Urti tra due punti materiali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Urti tra due punti materiali"

Transcript

1 Uti ta due punti ateiali URTO: eento isolato nel quale una foza elatiaente intensa agisce pe un tepo elatiaente bee su due o più copi in contatto ta loo isultato di un contatto fisico F F isultato di una inteazione ta paticelle p He eteo-cate Le foze che, coe nel caso di un uto agiscono pe un tepo bee ispetto al 00 tepo di osseazione Uti su scale diese sono chiaate foza ipulsie A. Roeo Dinaica VII - Uti t 4 s α Ν

2 Uti ta due punti ateiali L oggetto L esecita su R una foza F(t) L oggetto R esecita su L foza F(t) F(t) può aee un intensità che aia nel tepo Nelle figue sono appesentati due possibili andaenti di F(t). L azione della foza si esplica nell inteallo τ t -t Le foze ipulsie che si anifestano duante un uto sono intene al sistea dei due punti ateiali inteagenti In assenza di foze estene si eifica duante l uto la conseazione della quantità di oto totale τ P P in,in +,in,fin +,fin Pfin Duante l uto la quantità di oto del cento di assa iane inaiata: P ( + ) P P costante CM in fin τ A. Roeo Dinaica VII - Uti

3 Uti ta due punti ateiali Il oto del cento di assa non iene alteato dall uto. Vaiano inece le quantità di oto di ciascun punto ateiale pe l effetto dell ipulso della foza di inteazione t f p f J F( t) dt dp p p t t i p i F ( t) dt F ( t) dt,fin,in J, Dato che : t P t F (E) ( t) F F, dt, t (E) F, p J J, J, e J,, pia consideati, pe le foze intene ipulsie che, t A. Roeo Dinaica VII - Uti 3 si siluppano nell uto, si possono sciee: τ f i,fin,in J, t t, p Le aiazioni di quantità di oto sono uguali ed opposte La conseazione della quantità di oto totale è possibile in pesenza di foze estene? Si se la duata dell ipulso τ è sufficienteente piccola e le foze estene non sono ipulsie. Infatti la aiazione della quantità di oto totale douta alle foze estene: J t F ( t) dt F τ

4 Uti ta due punti ateiali Conseazione della quantità di oto J t t F ( t) dt F τ τ τ F : alo edio della foza ipulsia nell inteallo τ Dato che J assue un aloe finito e che τ è olto bee, F può assuee aloi esteaente gandi, ispetto a cui F (E) è cetaente tascuabile La foza estena, se non è ipulsia, non odifica i singoli ipulsi duante l uto e quindi iane ea l uguaglianza J, -J,, e alida la conseazione della quantità di oto totale Nel caso dell uto la conseazione del oento angolae non aggiunge alcuna infoazione Infatti: duante l uto e quindi se Pin Pfin τ L in P in L fin P fin Nel caso dell uto il pincipio di conseazione della quantità di oto ed il pincipio di conseazione del oento angolae sono equialenti A. Roeo Dinaica VII - Uti 4

5 Uti ta due punti ateiali Enegia A pioi non è noto se le foze intene sono conseatie. Non si può assuee la conseazione dell enegia eccanica del sistea duante l uto nè che l Enegia cinetica si consei Dato che la posizione dei punti non aia nell uto, eentuali enegie potenziali non aiano nell uto e quindi: E E k L enegia cinetica del sistea può essee espessa utilizzando il secondo teoea di Konig: E k + ( + ) CM E' k Enegia cinetica del cento di assa: non aia se ale la conseazione della quantità di oto Enegia cinetica dei due punti ispetto al sistea del cento di assa. E ' k ' + ' Può ianee costante o aiae a seconda che le foze intene siano conseatie o non siano conseatie A. Roeo Dinaica VII - Uti 5

6 Sistea del laboatoio e sistea del cento di assa Sistei di ifeiento in cui può essee studiato l uto: Sistea del laboatoio (sistea ineziale) Sistea del cento di assa Legae ta le elocità nei due sistei, in qualsiasi istante: + ' CM ' + CM Coe già diostato, nel sistea del cento di assa, la quantità di oto totale è nulla: ' + ' ' + 0,in,in,fin ',fin p' p',in p',in,fin p',fin Dal cento di assa si edono i punti aiae eso il cento di assa con quantità di oto uguali in odulo ed opposte in eso. I punti si utano nella posizione occupata dal cento di assa e ipatono dopo l uto con quantità di oto ancoa uguali in odulo ed opposte in eso. In geneale pe ogni punto : p A. Roeo Dinaica VII - Uti 6 in ' fin p'

7 Uto copletaente anelastico L uto si chiaa copletaente anelastico quando i due punti estano attaccati dopo l uto, foando un unico copo puntifoe di assa + Se e sono le elocità dei due punti pia dell uto e la elocità coune iediataente dopo l uto si ha: ( + )' + ( + ) CM Le aiazioni di quantità di oto dei singoli punti sono: CM p p ( + + Subito dopo l uto i due punti si uoono con la elocità che aea il cento di assa un istante pia dell uto ( CM esta inaiata nell uto) CM ) CM Si eifica dalla elazione sopa, che queste due aiazioni sono uguali ed opposte: + ( + ) CM ( CM ) (CM ) A. Roeo Dinaica VII - Uti 7

8 Uto copletaente anelastico Enegia cinetica pia dell uto: E k,in + ( Enegia cinetica + )CM + E' k Applicando il teoea di Konig Enegia cinetica dopo l uto: E + k,fin ( ) CM < E k, in Enegia cinetica nel sistea del cento di assa In un uto copletaente anelastico, l enegia totale diinuisce. L enegia che iene assobita è E k e coisponde all enegia cinetica ispetto al cento di assa che i punti hanno pia dell uto : E k E k,fin E k,in NOTA: Doe finisce l enegia pesa?. E' k ( + ) CM I due copi duante l uto si defoano in odo peanente e estano copenetati. Il laoo copiuto, a spese dell enegia cinetica iniziale, pe fae aenie la defoazione non iene più ecupeato, oeo le foze intene che si siluppano non sono conseatie.

9 Esepio Un poiettile di assa p 0g si uoe oizzontalente con 400s - e peneta in un blocco di assa b 390g inizialente in quiete su una supeficie pia di attito.quali sono le elocità finali del poiettile e del blocco? y p Pia dell uto in b Dopo l uto b p fin Sol.: o x Quantità di oto totale iniziale P 3 in,x p in,x 0 400g s 4 0 gs 4kg s Quantità di oto totale finale P + fin,x ( p b ) fin, x 400g fin, x 0.4kg fin, x P in,x P fin,x 4kg s 0.4kg fin, x fin,x 0s A. Roeo Dinaica VII - Uti 9

10 Esepio - continuazione y Pia dell uto b Dopo l uto b p in fin p o x NOTA : NOTA : K p in, x 800J K f ( p + b ) fin, x 0J i L enegia non si consea: caloe, defoazione. Qual è la aiazione di quantità di oto del poiettile e del blocco? fin,x 0s Poiettile: P p p p,fin p p,in ( 0 Kg)( 0s ) ( 0 Kg)( 400s ) 3.9Ns Blocco: P ( 0.39Kg)( 0s ) ( 0) b +3.9Ns Opposti! A. Roeo Dinaica VII - Uti 0

11 Esepio: pendolo balistico Dispositio pe deteinae la elocità dei poiettili Una pallottola di assa, che iaggia oizzontalente con elocità,in uta il pendolo di assa ianendoi conficcata. Nessuna foza estena agisce sul sistea. f 0 h,in pe :,in 0 del sistea subito dopo l uto:,fin fin conseazione della quantità di oto P P in,x pe :,in del sistea subito dopo l uto:,fin fin fin,x,in ( + ) fin fin, in + A. Roeo Dinaica VII - Uti

12 Esepio: pendolo balistico - continuazione f 0 del sistea subito dopo l uto: fin,in fin +, in h Teinata la collisione, il pendolo con la pallottola inizia ad oscillae aggiungendo un altezza h, isuata ispetto alla posizione di equilibio, tale che l enegia potenziale eguagli l enegia cinetica del sistea subito dopo l uto Conseazione dell enegia eccanica ( + ) gh ( + ) fin,in ( + ),in + gh A. Roeo Dinaica VII - Uti

13 Esecizio: uto copletaente anelastico Un blocco di kg pate da feo, senza attito, lungo un piano inclinato di ispetto al piano oizzontale dall altezza di 0,65. All aio, sul piano a quota zeo, uta, attaccandoisi, un blocco di assa 3,5 kg. I due blocchi congiunti slittano pe una distanza di 0,57 sul piano oizzontale fino ad aestasi. Qual è il coefficiente di attito della supeficie oizzontale? kg h0,65 3,5 kg Sol.: 0,57 Moto del blocco di kg Pe toae la elocità finale di, pia dell uto con applichiao la conseazione dell enegia gh ( ) fin fin + + gh 9,8 0, 65 3,57 s Subito dopo l uto i due punti blocchi si uoono insiee con la elocità ( f ): 3,57 5,5,3 s fin,3 s 3

14 kg Esecizio: continuazione h0,65 3,5 kg fin,3 s Moto dei due blocchi l 0,57 Dall istante dopo l uto i due blocchi si uoono sul piano oizzontale con elocità iniziale f e deceleazione costante data dall attito dinaico: Utilizzando il legae ta aiazione dell enegia cinetica e laoo E W k at f µ k 0, 5 l g ( + ) µ ( + )g l f k A. Roeo Dinaica VII - Uti 4

15 h0,65 kg 3,5 kg Esecizio: continuazione Utilizzo le equazioni del oto fin,3 s Moto dei due blocchi l 0,57 Dall istante dopo l uto i due blocchi si uoono sul piano oizzontale con elocità iniziale f e deceleazione costante data dall attito dinaico: Utilizzando le equazioni del oto unifoeente deceleato: fk a µ k g a µ g k (t) x(t) f at Pe x(t)l, (t)0 f t at 0 f ( µ kg)t l f t µ ( g) t k t µ l f k f g µ k f g ( µ g) k µ k f g l µ f k g f µ k 0, 5 lg A. Roeo Dinaica VII - Uti 5

16 Uto elastico Si definisce uto elastico, un uto duante il quale si consea anche l enegia cinetica del sistea Le foze intene sono conseatie. I due copi che utano subiscono, duante l uto, delle defoazioni elastiche, ipendendo la configuazione iniziale subito dopo l uto. Nell uto elastico sono dunque alide le equazioni: P fin P in E E k,fin k,in Sistea di ifeiento del laboatoio Sistea di ifeiento del cento di assa 6

17 Uto elastico Caso unidiesionale I due copi si uoono pia e dopo l uto elastico lungo la stessa diezione. Supponendo di conoscee le asse e le elocità iniziali dei due copi che utano, attaeso le due equazioni di conseazione: possiao icaae il aloe delle due elocità finali incognite: P in P fin in in fin + fin + ( + ) CM P fin P in E E k,fin k,in E E k,fin k,in in + i, in, fin +, fin,fin ( ),in + +,in Sistea del laboatoio Sistea del cento di assa,fin,in + ( + ),in A. Roeo Dinaica VII - Uti 7

18 Sistea del laboatoio Uto elastico Caso unidiesionale,fin,fin ( ),in +,in + + ( ),in +,in Attenzione ai segni delle elocità!pendendo coe ifeiento il eso di,in, alloa,in a consideata con segno positio se è concode a,in, o negatio se è discode. Segno delle elocità finali: - positio elocità concode a,in - negatio elocità discode a,in Nel sistea del cento di assa pe l uto elastico si icaa: ',fin ',fin,in,in Sistea del cento di assa Velocità e quantità di oto di ciascun punto iangono inaiate in odulo, cabiano solo il eso 8

19 Esepio uto elastico Un neutone di assa uta fontalente, in odo elastico un besaglio costituito da un nucleo atoico di assa inizialente feo. Qual è la diinuzione pecentuale dell enegia del neutone? Fae il calcolo nei casi in cui il nucleo besaglio sia: ) Piobo; (assa atoica: A06) ) Cabonio; (assa atoica: A) 3) Idogeno. (assa atoica: A) Sol.: E,in k,in Ek,,in,in E k,,fin E k,,in E k,, fin + ( ),fin,in,in doe in questo caso,in 0,fin, in + + k,,fin 4, i E 4 k,,fin 4, fin Ek,,fin E ( ) k,,in + ( ) E ( ) + k,,in + E, fin Caso: ) Caso: ) Caso: 3) A 06: 06 A : A : E E E E E E k,,fin k,,in k,,fin k,,in k,,fin k,,in 4 ( + ) 4 ( + ) 4 ( + ) , 0 ( 07) ( 3) % 4 0, 8 8% 4 00% ( )

20 Uti ta punti ateiali e copi igidi e uti ta copi igidi Riassunto pe la isoluzione degli esecizi: Se uto è elastico Conseazione dell enegia cinetica Se agiscono solo foze intene o quelle estene non sono ipulsie Conseazione della quantità di oto totale Se esiste un incolo che tiene feo un punto del copo igido Esiste una foza estena di tipo ipulsio La quantità di oto non si consea Se agiscono solo foze intene o quelle estene non sono ipulsie Conseazione del oento angolae L, indipendenteente dalla scelta del polo O Se agiscono foze estene, il cui oento Conseazione del oento angolae L M è nullo ispetto ad un dato polo calcolato ispetto allo stesso polo O Quando il copo utato è incolato, il sistea di incoli può esplicitae, duante l uto, un sistea di foze di isultante R e un oento isultante M. L effetto coplessio nel beissio tepo di duata dell uto è dato dall ipulso della foza e dall ipulso angolae: J dt Mdt R J A. Roeo Dinaica VII - Uti 0

21 Esecizio uti ta punti ateiali e copo igido Una sbaa oogenea di lunghezza L e assa M, è sospesa nel punto O ed è libea di uotae nel piano eticale attono ad un asse oizzontale passante pe tale punto. Inizialente la sbaa è inclinata di un angolo θ 0, ispetto alla diezione eticale (edi figua) e da questa posizione ad un dato istante iene lasciata cadee. Raggiunta la posizione eticale essa colpisce, una assa puntifoe appoggiata sul piano. Nell ipotesi in cui l asta uoti attoni ad O senza attito e che l uto con la assa sia copletaente anelastico, calcolae: A. Il odulo della elocità angolae ω 0 con cui la sbaa uta la assa appoggiata sul piano. B. L angolo θ fin, ispetto alla diezione eticale, del quale si sposta la sbaa, in seguito all uto con la assa puntifoe. θ 0 A. Roeo Dinaica VII - Uti

22 Esecizio uti ta punti ateiali e copo igido L h θ 0 Sol.: Il oto della sbaa può essee scheatizzato in 3 fasi:. fase di discesa della sbaa. uto copletaente anelastico con 3. isalita del sistea sbaa + assa Fase : E possibile applicae la conseazione dell enegia eccanica pe la sbaa ta l istante iniziale in cui la sbaa è fea a θ 0 ispetto alla diezione eticale e l istante finale iediataente pecedente all uto con la assa : E + E E + E 0 + Mgh k,in p,in k,fin p,fin h L L cosθ 0 L Iω Mg + L Mg L cosθ0 0 ω0 + I I 0 ML 3 Mg L Mg L L cosθ0 ω0 ML 3 L + Mg 3g 0 cos L ω ( θ ) A. Roeo Dinaica VII - Uti 0

23 Esecizio uti ta punti ateiali e copo igido Sol. - continuazione: Fase : Duante l uto si ha la CONSERVAZIONE DEL MOMENTO ANGOLARE TOTALE del sistea baa+assa ispetto al polo O: L h θ 0 Lin (sbaa) + Lin () Lfin (sbaa + ) I0 ω0 + 0 I 0 ML 3 (I 0 + L ) ω' ω ' 3 ML 3 ML + L ω 0 A. Roeo Dinaica VII - Uti 3

24 Esecizio uti ta punti ateiali e copo igido Sol. - continuazione: L θ 0 Fase 3: Duante la isalita del sistea sbaa + si ha la CONSERVAZIONE DELL ENERGIA MECCANICA h Ek,in (sbaa + ) + E p,in (sbaa + ) E k,fin (sbaa + ) + E p, fin (sbaa + ) ( I + L ) 0 ω' + Mg L L 0 + g (L Lcos θ fin ) + Mg (L cos θ fin ) ( cos θ fin ) ( I + L ) 0 M ω' + gl θ fin A. Roeo Dinaica VII - Uti 4

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

5 PROPRIETÀ MAGNETICHE DEI MATERIALI

5 PROPRIETÀ MAGNETICHE DEI MATERIALI 5 PROPRETÀ AGNETCE DE ATERAL A seguito della scopeta di Østed dell azione agnetica podotta da un filo conduttoe pecoso da coente l ipotesi più natuale che olti fisici avanzaono pe spiegae questo effetto

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al

Dettagli

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

x (m) -1-2 m 4 01 m 2 m 1

x (m) -1-2 m 4 01 m 2 m 1 Fisica (A.A. 4/5) Esercizi Meccanica ) Lo spostaento nel tepo di una certa particella che si uoe lungo l asse x è ostrato in figura. Troare la elocità edia negli interalli di tepo: a) da a s b) da a 4

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Il moto circolare uniforme

Il moto circolare uniforme Il moto cicolae unifome Il moto cicolae unifome: peiodo e fequenza Un copo che i muoe lungo una taiettoia cicolae con elocità calae cotante ipaa pe la poizione iniziale a intealli fii di tempo. Definiamo

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A Facoltà di Ingegneria Prova critta di Fiica I 13 Febbraio 6 Copito A Eercizio n.1 Un blocco, aiilabile ad un punto ateriale di aa, partendo da fero, civola da un altezza h lungo un piano inclinato cabro

Dettagli

Caratterizzazione Idrodinamica di Spray Simili mediante Anemometria Phase Doppler (PDA).

Caratterizzazione Idrodinamica di Spray Simili mediante Anemometria Phase Doppler (PDA). Caatteizzazione Idodinamica di Spay Simili mediante Anemometia Phase Dopple (PDA). Angelo ALGIERI Uniesità della Calabia ABSTRACT Le caatteistiche idodinamiche di diffeenti wate spays sono state alutate

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

1^A - Esercitazione recupero n 2

1^A - Esercitazione recupero n 2 1^A - Esercitazione recupero n 2 1. Un cavo di nylon si coporta coe una olla di costante elastica 5,0 10 4 N /. Con questo cavo, trasciniao sul paviento una cassa di 280 kg a velocità costante. Il coefficiente

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas:

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas: Lezione XXIII - 0/04/00 ora 8:0-0:0 - Esercizi tiraggio e sorbona - Originale di Marco Sisto. Esercizio Si consideri un ipianto di riscaldaento a caino caratterizzato dai seguenti dati: T T Sezione ati

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE PTNZIL LTTRIC D NRGI PTNZIL Ba. Una caica elettica q mc si tova nell oigine di un asse mente una caica negativa q 4 mc si tova nel punto di ascissa m. Sia Q il punto dell asse dove il campo elettico si

Dettagli

Campo magnetico: fatti sperimentali

Campo magnetico: fatti sperimentali Campo magnetico: fatti speimentali Le popietà qualitative dei magneti e la pesenza di un campo magnetico teeste eano conosciute da tempo, ma le pime misue quantitative e le teoie e gli espeimenti pe deteminane

Dettagli

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

FAM. 1. Sistema composto da quattro PM come nella tabella seguente Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente

Dettagli

F 2 F 1. r R F A. fig.1. fig.2

F 2 F 1. r R F A. fig.1. fig.2 N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre

Dettagli

Meccanica applicata alle macchine

Meccanica applicata alle macchine Meccanica alicata alle acchine Il sistea eccanico iotato in figa é costitito a n otoe elettico, a n tilizzatoe con l'inteosizione i na tasissione Il otoe eoga na coia costante al vaiae ella velocità ente

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

Quinta Esercitazione di Fisica I 1 PROBLEMI RISOLTI

Quinta Esercitazione di Fisica I 1 PROBLEMI RISOLTI Quinta Esercitazione di Fisica I 1 PROBLEMI RISOLTI 1. Un' auto di massa pari a 900 kg si muove su un piano alla velocità di 0 m/s. Che forza occorre per fermarla in 30 metri? (A) 1800 N (B) 4500 N (C)

Dettagli

Cariche in campo magnetico: Forza magnetica

Cariche in campo magnetico: Forza magnetica Lezione 18 Campo magnetico I Stoicamente, i geci sapevano che avvicinando un pezzo di magnetite a della limatua di feo questa lo attaeva. La magnetite ea il pimo esempio noto di magnete pemanente. Come

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

DINAMICA delle STRUTTURE. università Degli Studi di cagliari - facoltà di ingegneria. Laurea Magistrale in Ingegneria Civile percorso Strutture

DINAMICA delle STRUTTURE. università Degli Studi di cagliari - facoltà di ingegneria. Laurea Magistrale in Ingegneria Civile percorso Strutture università Degli Studi di cagliari - facoltà di ingegneria Laurea Magistrale in Ingegneria Civile percorso Strutture DINAMICA delle STRUTTURE Docente: Maria Cristina Porcu 1 EFFETTI DINAMICI DOVUTI AL

Dettagli

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo

Dettagli

Potenziale elettrico per una carica puntiforme isolata

Potenziale elettrico per una carica puntiforme isolata Potenziale elettico pe una caica puntifome isolata Consideiamo una caica puntifome positiva. Il campo elettico geneato da uesta caica è: Diffeenza di potenziale elettico ta il punto ed il punto B: B ds

Dettagli

INTRODUZIONE alle TRASMISSIONI

INTRODUZIONE alle TRASMISSIONI INTRODUZIONE alle TRASMISSIONI Una trasissione eccanica è il coplesso degli organi che servono per trasettere potenza in un sistea eccanico. Alcuni di tali organi, coe alberi, giunti e innesti, trasettono

Dettagli

PREMESSA (diapositive 1, 2, 3) PER UNA DISTRIBUZIONE SFERICA DI MASSA contenuta all interno della superficie S:

PREMESSA (diapositive 1, 2, 3) PER UNA DISTRIBUZIONE SFERICA DI MASSA contenuta all interno della superficie S: PREESSA (diapositive 1,, 3) PER UNA DISTRIBUZIONE SFERICA DI ASSA contenuta all inteno della supeficie S: Tutta la massa estena alla supeficie S non influisce sul moto di una oggetto posto in coispondenza

Dettagli

Fig. 1. ove v è la velocità raggiunta dal punto alla quota h e g è l accelerazione di gravità:

Fig. 1. ove v è la velocità raggiunta dal punto alla quota h e g è l accelerazione di gravità: PECHE, DI DUE CICLISTI CHE PECOONO LA MEDESIMA DISCESA SENZA PEDALAE E CON BICICLETTE UGUALI, E PIU VELOCE QUELLO CHE PESA DI PIU, IN APPAENTE CONTADDIZIONE COL FATTO CHE L ACCELEAZIONE DI GAVITA E UGUALE

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato

Dettagli

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi FI.CO. 2 ( Fisica Compensibile pe geologi) Pogamma di Fisica 2 - (v 5.0-2002)...sempe più fico! A.J. 2000 Adiano Nadi La fisica dovebbe essee una scienza esatta. Questo papio non può gaantie la totale

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco www.eettone.atevista.og maco.chiizzi@ibeo.it PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo

Dettagli

Tubi in acciaio (pollici) Tubi in acciaio (mm) Tubi in acciaio a pressare. Tubi in rame. Tubi multistrato. Tubi in PEX. Tubi in PPR.

Tubi in acciaio (pollici) Tubi in acciaio (mm) Tubi in acciaio a pressare. Tubi in rame. Tubi multistrato. Tubi in PEX. Tubi in PPR. Tubi in acciaio (pollici) Tubi in acciaio (mm) Tubi in acciaio a pessae Tubi in ame Tubi multistato Tubi in PEX Tubi in PPR Tubi in PE Fattoi coettii Pedite di caico localiate olume non in commecio Copyight

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica IL CALCOLO FINANZIARIARIO You do not eally undestand something unless you can explain it to you gandmothe (A.Einstein) Calcolo finanziaio Intoduzione Economia dell impesa foestale: Bilancio Pianificazione

Dettagli

Cuscinetti Di Precisione

Cuscinetti Di Precisione Cuscinetti Di Pecisione Cuscinetti a ulli di pecisione Indice dei contenuti Descizione tecnica 1 Selezione 1-1 Pocedua di selezione... 2 1-2 Esame tipo di... 3 2 Duata 2-1 Coeffi ciente di caico dinamico

Dettagli

6 Dinamica dei corpi rigidi

6 Dinamica dei corpi rigidi 6 Dinamica dei corpi rigidi (54 problemi, difficoltà 8, soglia 160) Formulario M O r F momento meccanico di una forza rispetto al polo O R risultante delle forze esterne p O r m v momento angolare di un

Dettagli

Dinamica: Applicazioni delle leggi di Newton

Dinamica: Applicazioni delle leggi di Newton Fisic Fcolà di Scienze MM FF e, Uniesià Snnio Dinmic: Appliczioni delle leggi di ewon Gionni Filell (filell@unisnnio.i) Il poblem genele dell dinmic Quindi se conoscimo ue le foze che giscono su un oggeo

Dettagli

UNITÀ 1 LA MISURA DELLE GRANDEZZE FISICHE

UNITÀ 1 LA MISURA DELLE GRANDEZZE FISICHE UNITÀ 1 LA MISURA DELLE GRANDEZZE FISICHE 1. Che cos è la Fisica. La fisica è una scienza sperientale che studia i fenoeni naturali, detti anche fenoeni fisici, utilizzando il etodo scientifico. Si tratta

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

Legge di Coulomb e campo elettrostatico

Legge di Coulomb e campo elettrostatico A. hiodoni esecizi di Fisica II Legge di oulomb e campo elettostatico Esecizio Te caiche positive uguali sono fisse nei vetici di un tiangolo euilateo di lato l. alcolae (a) la foza elettica agente su

Dettagli

[ ] ] = [ MLT 2. [ 3αx 2ˆ i 3αz 2 ˆ j 6αyz k ˆ ] = MLT 2. [ ] -[ 3αz 2 ˆ j ] = [ MLT 2 [ ] [ ] [ F] = [ N] = kg m s 2 [ ] = ML 1 T 2. [ ][ x 2.

[ ] ] = [ MLT 2. [ 3αx 2ˆ i 3αz 2 ˆ j 6αyz k ˆ ] = MLT 2. [ ] -[ 3αz 2 ˆ j ] = [ MLT 2 [ ] [ ] [ F] = [ N] = kg m s 2 [ ] = ML 1 T 2. [ ][ x 2. LVORO E ENERGI EX 1 Dato il campo di forze F α(3x ˆ i + 3z ˆ j + 6yz ˆ ): a) determinare le dimensioni di α; b) verificare se il campo è conservativo e calcolarne eventualmente l energia potenziale; c)

Dettagli

Misure elettriche circuiti a corrente continua

Misure elettriche circuiti a corrente continua Misure elettriche circuiti a corrente continua Legge di oh Dato un conduttore che connette i terinali di una sorgente di forza elettrootrice si osserva nel conduttore stesso un passaggio di corrente elettrica

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Programma del corso di Biofisica: 1. Vettori 2. Ottica elettromagnetismo 3. Ottica lineare 4. Microscopia ottica 5. Livelli energetici (cenni) 6.

Programma del corso di Biofisica: 1. Vettori 2. Ottica elettromagnetismo 3. Ottica lineare 4. Microscopia ottica 5. Livelli energetici (cenni) 6. Pogaa del coso d Bofsca: 1. Vetto 2. Ottca elettoagnetso 3. Ottca lneae 4. Mcoscopa ottca 5. Lell enegetc (cenn) 6. Lase, fbe ottche 7. Mcoscopa d Fluoescenza 8. SEM 9. TEM 10. AFM, SNOM 11. Lell Enegetc

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica nei conduttori. La corrente elettrica Connettendo due conduttori a diverso potenziale si ha un oto di cariche fino a quando si raggiunge una condizione di uilibrio. Questo oto terina

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini A.A. 015 016 Mauizio Piccinini Fisica Geneale A Gavitazione univesale Scuola di Ineneia e Achitettua UNIBO Cesena Anno Accademico 015 016 A.A. 015 016 Mauizio Piccinini Gavitazione Univesale 1500 10 0

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA REGIMI DI FUNZIONAMENTO DEI CIRCUITI ELETTRICI: CORRENTE CONTINUA APPUNTI DL CORSO DI SISTMI IMPIANTISTICI SICURZZA RGIMI DI FUNZIONAMNTO DI CIRCUITI LTTRICI: CORRNT CONTINUA SOLO ALCUNI SMPI DI ANALISI DI UN CIRCUITO LTTRICO FUNZIONANTI IN CORRNT CONTINUA APPUNTI DL

Dettagli

Sistemi di riferimento inerziali:

Sistemi di riferimento inerziali: La pima legge di Newton sul moto è anche chiamata pincipio di inezia. In fisica inezia significa esistenza ai cambiamenti di velocità. Es.: - la foza d attito ta la moneta e la tessea è molto piccola e

Dettagli

CAPITOLO 7 TEORIA DELLA SIMILITUDINE

CAPITOLO 7 TEORIA DELLA SIMILITUDINE CATOLO 7 TEORA DELLA SMLTUDNE 7. toduzioe La siilitudie è u cocetto utilizzato i abito igegeistico, gazie al quale si descie u sistea eale taite u odello fisico i scala ispetto al sistea eale. Le picipali

Dettagli

5.1 Determinazione delle distanze dei corpi del Sistema Solare

5.1 Determinazione delle distanze dei corpi del Sistema Solare 5.1 Deteminazione delle distanze dei copi del istema olae 5.1.1 Distanza ea-pianeti aallassi equatoiali Questo è il metodo più peciso ma anche quello più delicato da eseguie. Esso si basa sul fatto che

Dettagli

GEOMETRIA 3D MODELLO PINHOLE

GEOMETRIA 3D MODELLO PINHOLE http://imagelab.ing.unimo.it Dispense del coso di Elaboazione di Immagini e Audio Digitali GEOMETRIA 3D MODELLO PINHOLE Pof. Robeto Vezzani Calibazione della telecamea: a cosa seve? Obiettivo: pote calcolae

Dettagli

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi

Dettagli

FISICA-TECNICA Trasmissione del calore II parte

FISICA-TECNICA Trasmissione del calore II parte FISICA-TECNICA Tasmissione del caloe II pate Katia Gallucci Geometie cilindiche Vediamo oa quando abbiamo paeti cilindiche: e i L Q ka Q e Q i kπl( Te Ti ) Q e i d dt d kπl kπldt e d Q kπl i kπl( T e Te

Dettagli

FONDAMENTI DI FISICA GENERALE

FONDAMENTI DI FISICA GENERALE FONDAMENTI DI FISICA GENERALE Ingegneria Meccanica Roa Tre AA/0-0 APPUNTI PER IL CORSO (Ripresi e sisteati, con differente organizzazione e varie integrazioni, dai testi di bibliografia) Roberto Renzetti

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA A.A. 204/5 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Energia potenziale Problema 26 Una molla ha una costante elastica k uguale a 440 N/m. Di quanto

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

CdL in Biotecnologie Biomolecolari e Industriali

CdL in Biotecnologie Biomolecolari e Industriali CdL in Biotecnologie Biomolecolari e Industriali Corso di Matematica e Fisica recupero II prova in itinere di Fisica (9-1-2008) 1) Un sasso di 100 g viene lanciato verso l alto con una velocità iniziale

Dettagli

Unità Didattica N 16. Il comportamento dei gas perfetti

Unità Didattica N 16. Il comportamento dei gas perfetti Unità Didattica N 16 Il coportaento dei gas perfetti Unità Didattica N 16 Il coportaento dei gas perfetti 1) Alcune considerazioni sullo studio dei sistei gassosi 2) Dilatazione terica degli aerifori 3)

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

RPL Generatore d'aria calda elettrico portatile

RPL Generatore d'aria calda elettrico portatile RL Geneatoe d'aia calda elettico potatile R T T E R I S T I H E RL ompatto e obusto Riscaldamento egolabile su 2 o 3 livelli Ventilatoe assiale a bassa umoosità Resistenze isolate in acciaio inox Temostato

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE Teoia delle onde EM e popagazione (B. Peite) mecoledì 8 febbaio 1 Coso di Compatibilità Elettomagnetica 1 Indice degli agomenti Fenomeni ondulatoi La matematica dell onda La legge

Dettagli

4 Polarizzazione elettrica nel dominio del tempo

4 Polarizzazione elettrica nel dominio del tempo 4 Polaizzazione elettica nel dominio del tempo Intoduzione Atomi, molecole e ioni sono talmente piccoli che da un punto di vista macoscopico una piccola egione di un solido contiene un numeo molto elevato

Dettagli

Polo Universitario della Spezia G. Marconi

Polo Universitario della Spezia G. Marconi Nicolò Beveini Appunti di Fisica pe il Coso di lauea in Infomatica Applicata Polo Univesitaio della Spezia G. Maconi Nicolò Beveini Appunti di fisica Indice 1. La misua delle gandezze fisiche... 4 1.1

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

III. INTRODUZIONE ALL'ASTRODINAMICA

III. INTRODUZIONE ALL'ASTRODINAMICA III. INTRODUZIONE ALL'ASTRODINAMICA III.1. Obite kepleiane III.1.1. Equazioni del moto La Tabella III.1.1 elenca e definisce i paameti fondamentali dell'obita ellittica schematizzata in Figua III.1.1.

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

). Per i tre casi indicati sarà allora: 1: L L 2

). Per i tre casi indicati sarà allora: 1: L L 2 apitolo 0 Enegia potenziale elettica Domane. Il lavoo pe spostae una caica ta ue punti è: L 0(! ). Pe i te casi inicati saà alloa: L (50! 00 ) (50 ) : 0 0 : L 0! 0 3: L 0! 0 [5 ( 5 )] (50 ) [ 0 ( 60 )]

Dettagli

L ENERGIA. L energia. pag.1

L ENERGIA. L energia. pag.1 L ENERGIA Lavoro Energia Conservazione dell energia totale Energia cinetica e potenziale Conservazione dell energia meccanica Forze conservative e dissipative Potenza Rendimento di una macchina pag.1 Lavoro

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

L' ACCELERAZIONE DI GRAVITA Anita Calcatelli, Alessandro Germak, I.N.RI.M. (IMGC-CNR)

L' ACCELERAZIONE DI GRAVITA Anita Calcatelli, Alessandro Germak, I.N.RI.M. (IMGC-CNR) L' ACCELERAZIONE DI GRAVITA Anita Calcatelli, Alessandro Gerak, I.N.RI.M. (IMGC-CNR) 1. Considerazioni introduttive Un esepio particolare di accelerazione è rappresentato dall accelerazione di gravità

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

Esercizi svolti di fisica

Esercizi svolti di fisica Esercizi svolti di fisica Copyright (c) 2008 Andrea de Capoa. È permesso copiare, distribuire e/o modificare questo documento seguendo i termini della Licenza per documentazione libera GNU, versione 1.2

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia Seminario didattico Ingegneria Elettronica Lezione 5: Dinamica del punto materiale Energia 1 Esercizio n 1 Un blocco di massa m = 2 kg e dimensioni trascurabili, cade da un altezza h = 0.4 m rispetto all

Dettagli

FONDAMENTI DI PROGETTAZIONE MECCANICA (Prof. F. Fossati)

FONDAMENTI DI PROGETTAZIONE MECCANICA (Prof. F. Fossati) Politecico di ilao Facoltà del esig o ccadeico 009/00 FONENTI I POGETTZIONE ECCNIC (Pof. F. Fossati) INIC ELLE CCHINE. INTOUZIONE: POBLEI IETTI E INVESI Lo studio della diaica di u sistea eccaico cosiste

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Norme Tecniche per le Costruzioni, D.M. 14/01/2008 La Progettazione Geotecnica

Norme Tecniche per le Costruzioni, D.M. 14/01/2008 La Progettazione Geotecnica Corso di aggiornamento professionale Norme Tecniche per le Costruzioni, D.M. 14/01/2008 La Progettazione Geotecnica CITEI GENEALI DI POGETTO DELLE FONDAZINI SUPEFICIALI Prof. Ing. Francesco Colleselli,

Dettagli

PERICOLOSITA SISMICA DI BASE INTRODUZIONE PROCEDURA DI CALCOLO La procedura di calcolo adoperata da RSL per la valutazione della funzione di trasferiento presuppone coe base di partenza uno o più accelerograi,

Dettagli

Forza centripeta e gravitazione

Forza centripeta e gravitazione apitolo 6 Foza centipeta e gaitazione 1. Il oto cicolae Quali sono le caatteistiche del oto cicolae? Una paticella si dice aniata di oto cicolae quando la sua taiettoia è una ciconfeenza. o studio di questo

Dettagli