( )

20 Uti ta punti ateiali e copi igidi e uti ta copi igidi Riassunto pe la isoluzione degli esecizi: Se uto è elastico Conseazione dell enegia cinetica Se agiscono solo foze intene o quelle estene non sono ipulsie Conseazione della quantità di oto totale Se esiste un incolo che tiene feo un punto del copo igido Esiste una foza estena di tipo ipulsio La quantità di oto non si consea Se agiscono solo foze intene o quelle estene non sono ipulsie Conseazione del oento angolae L, indipendenteente dalla scelta del polo O Se agiscono foze estene, il cui oento Conseazione del oento angolae L M è nullo ispetto ad un dato polo calcolato ispetto allo stesso polo O Quando il copo utato è incolato, il sistea di incoli può esplicitae, duante l uto, un sistea di foze di isultante R e un oento isultante M. L effetto coplessio nel beissio tepo di duata dell uto è dato dall ipulso della foza e dall ipulso angolae: J dt Mdt R J A. Roeo Dinaica VII - Uti 0

21 Esecizio uti ta punti ateiali e copo igido Una sbaa oogenea di lunghezza L e assa M, è sospesa nel punto O ed è libea di uotae nel piano eticale attono ad un asse oizzontale passante pe tale punto. Inizialente la sbaa è inclinata di un angolo θ 0, ispetto alla diezione eticale (edi figua) e da questa posizione ad un dato istante iene lasciata cadee. Raggiunta la posizione eticale essa colpisce, una assa puntifoe appoggiata sul piano. Nell ipotesi in cui l asta uoti attoni ad O senza attito e che l uto con la assa sia copletaente anelastico, calcolae: A. Il odulo della elocità angolae ω 0 con cui la sbaa uta la assa appoggiata sul piano. B. L angolo θ fin, ispetto alla diezione eticale, del quale si sposta la sbaa, in seguito all uto con la assa puntifoe. θ 0 A. Roeo Dinaica VII - Uti

22 Esecizio uti ta punti ateiali e copo igido L h θ 0 Sol.: Il oto della sbaa può essee scheatizzato in 3 fasi:. fase di discesa della sbaa. uto copletaente anelastico con 3. isalita del sistea sbaa + assa Fase : E possibile applicae la conseazione dell enegia eccanica pe la sbaa ta l istante iniziale in cui la sbaa è fea a θ 0 ispetto alla diezione eticale e l istante finale iediataente pecedente all uto con la assa : E + E E + E 0 + Mgh k,in p,in k,fin p,fin h L L cosθ 0 L Iω Mg + L Mg L cosθ0 0 ω0 + I I 0 ML 3 Mg L Mg L L cosθ0 ω0 ML 3 L + Mg 3g 0 cos L ω ( θ ) A. Roeo Dinaica VII - Uti 0

23 Esecizio uti ta punti ateiali e copo igido Sol. - continuazione: Fase : Duante l uto si ha la CONSERVAZIONE DEL MOMENTO ANGOLARE TOTALE del sistea baa+assa ispetto al polo O: L h θ 0 Lin (sbaa) + Lin () Lfin (sbaa + ) I0 ω0 + 0 I 0 ML 3 (I 0 + L ) ω' ω ' 3 ML 3 ML + L ω 0 A. Roeo Dinaica VII - Uti 3

24 Esecizio uti ta punti ateiali e copo igido Sol. - continuazione: L θ 0 Fase 3: Duante la isalita del sistea sbaa + si ha la CONSERVAZIONE DELL ENERGIA MECCANICA h Ek,in (sbaa + ) + E p,in (sbaa + ) E k,fin (sbaa + ) + E p, fin (sbaa + ) ( I + L ) 0 ω' + Mg L L 0 + g (L Lcos θ fin ) + Mg (L cos θ fin ) ( cos θ fin ) ( I + L ) 0 M ω' + gl θ fin A. Roeo Dinaica VII - Uti 4

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

Misure elettriche circuiti a corrente continua

Misure elettriche circuiti a corrente continua Misure elettriche circuiti a corrente continua Legge di oh Dato un conduttore che connette i terinali di una sorgente di forza elettrootrice si osserva nel conduttore stesso un passaggio di corrente elettrica

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Sistemi materiali e quantità di moto

Sistemi materiali e quantità di moto Capitolo 4 Sistemi materiali e quantità di moto 4.1 Impulso e quantità di moto 4.1.1 Forze impulsive Data la forza costante F agente su un punto materiale per un intervallo di tempo t, si dice impulso

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

). Per i tre casi indicati sarà allora: 1: L L 2

). Per i tre casi indicati sarà allora: 1: L L 2 apitolo 0 Enegia potenziale elettica Domane. Il lavoo pe spostae una caica ta ue punti è: L 0(! ). Pe i te casi inicati saà alloa: L (50! 00 ) (50 ) : 0 0 : L 0! 0 3: L 0! 0 [5 ( 5 )] (50 ) [ 0 ( 60 )]

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Forza centripeta e gravitazione

Forza centripeta e gravitazione pitolo 6 Foz centipet e gitzione 1. Il oto cicole Quli sono le ctteistiche del oto cicole? Un pticell si dice nit di oto cicole qundo l su tiettoi è un ciconfeenz. Lo studio di questo tipo di oto iene

Dettagli

Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v.

Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. Quantità di moto Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. La seconda legge di Newton può essere scritta con la quantità di moto: d Q F =

Dettagli

Dai numeri naturali ai numeri reali

Dai numeri naturali ai numeri reali .1 Introduzione Dai nueri naturali ai nueri reali In questa unità didattica vogliao riprendere rapidaente le nostre conoscenze sugli insiei nuerici (N, Z e Q), e successivaente apliarle a coprendere i

Dettagli

Gravitazione Universale

Gravitazione Universale Gavitazione Univesale Liceo Ginnasio Statale S.M. Legnani Anno Scolastico 2007/08 Classe 3B IndiizzoClassico Pof.Robeto Squellati 1 Le leggi di Kepleo Ossevando la posizione di Mate ispetto alle alte stelle,

Dettagli

I.12. Elementi di teoria dell urto

I.12. Elementi di teoria dell urto Corso di fisica generale a cura di Claudio Cereda rel. 5. 7 marzo 04 I.. Elementi di teoria dell urto Cos è un urto? L urto totalmente anelastico L urto elastico Il rallentamento dei neutroni Quesiti di

Dettagli

CompitoTotale_21Feb_tutti_2011.nb 1

CompitoTotale_21Feb_tutti_2011.nb 1 CopitoTotale_2Feb_tutti_20.nb L Sia data una distribuzione di carica positiva, disposta su una seicirconferenza di raggio R con densità lineare di carica costante l. Deterinare : al l espressione del capo

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Per vedere quando è che una forza compie lavoro e come si calcola questo lavoro facciamo i seguenti casi.

Per vedere quando è che una forza compie lavoro e come si calcola questo lavoro facciamo i seguenti casi. LAVORO ED ENERGIA TORNA ALL'INDICE Quando una forza, applicata ad un corpo, è la causa di un suo spostamento, detta forza compie un lavoro sul corpo. In genere quando un corpo riceve lavoro, ce n è un

Dettagli

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto. Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità

Dettagli

Elementi della teoria della diffusione

Elementi della teoria della diffusione Elementi della teoia della diffusione Pe ottenee infomazioni sulla stuttua della mateia, dai nuclei ai solidi, si studia la diffusione scatteing) di paticelle: elettoni, paticelle alfa, potoni, neutoni,

Dettagli

L elettrodinamica dei corpi in movimento 1 A. Einstein

L elettrodinamica dei corpi in movimento 1 A. Einstein L elettrodinamica dei corpi in moimento A Einstein È noto che l elettrodinamica di Maxwell - come la si interpreta attualmente - nella sua applicazione ai corpi in moimento porta a delle asimmetrie che

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti LAVORO D NRGIA 5. GNRALITÀ In questo capitolo si farà riferimento a concetto quali lavoro ed energia termini che hanno nella

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

R-402A R-404A R-410A R-507 SIZE COLOR CODE

R-402A R-404A R-410A R-507 SIZE COLOR CODE La temostatica BQ può essee pesonalizzata pe qualsiasi applicazione di efigeazione e condizionamento. Devi solo selezionae il coetto elemento temostatico, la giusta taglia dell oifizio ed il tipo di copo

Dettagli

4. FLUIDI AERIFORMI NEI CONDOTTI

4. FLUIDI AERIFORMI NEI CONDOTTI Politenio di oino Lauea a Distanza in Ingegneia Meania Coso di Mahine 4 FLUIDI AERIFORMI NEI CONDOI Nello studio delle ahine si one il oblea di deteinae la onfoazione dei ondotti in odo he il fluido subisa

Dettagli

Campo elettrostatico nei conduttori

Campo elettrostatico nei conduttori Campo elettostatico nei conduttoi Consideeemo conduttoi metallici (no gas, semiconduttoi, ecc): elettoni di conduzione libei di muovesi Applichiamo un campo elettostatico: movimento di caiche tansiente

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

FAST FOURIER TRASFORM-FFT

FAST FOURIER TRASFORM-FFT A p p e n d i c e B FAST FOURIER TRASFORM-FFT La tasfomata disceta di Fouie svolge un uolo molto impotante nello studio, nell analisi e nell implementazione di algoitmi dei segnali in tempo disceto. Come

Dettagli

Impianti di Condizionamento: Impianti a tutt'aria e misti

Impianti di Condizionamento: Impianti a tutt'aria e misti Facoltà di Ingegneria - Polo di Rieti Corso di " Ipianti Tecnici per l'edilizia" Ipianti di Condizionaento: Ipianti a tutt'aria e isti Prof. Ing. Marco Roagna INTRODUZIONE Una volta noti i carichi sensibili

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

r~~f~~. --r-~r-r ---- _[::=_~- r-l

r~~f~~. --r-~r-r ---- _[::=_~- r-l In tutti i problei si userà coe velocità del suono in aria il valore 340 /s (valido per una teperatura dell'aria di circa 18 C), salvo diversa indicazione. La propagazione ondosa La figura seguente ostra

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di

Dettagli

GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE

GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE 21 arzo 2013 GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE La nuova base 2010 A partire dal ese di arzo 2013, l Istituto nazionale di statistica avvia la pubblicazione dei nuovi indici

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA 8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

LA DINAMICA LE LEGGI DI NEWTON

LA DINAMICA LE LEGGI DI NEWTON LA DINAMICA LE LEGGI DI NEWTON ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Forza Exercise 1. Se un chilogrammo campione subisce un accelerazione di 2.00 m/s 2 nella direzione dell angolo formante

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico TIP Aeroteri TIP Aeroteri coe apparecchi a parete e soffitto Catalogo tecnico Indice 01 Inforazioni sul prodotto 6 Panoraica 7 Dati sul prodotto 8 Guida alla scelta: Panoraica delle versioni 9 TIP in un

Dettagli

b) quando la biglia si ferma tutta la sua energia cinetica sara stata trasformata in energia potenziale della molla. Quindi

b) quando la biglia si ferma tutta la sua energia cinetica sara stata trasformata in energia potenziale della molla. Quindi B C:\Didattica\SBAC_Fisica\Esercizi esame\sbac - problemi risolti-18jan2008.doc problema 1 Una biglia di massa m = 2 kg viene lasciata cadere (da ferma) da un'altezza h = 40 cm su di una molla avente una

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Nota metodologica Strategia di campionamento e livello di precisione dei risultati

Nota metodologica Strategia di campionamento e livello di precisione dei risultati Nota etodologica Strategia di capionaento e livello di precisione dei risultati 1. Obiettivi conoscitivi La popolaione di interesse dell indagine in oggetto, ossia l insiee delle unità statistiche intorno

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

1 Introduzione alla dinamica dei telai

1 Introduzione alla dinamica dei telai 1 Introduzione alla dinamica dei telai 1.1 Rigidezza di un telaio elementare Il telaio della figura 1.1 ha un piano solo e i telai che hanno un piano solo, sono chiamati, in questo testo, telai elementari.

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

Curve caratteristiche meccaniche di motori elettrici C.C.

Curve caratteristiche meccaniche di motori elettrici C.C. Motoi 1 Idie ue aatteistihe meaihe di motoi elettii.. osideazioi geeali Motoi ad eitazioe idipedete 1 Opeazioi o oete d eitazioe ostate Opeazioi o oete d eitazioe aiabile e tesioe d amatua ostate Motoi

Dettagli

Confronto fra valore del misurando e valore di riferimento (1 di 2)

Confronto fra valore del misurando e valore di riferimento (1 di 2) Confronto fra valore del isurando e valore di riferiento (1 di 2) Talvolta si deve espriere un parere sulla accettabilità o eno di una caratteristica fisica del isurando ediante il confronto fra il valore

Dettagli

Esercitazioni di Meccanica Applicata alle Macchine

Esercitazioni di Meccanica Applicata alle Macchine Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Esercitazioni di Meccanica Applicata alle Macchine

Dettagli

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta L. P. 22 Aprile 2015 Sommario L espressione della quantità di moto e dell energia in relatività ristretta

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

Leica Lino L360, L2P5, L2+, L2, P5, P3

Leica Lino L360, L2P5, L2+, L2, P5, P3 Leica Lino L360, L25, L2+, L2, 5, 3 Manuale d'uso Versione 757665g Italiano Congratulazioni per aver acquistato Leica Lino. Le ore di sicurezza sono allegate al Manuale d'uso. Leggere attentaente le ore

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

INTRODUZIONE AL RUMORE NEI CIRCUITI ELETTRONICI RAPPRESENTAZIONE DEL RUMORE

INTRODUZIONE AL RUMORE NEI CIRCUITI ELETTRONICI RAPPRESENTAZIONE DEL RUMORE INTODUZIONE A UMOE NEI CICUITI EETTONICI Se prendiao n qalsiasi circito elettronico ed andiao ad analizzare il valore di na grandezza elettrica (tensione o corrente in n pnto, vediao che non è stabile

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

IL FENOMENO DELLA RISONANZA

IL FENOMENO DELLA RISONANZA IL FENOMENO DELLA RISONANZA Premessa Pur non essendo possibile effettuare una trattazione rigorosa alle scuole superiori ritengo possa essere didatticamente utile far scoprire agli studenti il fenomeno

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Concorso Premiamo i risultati Esempi di Indicatori

Concorso Premiamo i risultati Esempi di Indicatori Concorso Premiamo i risultati Esempi di Indicatori 1 ESEMPIO INDICATOI PE UN POGETTO DI DEFINIZIONE ED ATTUAZIONE DI UN PIANO DELLA FOMAZIONE AMBITO DI INTEVENTO: MIGLIOAMENTO NELLE PATICHE DI GESTIONE

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

SPERIMENTAZIONE FARMACI - RIPARTO

SPERIMENTAZIONE FARMACI - RIPARTO SPEIMENTAZIONE FAMAI - IPATO - Sperimentazione SOBIHAEM89-001 sper. n. 18/2014 - Medico esponsabile TOSETTO ALBETO 4.160,00 A. (riscosso con fatt. n. Z 1141 del 12/03/2015 ) - FONDO 3.952,00 - SEVIZIO

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica www.suolinweb.ltevist.og L Dinmi Poblemi di isi L Dinmi PROBLEA N. Un opo di mss m 4 kg viene spostto on un foz ostnte 3 N su un supefiie piv di ttito pe un ttto s,3 m. Supponendo he il opo inizilmente

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Consigli per la risoluzione dei problemi

Consigli per la risoluzione dei problemi Cnsigli per la risluzine dei prblei Una parte fndaentale di gni crs di Fisica è la risluzine di prblei. Rislvere prblei spinge a raginare su idee e cncetti e a cprenderli egli attravers la lr applicazine.

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

4capitolo. Le leggi che governano il moto dei corpi. sommario. 4.1 La prima legge della dinamica. 4.4 La legge di gravitazione universale

4capitolo. Le leggi che governano il moto dei corpi. sommario. 4.1 La prima legge della dinamica. 4.4 La legge di gravitazione universale 4capitolo Le leggi che governano il moto dei corpi sommario 4.1 La prima legge della dinamica 4.1.1 La Terra è un riferimento inerziale? 4.2 La seconda legge della dinamica 4.2.1 La massa 4.2.2 Forza risultante

Dettagli

CADUTA DALL ALTO E LINEE VITA LA LEGGE PAROLARI

CADUTA DALL ALTO E LINEE VITA LA LEGGE PAROLARI CORSO DI AGGIORNAMENTO PER LA FORMAZIONE DELLE COMPETENZE PROFESSIONALI IN MATERIA DI SICUREZZA NEI CANTIERI EDILI ALLA LUCE DELL ENTRATA IN VIGORE DEL NUOVO TESTO UNICO SULLA SICUREZZA D.Lgs. 9 aprile

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4

Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4 1. Descrizione della struttura portante Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4 terrazzamenti delimitati da preesistenti muri di sostegno. L edificio è suddiviso

Dettagli