RELAZIONE TECNICA DI CALCOLO DELLE STRUTTURE E VERIFICA ALLE AZIONI SISMICHE SECONDO D.M. 96 e O.P.C.M. 3274

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RELAZIONE TECNICA DI CALCOLO DELLE STRUTTURE E VERIFICA ALLE AZIONI SISMICHE SECONDO D.M. 96 e O.P.C.M. 3274"

Transcript

1 UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI INGEGNERIA CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA EDILE CORSO DI TECNICA DELLE COSTRUZIONI 3 PROF. MODENA ING. PIPINATO COSTRUZIONE EX NOVO DI UN CONDOMINIO RELAZIONE TECNICA DI CALCOLO DELLE STRUTTURE E VERIFICA ALLE AZIONI SISMICHE SECONDO D.M. 96 e O.P.C.M. 374 La presente relazione consta di: nr. 193 pagine nr. 13 allegati

2 SOMMARIO I. NORMATIVA DI RIFERIMENTO... II. DESCRIZIONE DELL'OPERA III. MATERIALI IMPIEGATI E TENSIONI DI CALCOLO... 4 IV. IPOTESI DI CARICO... 5 V. VERIFICA STATICA DELLE STRUTTURE... 7 V.1. Generalità sul metodo di calcolo e verifica... 7 V.. Individuazione dei codici di calcolo... 8 V.3. Solaio A... 9 V.4. Solaio B V.5. Solaio di copertura V.6. Solaio nel vano scala... 1 V.7. Travi principali V.7.1. Schema statico trave TP1 e carichi applicati V.7.. Schema statico trave TP e carichi applicati V.7.3. Schema statico trave TP3 e carichi applicati V.8. Travi cordolo V.9. Travi di copertura V.10. Gradini scala V.11. Pilastri V.1. Muratura in C.A V.13. Fondazioni V Travi rovesce V.13.. Fondazioni continue della muratura... 0 VI. ALLEGATI: TABULATI DI CALCOLO E VERIFICA DELLE SEZIONI... 1 pag. n. 1

3 I. NORMATIVA DI RIFERIMENTO Il presente fascicolo, estratto dai calcoli di verifica, è stato approntato tenendo presenti le seguenti norme: L n. 1086: "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica". D.M. 14//9: "Norme tecniche per cemento armato normale-precompresso e strutture metalliche". Circ. Min. LL. PP. 4/6/93: "Istruzioni relative alle norme tecniche per cemento armato normale-precompresso e strutture metalliche di cui al D.M. del 14//9". D.M : "Norme tecniche per il calcolo, l esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche". Circ. Min. LL.PP : Istruzioni per l applicazione delle "Norme tecniche per il calcolo, l esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche" di cui al D.M. del D.M : "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi ". Circ. Min. LL.PP : Istruzioni per l applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi " di cui al D.M. del D.M. LL.PP : Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento Circ. Min. LL.PP n : Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento D.M : "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione. ENV : Eurocodice Progettazione delle strutture in calcestruzzo OPCM N 374 : Ordinanza della Presidenza del Consiglio dei Ministri pag. n.

4 II. DESCRIZIONE DELL'OPERA. Si tratta della costruzione ex novo di un edificio ad uso civile per abitazioni plurifamiliari. La struttura portante dell edificio è in cemento armato. L edificio si compone di un unico corpo a tre piani completamente fuori terra e di un sottotetto. Le dimensioni in pianta sono di 17,54m x 10,44m. L edificio è dotato di un tetto a due falde di inclinazione leggermente diversa, realizzato tramite solai inclinati in latero-cemento. Il fabbricato ha una superficie coperta di 550mq e un totale volumetrico di 1650mc. Il piano terra comprende i garage e l ingresso; il primo e il secondo piano comprendono ciascuno appartamenti. Il sottotetto non è abitato. La struttura dell edificio è realizzata in cemento armato ed è costituita da solai in latero-cemento poggianti su travi basse leggermente fuori spessore di solaio e travi alte fuori spessore, gettate in opera. Le travi poggiano a loro volta su pilastri in cemento armato gettati in opera o su muratura in C.A. realizzata in corrispondenza del vano scala in posizione centrale del corpo di fabbrica. Fondazioni Il terreno su cui sorgerà la nuova costruzione è quello normale della zona, a struttura prevalentemente sabbiosa con tracce di ghiaia. Non richiedendosi opere di fondazione di tipo speciale, data la modesta entità dei carichi trasmessi al terreno e la tipologia costruttiva dell'edificio, le fondazioni saranno di tipo a trave rovescia per i pilastri presenti e a nastro continuo per le murature in cemento armato a C in corrispondenza del vano scala, collegate tra loro. Murature Le strutture murarie portanti saranno realizzate in cemento armato e avranno anche il compito di assorbire le azioni orizzontali dovute all'azione del vento e alle spinte orizzontali della copertura a due falde non mutuamente equilibrate. Le murature perimetrali di chiusura e le pareti interne divisorie verranno realizzate in mattoni di laterizio, semipieni o forati seconda la funzione che essi devono assicurare. Tali murature saranno legate con malta bastarda. Solai Tutti i solai saranno in latero-cemento realizzati con travetti a traliccio prefabbricato, pignatte di alleggerimento e getto di completamento delle nervature e della cappa in calcestruzzo. Essi poggeranno sulle travi in C.A. realizzate leggermente fuori spessore di solaio all interno del corpo di fabbrica e fuori spessore di solaio sul perimetro dell edificio. I solai saranno adeguatamente legati con i cordoli perimetrali in C.A. richiesti. pag. n. 3

5 III. MATERIALI IMPIEGATI E TENSIONI DI CALCOLO Il metodo di calcolo e di verifica delle sezioni adottato è quello degli "STATI LIMITE", previsto dal Regolamento Italiano. Le caratteristiche dei materiali sono: Ferro d'armatura per opere in C.A.: FeB44K fyk = 430 MPa fyd = 430/1,15 = 374 MPa Vengono usate esclusivamente barre ad aderenza migliorata. Getti di calcestruzzo per fondazioni: Classe Rck = 35 MPa fck = 0,83*35 = 30,0 MPa fcd = fck/1.6 = 18,75 MPa fctd = 0.7*0.7*Rck /3 /1.6 = 1,6 MPa Getti di calcestruzzo per travi, pilastri, solai: Classe Rck = 35 MPa fck = 0,83*35 = 30,0 MPa fcd = fck/1.6 = 18,75 MPa fctd = 0.7*0.7*Rck /3 /1.6 = 1,6 MPa Terreno di fondazione: In base a conoscenze specifiche della zona su cui sorgerà la costruzione e per il tipo di fondazione usato si può ammettere per il terreno una resistenza a scorrimento plastico pari a: ftk = 0,75 MPa Si assume un coefficiente di sicurezza del materiale pari a 3 da cui risulta il valore della resistenza di calcolo pari a: ftd = 0,5 MPa Rapporto n tra i moduli di elasticità dell accaio e del CLS: n = 15 pag. n. 4

6 IV. IPOTESI DI CARICO Di seguito sono riportate le analisi dei carichi da considerarsi agenti sulle varie componenti strutturali. Analisi dei carichi gravanti sui solai A e B Carico permanente gk: - peso intonaco spessore 1 cm: 0,10 kn/mq - peso strato isolante in sughero spessore 5 cm: 0,150 - peso proprio dei solai h=0+4 cm, i=50 cm: 3,140 - massetto in cls leggero spessore 10 cm: 1,570 - pavimento in ceramica su letto di posa di malta: 1,05 6,75 kn/mq Incidenza muri divisori gkt: parete divisoria interna in laterizio (10 cm): 3,750 kn/m parete divisoria tra appartamenti in laterizio (30 cm): 5,900 kn/m (N.B. L incidenza dei muri divisori è data dal rapporto tra il peso complessivo del muro divisorio, ottenuto dal prodotto del peso per unità di lunghezza e dell estensione lineare dei muri stessi, e la superficie del solaio interessato.) gkt sulle campate C1-1 e C1- del solaio A: gkt sulle campata C-3 del solaio B: Carico variabile qk: 1,400 kn/mq 4,00 kn/mq,000 kn/mq Analisi dei carichi gravanti sul solaio di copertura inclinato Carico permanente gk: - peso intonaco spessore 1 cm: 0,10 kn/mq - peso proprio dei solai h=0+4 cm, i=50 cm: 3,140 - isolamento termico in sughero spessore 5 cm: 0,050 - peso massetto in calcestruzzo spessore 5 cm: 0,800 - guaina di impermeabilizzazione: 0,300 - manto di copertura in tegole di laterizio 0,600 5,100 kn/mq (sup. inclinata) Carico accidentale per neve: 1,600*0,86=1,376 kn/mq 1,400 kn/mq (proiezione orizz.) Carico esercitato dal vento: 0,390*,57*-0,4=0,353 kn/mq -0,400 kn/mq (normale a sup.) Sovraccarico accidentale: 0,500 kn/mq (sup. inclinata) pag. n. 5

7 Analisi dei carichi gravanti sul solaio nel vano scala Carico permanente gk: - peso intonaco spessore cm: 0,40 kn/mq - peso proprio dei solai h=0+4 cm, i=50 cm: 3,140 - peso malta cementizia spessore cm: 0,40 - peso pavimento in marmo spessore 3 cm: 0,900 4,880 kn/mq Carico variabile qk: 4,000 kn/mq Il peso specifico del conglomerato cementizio è assunto pari a γ c = 5 kn/mc, mentre per le murature perimetrali si assume un peso per unità di lunghezza pari a qmp= 10,5 kn/m. pag. n. 6

8 V. VERIFICA STATICA DELLE STRUTTURE V.1. Generalità sul metodo di calcolo e verifica Il dimensionamento e la verifica delle strutture in C.A. viene eseguito con le modalità previste dal R.I. con il metodo degli stati limite. Poichè le strutture dell'edificio sono sottoposte essenzialmente a solo due azioni contemporaneamente, una di tipo permanente ed una di tipo variabile, l'unica combinazione di calcolo da considerarsi nelle varie verifiche agli stati limite ultimi è del tipo: Fd = γ g gk + γ qqk dove F d è il valore del carico distribuito da applicare alle travi, g k è il valore caratteristico dell'azione permanente, q k è il valore caratteristico dell'unica azione variabile, γ g e γ q sono i coefficienti di combinazione rispettivamente delle azioni permanenti e variabili. Nelle verifiche agli stati limite ultimi sono da prendersi rispettivamente pari a 1,4 e 1,5, se i carichi sono a sfavore della sicurezza. Di volta in volta si terrà conto del fatto che le azioni variabili sono di tipo libero assumendo per essi, nelle campate in cui sono a favore della sicurezza, il coefficiente γ = 0. q Quando le azioni permanenti vanno a favore della sicurezza si prende γ g = 1. Per le combinazioni di azioni agli stati limite di esercizio di tipo raro, frequente e quasi permanente il coefficiente delle azioni variabili assume il valore 1,0, 0,5 e 0, rispettivamente, mentre γ g è uguale a 1,0. Le sollecitazioni normali resistenti ultime di calcolo delle sezioni sono calcolate con le relazioni: N rd = -0,85*f cd *β 1 *b*x+a s *k s *f yd -A' s *k' s *f yd M rd = 0,85*f cd *β 1 *b*x*d*(1-ξ*β )+A' s *k' s *f yd *(d-c) che derivano dallo schema di calcolo di figura: ε c x c A' s ε s β x A' s k' s f yd 0.85 fcd β 1 x b d A s k s f yd c A' s ε s Lo schema statico adottato per i solai è quello di continuità con semplice appoggio sulle travi e di incastro nelle murature. Lo schema statico adottato per le travi è quello di continuità con appoggio semplice sia sulle murature che sui pilastri. Le azioni orizzontali del vento sono considerate assorbite dalle murature in C.A. del vano scala. Si suppone, inoltre, che le spinte della copertura inclinata a due falde siano assorbite anche esse dalla muratura in C.A. I pilastri di conseguenza risulteranno caricati assialmente. Per essi va cmq considerata la componente di eccentricità pag. n. 7

9 accidentale minima di regolamento per incertezze geometriche pari allo 0.33% dell altezza dei pilastri e comunque non minore di cm. V.. Individuazione dei codici di calcolo Per eseguire i calcoli dei parametri della sollecitazione sugli elementi strutturali schematizzati come travi continue si è utilizzato: - il software freeware per calcolo strutturale Trave Continua, versione 5.6 del 1.maggio 00, sviluppata dall Ing. Piero Gelfi - il software Straus 7 Release..3. pag. n. 8

10 V.3. Solaio A Il solaio A è un solaio di tipo BAUSTA in laterocemento. Poggia sulle travi principali TP 1-1 e TP -1 e sulla muratura M (si vedano le tavole grafiche allegate) e ha altezza di 0+4 cm su tutti i campi. La larghezza del singolo travetto è di 10 cm, i travetti sono posti ad un interasse di 50 cm l uno dall altro. Il solaio a tre campate poggia all estremità perimetrale su una trave fuori spessore solaio (TP1), in centro su una trave leggermente fuori spessore di solaio (TP) e sull altra estremità verso il vano scala su muratura in C.A. Per simmetria le considerazioni per questo solaio valgono anche per il solaio poggiante sulla muratura in C.A. e sulle travi TP5 e TP6. Schema statico solaio A con campate C1-1 e C1-: C1-1 C1- TP 1-1/x TP -1/x Muro x indice del piano considerato, variabile da 1 a 3. Carichi applicati alle campate C1-1 e C1- del primo solaio: Carico permanente gk gkt gktot Carico variabile qk 6,75 kn/mq 1,400 kn/mq 7,700 kn/mq,000 kn/mq qk gktot C1-1 C1- L inviluppo delle sollecitazioni sul solaio per lo schema statico considerato e per le combinazioni di carico più gravose, è riportato alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.3.). Le considerazioni valgono per i solai tipo A ad ogni piano. pag. n. 9

11 V.4. Solaio B Il solaio B è un solaio di tipo BAUSTA in laterocemento. Poggia sulle travi principali TP 1-, TP -, TP 3-, TP 4-, TP 5- e TP 6- (si vedano le tavole grafiche allegate), e ha altezza di 0+4 cm su tutti i campi. La larghezza del singolo travetto è di 10 cm, i travetti sono posti ad un interasse di 50 cm l uno dall altro. Il solaio a cinque campate poggia alle estremità su travi fuori spessore solaio (TP1 e TP6) e in centro su quattro travi leggermente fuori spessore di solaio (TP, TP3, TP4, TP5). Schema statico solaio B con campate C-1, C-, C-3, C-4, C-5 C-1 C- C-3 C-4 C-5 TP 1-/x TP -/x TP 3-/x TP 4-/x TP 5-/x TP 6-/x x indice del piano considerato, variabile da 1 a 3. Carichi applicati alle campate C-1, C-, C-4, C-5 del solaio B: Carico permanente gk Carico variabile qk 6,75 kn/mq,000 kn/mq Carichi applicati alla campata C-3 del solaio B: Carico permanente gk gkt gktot Carico variabile qk 6,75 kn/mq 4,00 kn/mq 10,475 kn/mq,000 kn/mq pag. n. 10

12 gk qk gktot gk C-1 C- C-3 C-4 C-5 L inviluppo delle sollecitazioni sul solaio per lo schema statico considerato e per le combinazioni di carico più gravose, è riportato alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.4.). Le considerazioni valgono per i solai tipo B ad ogni piano. V.5. Solaio di copertura Il solaio di copertura in laterocemento è di tipo BAUSTA e ha altezza di 0+4 cm su tutti i campi. La larghezza del singolo travetto è di 10 cm, i travetti sono posti ad un interasse di 50 cm l uno dall altro. Il solaio a cinque campate e due sbalzi alle estremità poggia su travi di copertura inclinate di circa 0 fuori spessore di solaio (TPC1 - TPC6). Il solaio risulta inclinato di ca. 0 nel senso normale alle nervature. Nello schema statico adottato e nella progettazione del solaio si considera comunque flessione retta. Schema statico solaio di copertura con campate C1, C, C3, C4 e C5 e sbalzi S1 e S S1 C1 C C3 C4 C5 S TPC 1 TPC TPC 3 TPC 4 TPC 5 TPC 6 Carichi applicati alle campate C1, C, C3, C4 e C5 e agli sbalzi S1 e S: I carichi sono definiti per unità di superficie inclinata. Carico permanente gk Carico variabile Carico neve (1,400 * cos0 = 1,30kN/mq) Sovraccarico variabile qk 5,100 kn/mq 1,400 kn/mq 0,500 kn/mq 1,900 kn/mq Il carico del vento in ambito di progettazione del solaio di copertura non viene considerato perché di depressione e dunque a favore della sicurezza. pag. n. 11

13 qk gk S1 C1 C C3 C4 C5 S L inviluppo delle sollecitazioni sul solaio per lo schema statico considerato e per le combinazioni di carico più gravose, è riportato alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.5.). V.6. Solaio nel vano scala Il solaio nel vano scala in laterocemento è di tipo BAUSTA e ha altezza di 0+4 cm. La larghezza del singolo travetto è di 10 cm, i travetti sono posti ad un interasse di 50 cm l uno dall altro. Il solaio a campata unica è incastrato alle estremità nella muratura in C.A. confinante il vano scala. Schema statico solaio nel vano scala con campata C1 C1 M M Carichi applicati alla campata C1: Carico permanente gk Carico variabile qk 4,880 kn/mq 4,000 kn/mq qk gk M C1 M L inviluppo delle sollecitazioni sul solaio per lo schema statico considerato e per le combinazioni di carico più gravose, è riportato alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.6.). Le considerazioni valgono per i solai nel vano scala ad ogni piano ed interpiano. pag. n. 1

14 V.7. Travi principali orizzontali V.7.1.Schema statico trave TP 1 e carichi applicati La trave TP1 è fuori spessore di solaio, ha sezione rettangolare costante pari a 30cm x 40cm e poggia sui tre pilastri P 01, P 0 e P 03. Schema statico della trave TP 1 a due campate (TP 1-1 e TP 1-): TP 1-1 TP 1- P 01 P 0 P 03 Carichi applicati alle campate TP 1-1 e TP 1-: Le forze applicate sulla trave si determinano dalle reazioni vincolari dei solai sopra riportati. Per i valori delle reazioni vincolari si rimanda ai tabulati di calcolo dei solai riportati alla fine della presente relazione. Nell analisi dei carichi va inoltre considerato il peso proprio della trave nonché il peso esercitato dalla muratura perimetrale di chiusura verso l esterno. L analisi dei carichi agli stati limite ultimi e agli stati limite di esercizio nonché l inviluppo delle sollecitazioni sulla trave per lo schema statico considerato e per le combinazioni di carico più gravose, sono riportate alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.7.). Le considerazioni valgono per le travi tipo TP 1 ad ogni piano. V.7..Schema statico trave TP e carichi applicati La trave TP è leggermente fuori spessore di solaio, ha sezione rettangolare costante pari a 60cm x 9cm e poggia sui tre pilastri P 04, P 05 e P 06. Schema statico della trave TP a due campate (TP -1 e TP -): TP -1 TP - P 04 P 05 P 06 Carichi applicati alle campate TP -1 e TP -: Le forze applicate sulla trave si determinano dalle reazioni vincolari dei solai sopra riportati. Per i valori delle reazioni vincolari si rimanda ai tabulati di calcolo dei solai riportati alla fine della presente relazione. Nell analisi dei carichi va inoltre considerato il peso proprio della trave. L analisi dei carichi agli stati limite ultimi e agli stati limite di esercizio nonché l inviluppo delle sollecitazioni sulla trave per lo schema statico considerato e per le combinazioni di carico più gravose, sono riportate alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.7.). Le considerazioni valgono per le travi tipo TP ad ogni piano. pag. n. 13

15 V.7.3.Schema statico trave TP 3 e carichi applicati La trave TP3 è leggermente fuori spessore di solaio, ha sezione rettangolare costante pari a 60cm x 9cm e poggia sui due pilastri P 07 e P 08. Schemi statici della trave TP 3 a campata unica: 1 TP 3 P 07 P 08 TP 3 P 07 P 08 Carichi applicati alla campata TP 3: Le forze applicate sulla trave si determinano dalle reazioni vincolari dei solai sopra riportati. Per i valori delle reazioni vincolari si rimanda ai tabulati di calcolo dei solai riportati alla fine della presente relazione. Nell analisi dei carichi va inoltre considerato il peso proprio della trave. Lo schema statico è considerato al fine del dimensionamento dell armatura corrente superiore negli appoggi. L analisi dei carichi agli stati limite ultimi e agli stati limite di esercizio nonché l inviluppo delle sollecitazioni sulla trave per gli schemi statici considerati e per le combinazioni di carico più gravose, sono riportate alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.7.). Le considerazioni valgono per le travi di tipo TP3 ad ogni piano. Per simmetria in pianta e simmetria di carico per le travi TP 4, TP 5 e TP 6 va fatto riferimento, rispettivamente, alle travi TP 3, TP e TP 1. Le reazioni vincolari sono fornite dai pilastri. Si ipotizza che gli sforzi concentrati scaricati sui pilastri siano centrati. pag. n. 14

16 V.8. Travi cordolo Le travi cordolo sono travi in C.A. di sezione rettangolare costante di dimensioni 30cm x 4cm. La trave cordolo TC maggiormente sollecitata è quella poggiante sui pilastri P 08 e P 10. Schemi statici della trave TC P08/P10: 1 TC P 08 P 10 TC P 08 P 10 Lo schema statico 1 è considerato ai fini della progettazione dell armatura corrente inferiore, lo schema statico, invece, ai fini del dimensionamento dell armatura superiore. Carichi applicati alla campata TC: Carico permanente Peso proprio della trave (5kN/mc*0,3m*0,4m): Peso muratura perimetrale: gk 1,800 kn/m 10,500 kn/m 1,300 kn/m gk P 08 TC P 10 L inviluppo delle sollecitazioni sulla trave per gli schemi statici considerati e per le combinazioni di carico più gravose, è riportato alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.8.). L armatura derivante dal calcolo della trave cordolo più sollecitata sarà utilizzata anche in tutte le altre travi cordolo. Disponendo l armatura derivante dai calcoli della trave cordolo TC P08/P10 anche nelle altre travi cordolo, meno sollecitate, anche queste risulteranno essere verificate. V.9. Travi di copertura Le travi di copertura sono inclinate di circa 0 e sono caratterizzate da due appoggi ed uno sbalzo. Se tra gli appoggi le travi sono caratterizzate da sezione rettangolare costante in C.A. di dimensioni 30cm x 40cm, la parte a sbalzo è in spessore di solaio ed è caratterizzata da una sezione di dimensioni 60cm x 4cm. pag. n. 15

17 Per il dimensionamento dell armatura e la verifica di sicurezza delle travi di copertura si fa riferimento alla trave TPC 3-1, maggiormente sollecitata. La trave è caratterizzata da altezza fuori spessore per la campata appoggiata, e di altezza in spessore di solaio e larghezza maggiore per la campata a sbalzo. Per la geometria delle sezioni si rimanda all allegato A.V.9. Come schema statico della trave si considera il seguente: Schema statico della trave di copertura TPC 3-1: P 07 TPC 3-1 Questo schema statico di trave inclinata con appoggio fisso in basso verrà utilizzato anche per le altre travi di copertura, poggianti in basso su pilastri. Si ipotizza che le spinte delle falde di copertura siano assorbite dalle travi principali orizzontali del terzo solaio che fungono da catena. Si ipotizza, inoltre, che in caso di condizione di asimmetria di spinta orizzontale dovuta a condizioni di carico asimmetriche sulle falde, lo sforzo orizzontale sia assorbito dalle murature in C.A. I pilastri centrali e perimetrali, pertanto, saranno soggetti a soli carichi assiali centrati. Sarà comunque considerata l eccentricità minima per carico centrato prescritta dal regolamento. Carichi applicati alla trave di copertura TPC 3-1: Le forze applicate sulla trave si determinano dalle reazioni vincolari dei solai di copertura sopra riportati. Per i valori delle reazioni vincolari si rimanda ai tabulati di calcolo dei solai riportati alla fine della presente relazione. Nell analisi dei carichi va inoltre considerato il peso proprio della trave. L analisi dei carichi agli stati limite ultimi e agli stati limite di esercizio è riportata alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.9.). Non si considera l azione del vento perché di depressione e perciò a favore della sicurezza. V.10. Gradini scala Le scale sono realizzate da gradini aventi specifica funzione strutturale. I gradini sono considerati come veri e propri elementi strutturali destinati a sostenere oltre il loro peso i carichi permanenti ed accidentali agenti su di essi, trasferendoli alla muratura in C.A. a cui sono incastrati. Pertanto, lo schema statico adottato per i gradini sarà quello di mensole a sbalzo. Analisi dei carichi gravanti sul singolo gradino pag. n. 16

18 Carico permanente gk: - rivestimento pedata marmo 3cm (7kN/mc*0,03m*0,3m) 0,60 kn/m - allettamento pedata (1kN/mc*0,0m*0,9m) 0,10 - rivestimento alzata marmo cm (7kN/mc*0,0m*0,175m) 0,100 - allettamento alzata (1kN/mc*0,01m*0,175m) 0,040 - gradino in C.A. (5kN/mc*0,135m*0,8m*0,5) 0,050 - soletta in C.A. (5kN/mc*0,04m*0,33m) 0,350 - intonaco spessore cm (1kN/mc*0,0m*0,33m) 0,140 1,510 kn/m Carico permanente concentrato in punta Gk: - parapetto (50*(0,8^+0,175^)^0,5=16,5kg) 0,16 kn Carico variabile qk: - sovraccarico variabile (4kN/mq*0,33m) 1,30 kn/m Schema statico gradino Il gradino assume lo schema statico a mensola incastrata nella muratura in C.A. Carichi applicati al gradino M pag. n. 17

19 qk gk Gk Il calcolo dei parametri della sollecitazione più gravosi e i calcoli di dimensionamento dell armatura sono riportati alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.10.). V.11. Pilastri La sezione dei pilastri è di 30x30 cm. Per lo schema statico adottato i pilastri sono soggetti a carico assiale centrato. Si considera un eccentricità accidentale minima di regolamento pari alla massima tra 1/0 della larghezza del pilastro e cm. Poichè la larghezza del pilastro è b = 30 cm, come eccentricità di calcolo si assume e = cm. Cautelativamente, si aggiunge un ulteriore eccentricità di cm per tenere conto di incertezze in fase costruttiva e dei fenomeni viscosi che vanno ad aumentare gli effetti del 1 ordine. Non si considerano incrementi del carico per instabilità: λ = l i con J i = A J = b^4/1 = 67500cm^4 A = b^ = 900cm^ i = 8,66cm lo = interpiano massimo = 315cm λ = 315cm/8,66cm = 36,37 < 50 Il coefficiente ω, di conseguenza, viene assunto pari ad 1. Poichè si considera che ogni pilastro avrà ad ogni livello sezione ed armatura costanti, sarà sufficiente eseguire la verifica di sicurezza nella sezione di massimo carico (sezione di innesto del pilastro sul plinto di fondazione). Carichi applicati ai pilastri: A vantaggio della sicurezza non si effettua la riduzione ammessa del 30% dei carichi accidentali derivanti dalla copertura. Non si considerano coefficienti di riduzione dei sovraccarichi presenti ai vari livelli nella zona di spettanza dei singoli pilastri. pag. n. 18

20 Il pilastro con carico massimo è il pilastro P05 (e P1, suo simmetrico). Pertanto, la progettazione dell armatura nonché le necessarie verifiche di sicurezza agli stati limite saranno effettuate per tale pilastro, ed i risultati saranno applicati ai rimanenti. Le forze applicate sul pilastro si determinano dalle reazioni vincolari delle travi di copertura, delle travi principali e delle travi cordolo sopra riportati. Per i valori delle reazioni vincolari si rimanda ai tabulati di calcolo di tali travi riportati alla fine della presente relazione. Nell analisi dei carichi va inoltre considerato il peso proprio del pilastro. L analisi dei carichi agli stati limite ultimi e agli stati limite di esercizio è riportata alla fine della presente relazione insieme alle necessarie verifiche di resistenza agli stati limite (A.V.11.). V.1. Muratura in C.A. del vano scala In corrispondenza del vano scala posto nella parte centrale del fabbricato è prevista la realizzazione di una muratura in C.A. a forma di C. Tale muratura dovrà sostenere le azioni verticali e le spinte orizzontali derivanti dalla copertura, dovrà fornire le reazioni vincolari per i solai ed i gradini della scala in essa incastrati e dovrà assorbire le spinte orizzontali del vento agente sulla copertura e sulle pareti perimetrali. V.13. Fondazioni V Travi rovesce Le fondazioni dei pilastri dell edificio sono costituiti da travi rovesce. Come modello di calcolo si è scelto quello della trave appoggiata su un letto di molle. Come resistenza del terreno si assume ftd = 0,15 MPa. Lo sforzo normale trasmesso alla base del pilastro più sollecitato (P07) risulta di 17,100 kn come deriva dall analisi dei carichi sul pilastro. Questo carico va considerato agente con eccentricità e = 4 cm (eccentricità minima). Il momento flettente che ne deriva è pari a 495 knm. Nel calcolo delle tensioni sul terreno va considerato anche il peso proprio della trave rovescia di fondazione in C.A., che non dà contributi al momento flettente trasmesso dal pilastro. V.13..Fondazioni continue della muratura La muratura portante perimetrale dell edificio poggia su fondazioni continue. Esse trasferiscono al terreno le sollecitazioni trasmesse dalla muratura in C.A. Verrano unite attraverso un cordolo di fondazione per assicurare l effetto scatolare. pag. n. 19

21 pag. n. 0

22 VI. ALLEGATI: TABULATI DI CALCOLO E VERIFICA DELLE SEZIONI Indice: A.V.3. Solaio A pag. A.V.4. Solaio B pag. 30 A.V.5. Solaio di copertura pag. 38 A.V.6. Solaio nel vano scala pag. 46 A.V.7. Travi principali orizzontali pag. 53 A.V.7.1. Trave TP 1 pag. 53 A.V.7.. Trave TP pag. 64 A.V.7.3. Trave TP 3 pag. 74 A.V.8. Travi cordolo pag. 83 A.V.9. Travi di copertura pag. 91 A.V.10. Gradini scala pag. 106 A.V.11. Pilastri pag. 108 A.V.13. Fondazioni pag. 111 A.V Travi rovesce pag. 111 Verifica sismica condominio D.M pag. 119 Combinazione dell azione sismica con le altre azioni con OPCM 374 pag. 149 Confronto DM96 con Ordinanza 374 pag. 174 pag. n. 1

23 A.V.3. Solaio A Sezioni significative del solaio A 1 C C Le sezioni, 4, 6 e 8 corrispondono all inizio della pignattatura nel solaio. Parametri della sollecitazione più gravosi nelle sezioni significative Stati limite ultimi: Sezione M max (knm) M min (knm) T max s (kn) T max d (kn) Rv max (kn) Rv min (kn) ,150 9,150 4,563,350 7,15 3 6,073, ,900-10, ,357-7,797-13,600 1,000 5,590 14, ,750 9,44 7 3,175 1, ,300-9,47 9 -,34-6,345-11,460 11,460 5,73 Stati limite di esercizio combinazione di calcolo rara: Sezione M max (knm) M min (knm) T max s (kn) T max d (kn) Rv max (kn) Rv min (kn) 1 0 6,308 4, , ,489 18,010 14, , ,039 7,667 5,461 pag. n.

24 Stati limite di esercizio combinazione di calcolo quasi permanente: Sezione M max (knm) M min (knm) , , , ,131 Come larghezza collaborante beff della soletta di CLS si assume l interasse tra le nervature. beff = 50cm pag. n. 3

25 Progettazione del solaio a flessione allo stato limite ultimo Sezione 3 Progettazione dell armatura longitudinale inferiore Geometria della sezione: Sezione 3 Asl Altezza sezione (cm) h 4 Larghezza anima (cm) bw 10 Larghezza ala (cm) beff 50 Altezza ala (cm) hf 4 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 400 Predimensionamento armatura: Vincoli sull'armatura Armatura minima (cmq) Asl min 0,07 * h 1,68 Asl min 0,15% * Ac 0,60 Armatura minima effettiva (cmq) Asl min eff Φ1,6 Sollecitazioni Momento sollecitante (knm) M 6,073 Predimensionamento armatura Armatura longitudinale inferiore (cmq) Asl M sd Asl = 0, 9 d f 0,84 Verifica sezione: Armatura longitudinale inferiore (cmq) Asl,6 Rapporto meccanico dell'armatura ω Asl f yd ω 0 = b d f 0,04 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,040 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 17,334 Verifica 6,073 < 17,334 Conclusione VERIFICATO Verifica dell'armatura inferiore nell'appoggio cd yd σ = Tmax / Asl = 13,600 kn / 1,00 cmq = 136,00 MPa < 374 MPa VERIFICATO pag. n. 4

26 Sezione 5 Progettazione dell armatura longitudinale superiore Geometria della sezione: Asl Sezione 5 Altezza sezione (cm) h 4 Larghezza sezione (cm) b 50 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 100 Predimensionamento armatura: Vincoli sull armatura Armatura minima (cmq) Asl min 0,15% * Ac 1,80 Armatura minima effettiva (cmq) Asl min eff Φ1,6 Sollecitazioni Momento sollecitante (knm) M -7,797 Predimensionamento armatura Armatura longitudinale superiore (cmq) Asl M sd Asl = 0, 9 d f 1,08 Verifica sezione: Armatura longitudinale superiore (cmq) Asl,6 Rapporto meccanico dell armatura ω Asl f yd ω 0 = b d f 0,04 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,040 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 17,334 Verifica 7,797 < 17,334 Conclusione VERIFICATO cd yd pag. n. 5

27 Sezione 6 Verifica a flessione negativa Geometria della sezione: Asl Sezione 6 Altezza sezione (cm) h 4 Larghezza anima (cm) bw 10 Larghezza ala (cm) beff 50 Altezza ala (cm) hf 4 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 400 Armatura superiore tesa (cmq) Asl,6 Momento negativo (knm) M 3,750 Verifica sezione: Armatura longitudinale superiore (cmq) Asl,6 Rapporto meccanico dell armatura ω Asl f yd ω 0 = b d f 0,09 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,18 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 15,774 Verifica 3,750 < 15,774 Conclusione VERIFICATO Inviluppo del momento flettente più gravoso e momenti resistenti: Per la disposizione dell armatura longitudinale si vedano le tavole grafiche. cd C1-1 C1- pag. n. 6

28 Verifiche al taglio allo stato limite ultimo Resistenza al taglio del CLS La resistenza al taglio del solo CLS secondo l EC è data dalla seguente espressione: V [ τ K ( 1, + 40 ρ ) + 0, 15 ] b d Rd1 = Rd l σ cp w (EC) Per le sezioni a T e rettangolare piena del solaio le resistenze Vrd1 diventano: Sezione a T: Vrd1 = 15,195 kn Sezione rettangolare piena: Vrd1 = 60,19 kn Nelle sezioni significative 5 (sezione piena) e 4 (sezione a T) il taglio sollecitante risulta inferiore rispetto alla resistenza al taglio del solo CLS, e dunque il solaio è a regime di sicurezza. Sezione 5: Vsd = 13,600 kn < 60,19 kn VERIFICATO Sezione 4: Vsd = 10,844 kn < 15,195 kn VERIFICATO Verifiche agli stati limite di esercizio fessurazione Per il calcolo dell ampiezza di fessura si fa riferimento al DM Per il calcolo dell ampiezza di fessura si sono adottate le seguenti formule: ω = 1,7 ω k ω = ε s m rm sm m s rm s = ( c + ) + k 10 k 3 φ ρ r σ s σ sr ε sm = 1 β1 β Es σ s Per i significati e le definizioni dei singoli termini si rimanda alla norma. L ampiezza di fessurazione massima ammessa scelta in base alla classe di esposizione della struttura in CLS e della condizione di carico viene assunta pari ad ω = 0, mm. Sezione 3 Verifica a fessurazione N.B. La sezione 3 è quella maggiormente sollecitata da flessione tendente le fibre inferiori. Le caratteristiche della sezione utili al calcolo dell ampiezza di fessurazione sono le seguenti: Momento sollecitante 3,330 knm (quasi permanente) Tipo di barre: ad aderenza migliorata Diametro barre: Φ1 Distanza barre: 5 cm Area efficace del CLS: 115 cmq Tipo di carico: a lunga durata o ripetuto Andamento tensioni normali: variabili linearmente srm (cm): 7,85310 εsm: 0,00035 ωm (mm): 0,08 Ampiezza di fessura ωk: 0,047 mm < 0, mm VERIFICATO pag. n. 7

29 Sezione 5 Verifica a fessurazione N.B. La sezione 5 è quella maggiormente sollecitata da flessione tendente le fibre superiori. Le caratteristiche della sezione utili al calcolo dell ampiezza di fessurazione sono le seguenti: Momento sollecitante -4,583 knm (quasi permanente) Tipo di barre: ad aderenza migliorata Diametro barre: Φ1 Distanza barre: 5 cm Area efficace del CLS: 575 cmq Tipo di carico: a lunga durata o ripetuto Andamento tensioni normali: variabili linearmente srm (cm): 0,06549 εsm: 0,00050 ωm (mm): 0,101 Ampiezza di fessura ωk: 0,17 mm < 0, mm VERIFICATO Verifiche agli stati limite di esercizio deformazione La verifica è stata omessa dato che i rapporti l/h risultano inferiori rispetto ai valori limite definiti al paragrafo dell EC, prospetto 4.14 per sezioni a T con CLS poco sollecitato: C1-1 e C1-: l/h = 35/4 = 13,5 < 5,6 (per campate terminali) Verifiche agli stati limite di esercizio limitazione delle tensioni Verifica della limitazione degli stati tensionali per condizione di carico quasi permanente (EC 4.4.1) La verifica è stata omessa dato che il rapporto l/h risulta inferiore rispetto all 85% dei valori corrispondenti riportati al punto dell EC prospetto 4.14 per sezioni a T e CLS poco sollecitato. C1-1 e C1-: l/h = 35/4 = 13,5 < 1,7 (campata terminale) Verifica della limitazione degli stati tensionali per condizione di carico rara (EC 4.4.1) Per il calcolo delle tensioni nell acciaio e nel CLS dovute alla combinazione di calcolo rara si sono utilizzate le formule del metodo delle tensioni ammissibili per sezioni rettangolari in C.A. parzializzate, dotate di sola armatura tesa, soggette a flessione semplice: pag. n. 8

30 n A s b h' y' = b n As M σ c = b y' h' y' 3 M σ s = A h' y' s 3 Come limiti massimi delle tensioni in acciaio e CLS sotto la combinazione di calcolo rara si sono considerati: σ c max = 0,4 fck σ = 0,8 f s max yk Sezione 3 massimo momento flettente positivo: Msd = 4,103 knm σc = 0,39 MPa < 0,4 * 30 MPa = 1,0 MPa σs = 91,0 MPa < 0,8 * 430 MPa = 344 MPa Sezione 5 massimo momento flettente negativo: Msd = -5,489 knm σc = 0,5 MPa < 0,4 * 30 MPa = 1,0 MPa σs = 1,00 MPa < 0,8 * 430 MPa = 344 MPa VERIFICATO VERIFICATO VERIFICATO VERIFICATO A.V.4. Solaio B Sezioni significative del solaio B pag. n. 9

31 1 5 9 C-1 C- C-3 C-4 C Le sezioni, 4, 6, 8 e 10 corrispondono all inizio della pignattatura nel solaio. Parametri della sollecitazione più gravosi nelle sezioni significative Stati limite ultimi: Sezione M max (knm) M min (knm) T max s (kn) T max d (kn) Rv max (kn) Rv min (kn) ,448 8,448 3,799,00 7, ,07 -, ,30 -,160-10, ,195-6,8-11,50 9,581 1,100 8, ,80 8,060 7,318-1, ,000 10, ,383-10,770-11,910 18,730 30,640 15, ,840-1,00 15, ,696 4,800 Stati limite di esercizio combinazione di calcolo rara: Sezione M max (knm) M min (knm) T max s (kn) T max d (kn) Rv max (kn) Rv min (kn) ,770 4, ,010, ,987 14,100 9, ,900-0, ,96 1,090 16, ,514 5,51 Stati limite di esercizio combinazione di calcolo quasi permanente: Sezione M max M min pag. n. 30

32 (knm) (knm) ,13 5 -, , , ,504 Come larghezza collaborante beff della soletta di CLS si assume l interasse tra le nervature. Progettazione del solaio a flessione allo stato limite ultimo Sezione 11 Progettazione dell armatura longitudinale inferiore pag. n. 31

33 Geometria della sezione: Sezione 11 Asl Altezza sezione (cm) h 4 Larghezza anima (cm) bw 10 Larghezza ala (cm) beff 50 Altezza ala (cm) hf 4 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 400 Predimensionamento armatura: Vincoli sull armatura Armatura minima (cmq) Asl min 0,07 * h 1,68 Asl min 0,15% * Ac 0,60 Armatura minima effettiva (cmq) Asl min eff Φ1,6 Sollecitazioni Momento sollecitante (knm) M 9,696 Predimensionamento armatura Armatura longitudinale inferiore (cmq) Asl M sd Asl = 0, 9 d f 1,4 Verifica sezione: Armatura longitudinale inferiore (cmq) Asl,6 Rapporto meccanico dell armatura ω Asl f yd ω 0 = b d f 0,04 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,040 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 17,334 Verifica 9,696 < 17,334 Conclusione VERIFICATO Verifica dell armatura inferiore nell appoggio cd yd σ = Tmax / Asl = 18,73 kn / 1,00 cmq = 187,30 MPa < 374 MPa VERIFICATO Sezione 9 Progettazione dell armatura longitudinale superiore Geometria della sezione: pag. n. 3

34 Asl Sezione 9 Altezza sezione (cm) h 4 Larghezza sezione (cm) b 50 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 100 Predimensionamento armatura: Vincoli sull armatura Armatura minima (cmq) Asl min 0,15% * Ac 1,80 Armatura minima effettiva (cmq) Asl min eff Φ1,6 Sollecitazioni Momento sollecitante (knm) M -10,770 Predimensionamento armatura Armatura longitudinale superiore (cmq) Asl M sd Asl = 0, 9 d f 1,49 Verifica sezione: Armatura longitudinale superiore (cmq) Asl,6 Rapporto meccanico dell armatura ω Asl f yd ω 0 = b d f 0,04 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,040 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 17,334 Verifica -10,770 < 17,334 Conclusione VERIFICATO cd yd Sezione 8 Verifica a flessione negativa Geometria della sezione: pag. n. 33

35 Asl Sezione 8 Altezza sezione (cm) h 4 Larghezza anima (cm) bw 10 Larghezza ala (cm) beff 50 Altezza ala (cm) hf 4 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 400 Armatura superiore tesa (cmq) A sl,6 Momento negativo (knm) M 7,000 Verifica sezione: Armatura longitudinale superiore (cmq) Asl,6 Rapporto meccanico dell'armatura ω Asl f yd ω 0 = b d f 0,09 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,18 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 15,774 Verifica 7,000 < 15,774 Conclusione VERIFICATO Inviluppo del momento flettente più gravoso e momenti resistenti Per la disposizione dell armatura longitudinale si vedano le tavole grafiche. cd C-1 C- C-3 Verifiche al taglio allo stato limite ultimo Resistenza al taglio del CLS pag. n. 34

36 La resistenza al taglio del solo CLS secondo l EC è data dalla seguente espressione: V [ τ K ( 1, + 40 ρ ) + 0, 15 ] b d Rd1 = Rd l σ cp w (EC) Per le sezioni a T e rettangolare piena del solaio le resistenze Vrd1 diventano: Sezione a T: Vrd1 = 15,195 kn Sezione rettangolare piena: Vrd1 = 60,19 kn Nelle sezioni significative 9 (sezione piena) e 10 (sezione a T) il taglio sollecitante risulta inferiore rispetto alla resistenza al taglio del solo CLS, e dunque il solaio è a regime di sicurezza: Sezione 9: Vsd = 18,730 kn < 60,19 kn VERIFICATO Sezione 10: Vsd = 15,43 kn < 15,195 kn VERIFICATO Verifiche agli stati limite di esercizio fessurazione Per il calcolo dell ampiezza di fessura si fa riferimento al DM Per il calcolo dell ampiezza di fessura si sono adottate le seguenti formule: ω = 1,7 ω k ω = ε s m rm sm m s rm s = ( c + ) + k 10 k 3 φ ρ r σ s σ sr ε sm = 1 β1 β Es σ s Per i significati e le definizioni dei singoli termini si rimanda alla norma. L ampiezza di fessurazione massima ammessa scelta in base alla classe di esposizione della struttura in CLS e della condizione di carico viene assunta pari ad ω = 0, mm. Sezione 11 Verifica a fessurazione N.B. La sezione 11 è quella maggiormente sollecitata da flessione tendente le fibre inferiori. Le caratteristiche della sezione utili al calcolo dell ampiezza di fessurazione sono le seguenti: Momento sollecitante 5,504 knm (quasi permanente) Tipo di barre: ad aderenza migliorata Diametro barre: Φ1 Distanza barre: 5 cm Area efficace del CLS: 115 cmq Tipo di carico: a lunga durata o ripetuto Andamento tensioni normali: variabili linearmente srm (cm): 7,85310 εsm: 0,00054 ωm (mm): 0,047 Ampiezza di fessura ωk: 0,074 mm < 0, mm VERIFICATO Sezione 9 Verifica a fessurazione N.B. La sezione 9 è quella maggiormente sollecitata da flessione tendente le fibre superiori. Le caratteristiche della sezione utili al calcolo dell ampiezza di fessurazione sono le seguenti: pag. n. 35

37 Momento sollecitante -6,084 knm Tipo di barre: ad aderenza migliorata Diametro barre: Φ1 Distanza barre: 5 cm Area efficace del CLS: 575 cmq Tipo di carico: a lunga durata o ripetuto Andamento tensioni normali: variabili linearmente srm (cm): 0,06549 εsm: 0,00057 ωm (mm): 0,115 Ampiezza di fessura ωk: 0,195 mm < 0, mm VERIFICATO Verifiche agli stati limite di esercizio deformazione La verifica è stata omessa dato che i rapporti l/h risultano inferiori rispetto ai valori limite definiti al paragrafo dell EC, prospetto 4.14 per sezioni a T con CLS poco sollecitato: C-1: C-3: l/h = 35/4 = 13,5 < 5,6 (per campate terminali) l/h = 410/4 = 17,1 < 8,0 (per campate intermedie) Verifiche agli stati limite di esercizio limitazione delle tensioni Verifica della limitazione degli stati tensionali per condizione di carico quasi permanente (EC 4.4.1) La verifica è stata omessa dato che il rapporto l/h risulta inferiore rispetto all 85% dei valori corrispondenti riportati al punto dell EC, prospetto 4.14 per sezioni a T e CLS poco sollecitato. C-1: C-3: l/h = 35/4 = 13,5 < 1,7 (campata terminale) l/h = 410/4 = 17,1 < 3,8 (campata intermedia) Verifica della limitazione degli stati tensionali per condizione di carico rara (EC 4.4.1) Per il calcolo delle tensioni nell acciaio e nel CLS dovute alla combinazione di calcolo rara si sono utilizzate le formule del metodo delle tensioni ammissibili per sezioni rettangolari in C.A. parzializzate, dotate di sola armatura tesa, soggette a flessione semplice: n A s b h' y' = b n As M σ c = b y' h' y' 3 M σ s = A h' y' s 3 pag. n. 36

38 Come limiti massimi delle tensioni in acciaio e CLS sotto la combinazione di calcolo rara si sono considerati: σ = 0,4 f σ c max s max = 0,8 f ck yk Sezione 11 massimo momento flettente positivo: Msd = 6,514 knm σc = 0,61 MPa < 0,4*30 MPa = 1,0 MPa σs = 145,00 MPa < 0,8*430 MPa = 344 MPa Sezione 9 massimo momento flettente negativo: Msd = -7,96 knm σc = 0,68 MPa < 0,4*30 MPa = 1,0 MPa σs = 16,00 MPa < 0,8*430 MPa = 344 MPa A.V.5. Solaio di copertura VERIFICATO VERIFICATO VERIFICATO VERIFICATO Sezioni significative del solaio di copertura 1 S1 C1 5 9 C C3 C4 C5 S Le sezioni, 4, 6, 8 e 10 corrispondono all inizio della pignattatura nel solaio. Parametri della sollecitazione più gravosi nelle sezioni significative Stati limite ultimi: Sezione M max (knm) M min (knm) T max s (kn) T max d (kn) Rv max (kn) Rv min (kn) 1-1,405-3,746 7,53 11,70 5,103-0,340 5,6 3 4,537 1, ,580-7, ,533-9,399 8,733 18,330 7, ,860 6,300 7,77-0,90 pag. n. 37

39 8-4,000-6, ,833-9,30 10,780 0,100 8, ,360 6, ,36 1,897 Stati limite di esercizio combinazione di calcolo rara: Sezione M max (knm) M min (knm) T max s (kn) T max d (kn) Rv max (kn) Rv min (kn) 1,000 7,76 5,366 3,887 1, ,67 1,380 8, ,459 0, ,540 13,660 9, ,474,75 Stati limite di esercizio combinazione di calcolo quasi permanente: Sezione M max M min (knm) (knm) 1-0,770 3, , , ,375 11,515 Come larghezza collaborante beff della soletta di CLS si assume l interasse tra le nervature. Progettazione del solaio a flessione allo stato limite ultimo Sezione 11 Progettazione dell armatura longitudinale inferiore Geometria della sezione: pag. n. 38

40 Sezione 11 Asl Altezza sezione (cm) h 4 Larghezza anima (cm) bw 10 Larghezza ala (cm) beff 50 Altezza ala (cm) hf 4 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 400 Predimensionamento armatura: Vincoli sull'armatura Armatura minima (cmq) Asl min 0,07 * h 1,68 Asl min 0,15% * Ac 0,60 Armatura minima effettiva (cmq) Asl min eff Φ1,6 Sollecitazioni Momento sollecitante (knm) M 5,36 Predimensionamento armatura Armatura longitudinale inferiore (cmq) Asl M sd Asl = 0, 9 d f 0,74 Verifica sezione: Armatura longitudinale inferiore (cmq) Asl,6 Rapporto meccanico dell'armatura ω Asl f yd ω 0 = b d f 0,04 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,040 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 17,334 Verifica 5,36 < 17,334 Conclusione VERIFICATO Verifica dell'armatura inferiore nell'appoggio cd yd σ = Tmax / Asl = 10,780 kn / 1,00 cmq = 107,80 MPa < 374 MPa VERIFICATO Sezione 9 Progettazione dell armatura longitudinale superiore Geometria della sezione: pag. n. 39

41 Asl Sezione 9 Altezza sezione (cm) h 4 Larghezza sezione (cm) b 50 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 100 Predimensionamento armatura: Vincoli sull armatura Armatura minima (cmq) Asl min 0,15% * Ac 1,80 Armatura minima effettiva (cmq) Asl min eff Φ1,6 Sollecitazioni Momento sollecitante (knm) M -6,833 Predimensionamento armatura Armatura longitudinale superiore (cmq) Asl M sd Asl = 0, 9 d f 0,94 Verifica sezione: Armatura longitudinale superiore (cmq) Asl,6 Rapporto meccanico dell armatura ω Asl f yd ω 0 = b d f 0,04 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,040 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 17,334 Verifica 6,833 < 17,334 Conclusione VERIFICATO cd yd Sezione 8 Verifica a flessione negativa Geometria della sezione: pag. n. 40

42 Asl Sezione 8 Altezza sezione (cm) h 4 Larghezza anima (cm) bw 10 Larghezza ala (cm) beff 50 Altezza ala (cm) hf 4 Altezza utile (cm) d 1,5 Copriferro asse-bordo (cm) c,5 Area calcestruzzo (cmq) Ac 400 Armatura superiore tesa (cmq) Asl,6 Momento negativo (knm) M 4,000 Verifica sezione: Armatura longitudinale superiore (cmq) Asl,6 Rapporto meccanico dell armatura ω Asl f yd ω 0 = b d f 0,09 Momento flettente ridotto (da tabelle ξ-μ-ω) μ 0,18 Momento resistente di calcolo (knm) Mrd M Rd = μ b d fcd 15,774 Verifica 4,000 < 15,774 Conclusione VERIFICATO cd Inviluppo del momento flettente più gravoso e momenti resistenti Per la disposizione dell armatura longitudinale si vedano le tavole grafiche. pag. n. 41

43 Verifiche al taglio allo stato limite ultimo Resistenza al taglio del CLS La resistenza al taglio del solo CLS secondo l EC è data dalla seguente espressione: V [ τ K ( 1, + 40 ρ ) + 0, 15 ] b d Rd1 = Rd l σ cp w (EC) Per le sezioni a T e rettangolare piena del solaio le resistenze Vrd1 diventano: Sezione a T: Vrd1 = 15,195 kn Sezione rettangolare piena: Vrd1 = 60,19 kn Nelle sezioni significative 9 (sezione piena) e 4 (sezione a T) il taglio sollecitante risulta inferiore rispetto alla resistenza al taglio del solo CLS, e dunque il solaio è a regime di sicurezza: Sezione 9: Vsd = 10,780 kn < 60,19 kn VERIFICATO Sezione 4: Vsd = 7,144 kn < 15,195 kn VERIFICATO Verifiche agli stati limite di esercizio fessurazione Per il calcolo dell ampiezza di fessura si fa riferimento al DM pag. n. 4

44 Per il calcolo dell ampiezza di fessura si sono adottate le seguenti formule: ω = 1,7 ω k ω = ε s m rm sm m s rm s = ( c + ) + k 10 k 3 φ ρ r σ s σ sr ε sm = 1 β1 β Es σ s Per i significati e le definizioni dei singoli termini si rimanda alla norma. L ampiezza di fessurazione massima ammessa scelta in base alla classe di esposizione della struttura in CLS e della condizione di carico viene assunta pari ad ω = 0, mm. Sezione 11 Verifica a fessurazione N.B. La sezione 11 è quella maggiormente sollecitata da flessione tendente le fibre inferiori. Le caratteristiche della sezione utili al calcolo dell ampiezza di fessurazione sono le seguenti: Momento sollecitante,515 knm (quasi permanente) Tipo di barre: ad aderenza migliorata Diametro barre: Φ1 Distanza barre: 5 cm Area efficace del CLS: 115 cmq Tipo di carico: a lunga durata o ripetuto Andamento tensioni normali: variabili linearmente srm (cm): 7,85310 εsm: 0,0006 ωm (mm): 0,00 Ampiezza di fessura ωk: 0,043 mm < 0, mm VERIFICATO Sezione 9 Verifica a fessurazione N.B. La sezione 9 è quella maggiormente sollecitata da flessione tendente le fibre superiori. Le caratteristiche della sezione utili al calcolo dell ampiezza di fessurazione sono le seguenti: Momento sollecitante -3,375 knm Tipo di barre: ad aderenza migliorata Diametro barre: Φ1 Distanza barre: 5 cm Area efficace del CLS: 575 cmq Tipo di carico: a lunga durata o ripetuto Andamento tensioni normali: variabili linearmente srm (cm): 0,06549 εsm: 0,00037 ωm (mm): 0,074 Ampiezza di fessura ωk: 0,15 mm < 0, mm VERIFICATO Verifiche agli stati limite di esercizio deformazione La verifica è stata omessa dato che i rapporti l/h risultano inferiori rispetto ai valori limite definiti al paragrafo dell EC, prospetto 4.14 per sezioni a T con CLS poco sollecitato: pag. n. 43

Comune di BRESCIA PROGETTO DI RISTRUTTURAZIONE DI UN FABBRICATO ESISTENTE

Comune di BRESCIA PROGETTO DI RISTRUTTURAZIONE DI UN FABBRICATO ESISTENTE Comune di BRESCIA PROGETTO DI RISTRUTTURAZIONE DI UN FABBRICATO ESISTENTE RELAZIONE DI CALCOLO OPERE IN CONGLOMERATO CEMENTIZIO ARMATO NORMALE, IN MURATURA PORTANTE ED IN FERRO (ai sensi dell'art. 4 della

Dettagli

SOLAI SOLAI RIFERIMENTO NORMATIVA D.M. 14.02.1992 CAPITOLO 7 Art.7.0 CLASSIFICAZIONE SOLAI PIENI IN C.A. o C.A.P. PER QUESTO TIPO DI STRUTTURE VALGONO TOTALMENTE LE INDICAZIONI STRUTTURALI E DI CALCOLO

Dettagli

INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8

INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8 2/6 INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8 5 CALCOLO DELLE SOLLECITAZIONI TRAVE... 9 6 CALCOLO DELLE SOLLECITAZIONI

Dettagli

Fondazioni a platea e su cordolo

Fondazioni a platea e su cordolo Fondazioni a platea e su cordolo Fondazione a platea massiccia Una volta normalmente impiegata per svariate tipologie di edifici, oggi la fondazione a platea massiccia viene quasi esclusivamente adottata

Dettagli

LE STRUTTURE IN CEMENTO ARMATO: Predimensionamento e analisi dei carichi del solaio

LE STRUTTURE IN CEMENTO ARMATO: Predimensionamento e analisi dei carichi del solaio prof. Renato Giannini LE STRUTTURE IN CEMENTO ARMATO: Predimensionamento e analisi dei carichi del solaio (arch. Lorena Sguerri) PREDIMENSIONAMENTO E ANALISI DEI CARICHI DEL SOLAIO Norme per il predimensionamento

Dettagli

1.800x0,01x(0,33+0,16)= - Sovraccarico accidentale di 400 kg/mq 400x0,33 132,00 kg/m

1.800x0,01x(0,33+0,16)= - Sovraccarico accidentale di 400 kg/mq 400x0,33 132,00 kg/m Premessa La scala si sviluppa in una gabbia, di forma rettangolare, formata da quattro pilastri posti agli spigoli e travi lungo i quattro lati. Viene realizzata secondo la tipologia di trave a ginocchio

Dettagli

LE STRUTTURE IN CEMENTO ARMATO: Progetto dei pilastri

LE STRUTTURE IN CEMENTO ARMATO: Progetto dei pilastri prof. Renato Giannini LE STRUTTURE IN CEMENTO ARMATO: Progetto dei pilastri (arch. Lorena Sguerri) Prescrizioni di normativa per le armature dei pilastri La normativa (D.M. 09/01/96, par.5.3.4) fornisce

Dettagli

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente: Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto della scala in c.a da realizzarsi nel rifugio Cima Bossola in località Marciana NORMATIVA DI RIFERIMENTO La normativa

Dettagli

DESCRIZIONE GENERALE DELLE OPERAZIONI DA ESEGUIRE IN CASO DI CONSOLIDAMENTO STATICO DEL SOLAIO.

DESCRIZIONE GENERALE DELLE OPERAZIONI DA ESEGUIRE IN CASO DI CONSOLIDAMENTO STATICO DEL SOLAIO. DESCRIZIONE GENERALE DELLE OPERAZIONI DA ESEGUIRE IN CASO DI CONSOLIDAMENTO STATICO DEL SOLAIO. Verifica statica della struttura esistente, al fine di determinare la portata del solaio esistente; redazione

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì ANALISI DEI CARICHI AGGIORNAMENTO 25/11/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì ANALISI DEI CARICHI AGGIORNAMENTO 25/11/2011 Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì ANALISI DEI CARICHI AGGIORNAMENTO 25/11/2011 1 Muratura di mattoni pieni a una testa (15.5 cm) 2.85 Intonaco esterno in malta

Dettagli

Relazione ed elaborati di progetto per il solaio

Relazione ed elaborati di progetto per il solaio LABORATORIO DI COSTRUZIONE DELL ARCHITETTURA 2A prof. Renato Giannini Relazione ed elaborati di progetto per il solaio (arch. Lorena Sguerri) Relazione di calcolo Predimensionamento e analisi dei carichi

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Progetto strutturale di una trave rovescia Alle travi di fondazioni

Dettagli

Progetto delle armature longitudinali del solaio

Progetto delle armature longitudinali del solaio prof. Renato Giannini Progetto delle armature longitudinali del solaio (arch. Lorena Sguerri) orrezioni del diagramma di momento flettente Prescrizioni di normativa specifiche per il solaio Progetto delle

Dettagli

SCALA CON GRADINI PORTANTI E TRAVE A GINOCCHIO

SCALA CON GRADINI PORTANTI E TRAVE A GINOCCHIO prof. Gianmarco de Felice, arch. Lorena Sguerri SCALA CON GRADINI PORTANTI E TRAVE A GINOCCHIO Tipologie correnti di scale Progetto di gradini portanti Progetto della trave a ginocchio Esecutivi: piante,

Dettagli

PREDIMENSIONAMENTO E ANALISI DEI CARICHI DEL SOLAIO

PREDIMENSIONAMENTO E ANALISI DEI CARICHI DEL SOLAIO prof. Gianmarco de Felice, arch. Lorena Sguerri PREDIMENSIONAMENTO E ANALISI DEI CARICHI DEL SOLAIO Norme per il predimensionamento Analisi dei carichi permanenti Sovraccarichi variabili Combinazioni di

Dettagli

Allegato S-0 - Relazione di calcolo

Allegato S-0 - Relazione di calcolo Allegato S-0 - Relazione di calcolo 1. PREMESSA 1.1 Descrizione delle opere Il nuovo progetto prevede la demolizione del precedente fabbricato, la realizzazione di quattro nuovi blocchi, comprendenti ciascuno

Dettagli

Analisi dei carichi NNT 2008

Analisi dei carichi NNT 2008 Analisi dei carichi NNT 2008 2/25 Caso di studio Il caso di studio è rappresentato da un edificio di 2 piani, con altezza di interpiano pari a 3m, destinato a civile abitazione. 4.6m 5.2m 5.4m 1.5m 5.0m

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile Solaio Dott. Ing. Simone Beccarini Email: sbeccarini@hotmail.it INDICE: Il solaio: generalità Tipologie di solai Il solaio latero-cementizio:

Dettagli

CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO. NORMATIVA UTILIZZATA: D.M. 14/01/2008 Norme Tecniche per le costruzioni

CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO. NORMATIVA UTILIZZATA: D.M. 14/01/2008 Norme Tecniche per le costruzioni GENERALITA COMUNE DI PREDOSA Provincia di Alessandria CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO ZONA SISMICA: Zona 3 ai sensi dell OPCM 3274/2003 NORMATIVA UTILIZZATA: D.M. 14/01/2008

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

Certificazione di produzione di codice di calcolo Programma CAP3

Certificazione di produzione di codice di calcolo Programma CAP3 1 Certificazione di produzione di codice di calcolo Programma CAP3 1) CARATTERISTICHE DEL CODICE Titolo programma : CAP3 - Travi precompresse ad armatura pretesa, Metodo agli stati limite. Autore : ing.

Dettagli

CALCOLO DEL NUOVO PONTE

CALCOLO DEL NUOVO PONTE CALCOLO DEL NUOVO PONTE CARATTERISTICHE DEI MATERIALI I materiali utilizzati sono: - Calcestruzzo Rck450 = 2500 Kg/m 3 Resistenza di esercizio a flessione: f cd = 0,44*45 = 19,8 N/mm 2 = 198 Kg/cm 2 -

Dettagli

1 Relazione Generale sull Intervento...2. 2 Determinazione dei parametri geotecnici...2. 3 Normativa di riferimento...3. 4 Relazione sui materiali...

1 Relazione Generale sull Intervento...2. 2 Determinazione dei parametri geotecnici...2. 3 Normativa di riferimento...3. 4 Relazione sui materiali... 1 Relazione Generale sull Intervento... Determinazione dei parametri geotecnici... 3 Normativa di riferimento...3 4 Relazione sui materiali...3 5 Verifiche statiche...4 5.1 Formule di calcolo delle azioni...4

Dettagli

Documento #: Doc_a8_(9_b).doc

Documento #: Doc_a8_(9_b).doc 10.10.8 Esempi di progetti e verifiche di generiche sezioni inflesse o presso-tensoinflesse in conglomerato armato (rettangolari piene, circolari piene e circolari cave) Si riportano, di seguito, alcuni

Dettagli

Prima esercitazione progettuale Progetto di un solaio laterocementizio

Prima esercitazione progettuale Progetto di un solaio laterocementizio Prima esercitazione progettuale Progetto di un solaio laterocementizio 1 Cenni introduttivi ed Analisi dei carichi.... 2 1.1 Descrizione Tipologica...2 1.2 Schematizzazione strutturale...4 1.3 Analisi

Dettagli

STRUTTURE IN CEMENTO ARMATO - V

STRUTTURE IN CEMENTO ARMATO - V Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì STRUTTURE IN CEMENTO ARMATO - V AGGIORNAMENTO 22/09/2012 DOMINIO DI RESISTENZA Prendiamo in considerazione la trave rettangolare

Dettagli

- Accidentali: per edifici scolastici: 300 Kg/mq

- Accidentali: per edifici scolastici: 300 Kg/mq I PREMESSA La presente relazione riporta i calcoli e le verifiche relativi alle nuove strutture in progetto. Sono previste opere in acciaio (scale di sicurezza esterne, spazi calmi, passerelle) e in c.a.

Dettagli

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a.

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. 1 Caso studio Si vogliono eseguire degli interventi di ristrutturazione di un edificio esistente adibito a civile abitazione

Dettagli

CALCOLI ESECUTIVI DELLE STRUTTURE

CALCOLI ESECUTIVI DELLE STRUTTURE OGGETTO LOCALITA' OPERE DI BONIFICA COPERTURA IN CEMENTO AMIANTO CAPANNONE AUTORIMESSA E OFFICINA Località "Palombare", Via Del Commercio 27 Ancona PROGETTISTA Dott. Ing. LUCA MOSCA ELABORATO PROGETTO

Dettagli

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA Edifici in muratura portante 2 1 Cosa è ANDILWall? ANDILWall è un software di analisi strutturale che utilizza il motore di calcolo SAM II, sviluppato presso l Università degli Studi di Pavia e presso

Dettagli

LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA PROGETTO ESECUTIVO. Sez III Art. 33 DPR 5 Ottobre 2010 N. 207 e s.m.i.

LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA PROGETTO ESECUTIVO. Sez III Art. 33 DPR 5 Ottobre 2010 N. 207 e s.m.i. Ingegnere BIAGIO D AMATO E03b Via I.Lodato, 9 84025 Eboli (SA) tel 339.2183301 fax 0828.330614 biagiodamato@tiscali.it LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA Liceo Scientifico Statale

Dettagli

RELAZIONE RISPOSTA A DOMANDA N. 2. Generalità. Fondazioni. Caratteristiche del terreno

RELAZIONE RISPOSTA A DOMANDA N. 2. Generalità. Fondazioni. Caratteristiche del terreno RISPOSTA A DOMANDA N. 2 RELAZIONE Generalità La presente relazione illustra gli aspetti geotecnici e delle fondazioni relativi alle strutture delle seguenti opere: EDIFICIO SERVIZI BUNKER PROTEXIMETRICO

Dettagli

UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA STRUTTURALE PROVE SPERIMENTALI SU PIGNATTE IN PSE RELAZIONE

UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA STRUTTURALE PROVE SPERIMENTALI SU PIGNATTE IN PSE RELAZIONE UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA STRUTTURALE PROVE SPERIMENTALI SU PIGNATTE IN PSE RELAZIONE Il Responsabile Scientifico Dott. Ing. Fausto Mistretta Il

Dettagli

PARTICOLARI COSTRUTTIVI MURATURA ARMATA POROTON

PARTICOLARI COSTRUTTIVI MURATURA ARMATA POROTON PARTICOLARI COSTRUTTIVI MURATURA ARMATA POROTON La muratura armata rappresenta un sistema costruttivo relativamente nuovo ed ancora non molto conosciuto e le richieste di chiarimenti sulle modalità di

Dettagli

VERIFICA OPERE IN C.A. CORPO "A"

VERIFICA OPERE IN C.A. CORPO A VERIFICA OPERE IN C.A. CORPO "A" 1 VERIFICA PIASTRA FONDALE...3 VERIFICA RESTANTI OPERE IN C.A...9 VERIFICHE SLE...11 2 VERIFICA PIASTRA FONDALE Verifica a flessione Stati limiti La piastra fondale presenta

Dettagli

EDIFICI IN MURATURA PORTANTE 1 - ZONE NON SISMICHE PRINCIPI DI DIMENSIONAMENTO E VERIFICA STRUTTURALE

EDIFICI IN MURATURA PORTANTE 1 - ZONE NON SISMICHE PRINCIPI DI DIMENSIONAMENTO E VERIFICA STRUTTURALE EDIFICI IN MURATURA PORTANTE PRINCIPI DI DIMENSIONAMENTO E VERIFICA STRUTTURALE 1 - ZONE NON SISMICHE Riferimenti: D.M. LLPP 20.11.1987 Il calcolo strutturale degli edifici in muratura portante, secondo

Dettagli

SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI

SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI 1.1 DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI travi secondarie

Dettagli

GENERALITÀ La presente relazione sulle fondazioni riguarda il progetto Riqualificazione della scuola media C. Colombo in Taranto.

GENERALITÀ La presente relazione sulle fondazioni riguarda il progetto Riqualificazione della scuola media C. Colombo in Taranto. GENERALITÀ La presente relazione sulle fondazioni riguarda il progetto Riqualificazione della scuola media C. Colombo in Taranto. Il progetto prevede: la realizzazione di un nuovo intervento strutturale:

Dettagli

COMUNE DI CHIOGGIA. AMPLIAMENTO DI n.5 COLOMBARI DEL CIMITERO DI CHIOGGIA BORGO SAN GIOVANNI CON LA REALIZZAZIONEDI n.50 LOCULI E n.

COMUNE DI CHIOGGIA. AMPLIAMENTO DI n.5 COLOMBARI DEL CIMITERO DI CHIOGGIA BORGO SAN GIOVANNI CON LA REALIZZAZIONEDI n.50 LOCULI E n. COMUNE DI CHIOGGIA AMPLIAMENTO DI n.5 COLOMBARI DEL CIMITERO DI CHIOGGIA BORGO SAN GIOVANNI CON LA REALIZZAZIONEDI n.50 LOCULI E n.300 OSSARI PROGETTO ESECUTIVO PIANO DI MANUTENZIONE DELLE STRUTTURE (ELABORATO

Dettagli

Modelli di dimensionamento

Modelli di dimensionamento Introduzione alla Norma SIA 266 Modelli di dimensionamento Franco Prada Studio d ing. Giani e Prada Lugano Testo di: Joseph Schwartz HTA Luzern Documentazione a pagina 19 Norma SIA 266 - Costruzioni di

Dettagli

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI LE FONDAZIONI Generalità sulle fondazioni Fondazioni dirette Plinti isolati Trave rovescia Esecutivi di strutture di fondazione Generalità Le opere di fondazione hanno il compito di trasferire le sollecitazioni

Dettagli

INTERVENTI DI MIGLIORAMENTO SISMICO FASE 2 - DELLA SCUOLA SECONDARIA I "DANTE ALIGHIERI" DI COLOGNA VENETA

INTERVENTI DI MIGLIORAMENTO SISMICO FASE 2 - DELLA SCUOLA SECONDARIA I DANTE ALIGHIERI DI COLOGNA VENETA RELAZIONE ILLUSTRATIVA DEGLI INTERVENTI Pag. 1 di 8 SOMMARIO 1 DESCRIZIONE DELL EDIFICIO... 2 2 DESCRIZIONE DEGLI INTERVENTI... 7 2.1 INTERVENTI ESEGUITI IN FASE 1... 7 2.2 INTERVENTI PREVISTI IN FASE

Dettagli

CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 CONSOLIDAMENTO DI SOLAI LIGNEI

CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 CONSOLIDAMENTO DI SOLAI LIGNEI CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 CONSOLIDAMENTO DI SOLAI LIGNEI CONSOLIDAMENTO DI SOLAI IN LEGNO (1) Chiodi in numero eccessivo ed allineati: soluzione scorretta. Tavole connesse

Dettagli

Flessione orizzontale

Flessione orizzontale Flessione orizzontale Presso-flessione fuori piano Presso-flessione fuori piano Funzione dei rinforzi FRP nel piano trasmissione di sforzi di trazione all interno di singoli elementi strutturali o tra

Dettagli

SOLETTA SU LAMIERA GRECATA

SOLETTA SU LAMIERA GRECATA SOLETTA SU LAMIERA GRECATA (Revisione 3-01-006) Fig. 1 I solai composti in acciaio-calcestruzzo sono costituiti da una lamiera grecata di acciaio su cui viene eseguito un getto di calcestruzzo normale

Dettagli

Allegato S-0 - Relazione di calcolo

Allegato S-0 - Relazione di calcolo Allegato S-0 - Relazione di calcolo 1. PREMESSA 1.1 Descrizione delle opere Il nuovo progetto prevede la demolizione del precedente fabbricato, la realizzazione di quattro nuovi blocchi, comprendenti ciascuno

Dettagli

BASATI SULLA GERARCHIA DELLE RESISTENZE. Footer Text

BASATI SULLA GERARCHIA DELLE RESISTENZE. Footer Text ARGOMENTI: MATERIALI E PRODOTTI DA COSTRUZIONE TIPOLOGIE STRUTTURALI E DETTAGLI COSTRUTTIVI AZIONI SULLE COSTRUZIONI RISPOSTA SISMICA E CRITERI DI PROGETTAZIONE BASATI SULLA GERARCHIA DELLE RESISTENZE

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO Istituto Scolastico Barbarigo Castello 6432/A Venezia Installazione di piattaforma elevatrice Progetto esecutivo per strutture di fondazione RELAZIONE DI CALCOLO Committente Provincia di Venezia Dipartimento

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

*COMUNE DI NOCETO * *REALIZZAZIONE IMPIANTI FOTOVOLTAICI PRESSO EDIFICI PUBBLICI* STUDIO DI FATTIBILITA IDONEITA STATICA

*COMUNE DI NOCETO * *REALIZZAZIONE IMPIANTI FOTOVOLTAICI PRESSO EDIFICI PUBBLICI* STUDIO DI FATTIBILITA IDONEITA STATICA COMUNE DI NOCETO *REALIZZAZIONE IMPIANTI FOTOVOLTAICI PRESSO STUDIO DI FATTIBILITA IDONEITA STATICA PROGETTISTA: Ing. Diego Pantano FIRMA TIMBRO PREMESSA INDICE 1. PREMESSA... 3 2. NORMATIVA TECNICA DI

Dettagli

a = altezza travetto b = spessore soletta superiore c = spessore totale (a+b+4+2) Rete in filo d acciaio galvanizzato Caratteristiche acciaio:

a = altezza travetto b = spessore soletta superiore c = spessore totale (a+b+4+2) Rete in filo d acciaio galvanizzato Caratteristiche acciaio: SOLAIIO CON PANNELLO SOLAIIO EMMEDUE PSSG2E Largh. travetto= 100 mm Interasse travetti= 560 mm Spessore Var. 120-320 mm SCHEDA 3..1 Gli orizzontamenti eseguiti con il pannello solaio EMMEDUE PSSG2E, realizzano

Dettagli

SICUREZZA E PRESTAZIONI ATTESE...

SICUREZZA E PRESTAZIONI ATTESE... INDICE GENERALE PREMESSA... 1 OGGETTO... 2 SICUREZZA E PRESTAZIONI ATTESE... 2.1 PRINCIPI FONDAMENTALI... 2.2 STATI LIMITE... 2.2.1 Stati Limite Ultimi (SLU)... 2.2.2 Stati Limite di Esercizio (SLE)...

Dettagli

ANALISI STRUTTURALE DELLA TRAVE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN)

ANALISI STRUTTURALE DELLA TRAVE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN) ANALISI STRUTTURALE DELLA TRAE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN) SALA C SALA A SALA B Ing. FRANCESCO POTENZA Ing. UBERTO DI SABATINO 1 1. PREESSA La presente relazione illustra i risultati

Dettagli

SOLAIO A TRAVETTI TRALICCIATI PREFABBRICATI

SOLAIO A TRAVETTI TRALICCIATI PREFABBRICATI SOLAIO A TRAVETTI TRALICCIATI PREFABBRICATI Il solaio a travetti tralicciati, noto anche come solaio bausta, è costituito da travetti tralicciati e da elementi di alleggerimento in laterizio. I travetti

Dettagli

INTERVENTO DI RESTAURO E RIFUNZIONALIZZAZIONE DEL COMPLESSO EX RISTORANTE S. GIORGIO AL BORGO MEDIOEVALE DI TORINO

INTERVENTO DI RESTAURO E RIFUNZIONALIZZAZIONE DEL COMPLESSO EX RISTORANTE S. GIORGIO AL BORGO MEDIOEVALE DI TORINO INTERVENTO DI RESTAURO E RIFUNZIONALIZZAZIONE DEL COMPLESSO EX RISTORANTE S. GIORGIO AL BORGO MEDIOEVALE DI TORINO SPECIALISTICA OPERE INTERVENTO DI RESTAURO E RIFUNZIONALIZZAZIONE DEL COMPLESSO EX RISTORANTE

Dettagli

11. Criteri di analisi e di verifica

11. Criteri di analisi e di verifica 11. Criteri di analisi e di verifica Il progetto dell edificio esistente riflette naturalmente lo stato delle conoscenze al tempo della costruzione e può contenere difetti di impostazione e di realizzazione,

Dettagli

www.didatticaonline.altervista.org RELAZIONE DI CALCOLO DI UNA SCALA IN C.C.A. CON TRAVI A GINOCCHIO

www.didatticaonline.altervista.org RELAZIONE DI CALCOLO DI UNA SCALA IN C.C.A. CON TRAVI A GINOCCHIO RELAZIONE DI CALCOLO DI UNA SCALA IN C.C.A. CON TRAVI A GINOCCHIO La scala oggetto della presente relazione è stata calcolata tenendo conto delle norme vigenti (D.. 9 Gennaio 1996, D.. 16 Gennaio 1996).

Dettagli

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3 INDICE 1. Premesse pag. 2 2. Regime normativo pag. 3 3. Plinto di fondazione torre faro pag. 4 3.1 Sollecitazione massime di calcolo pag. 4 3.2 Determinazione massimi sforzi sui pali pag. 4 3.3 Dimensionamento

Dettagli

ANALISI DI UNA STRUTTURA IN MURATURA ESISTENTE

ANALISI DI UNA STRUTTURA IN MURATURA ESISTENTE ANALISI DI UNA STRUTTURA IN MURATURA ESISTENTE si esamina una struttura esistente, individuando carenze sugli spessori della muratura con snellezza e pressoflessione trasversale (statica e sismica) non

Dettagli

SETTI O PARETI IN C.A.

SETTI O PARETI IN C.A. SETTI O PARETI IN C.A. Parete Pareti accoppiate SETTI O PARETI IN C.A. Na 20% Fh i i h i Na/M tot >=0.2 SETTI O PARETI IN C.A. IL FATTORE DI STRUTTURA VERIFICHE SETTI O PARETI IN C.A. SOLLECITAZIONI -FLESSIONE

Dettagli

Il calcolo delle sopraelevazioni in muratura in funzione del livello di conoscenza

Il calcolo delle sopraelevazioni in muratura in funzione del livello di conoscenza MICHELE VINCI Il calcolo delle sopraelevazioni in muratura in funzione del livello di conoscenza Collana Calcolo di edifici in muratura (www.edificiinmuratura.it) Articolo 2 Ottobre 2013 Bibliografia:

Dettagli

FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE A/A 2008-2009 SCALE IN CEMENTO

FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE A/A 2008-2009 SCALE IN CEMENTO A/A 2008-2009 PROGETTO DI SCALE IN CEMENTO ARMATO A/A 2008-2009 CONTENUTO LEZIONE Generalità sulle scale e tipologie Scala con trave a ginocchio modellazione e calcolo sollecitazioni Progetto dei gradini

Dettagli

Committente : Provincia Regionale di Ragusa Località : Porto di Pozzallo (RG) Opera : Realizzazione della stazione passeggeri nel porto di Pozzallo

Committente : Provincia Regionale di Ragusa Località : Porto di Pozzallo (RG) Opera : Realizzazione della stazione passeggeri nel porto di Pozzallo Committente : Provincia Regionale di Ragusa Località : Porto di Pozzallo (RG) Opera : Realizzazione della stazione passeggeri nel porto di Pozzallo RELAZIONE TECNICA ILLUSTRATIVA SOMMARIO 1 DESCRIZIONE

Dettagli

Requisiti fondamentali

Requisiti fondamentali Requisiti fondamentali Resistenza meccanica Modesta deformabilità Minimo spessore Peso ridotto Buone proprietà isolanti, termiche e acustiche Superficie d intradosso piana Resistenza al fuoco Rapida realizzazione

Dettagli

TEST DI VALIDAZIONE DEL SOFTWARE VEM NL

TEST DI VALIDAZIONE DEL SOFTWARE VEM NL 1 2 TEST DI VALIDAZIONE DEL SOFTWARE VEM NL Confronto dei risultati tra il software VEM NL el il metodo SAM proposto dall Unità di Ricerca dell Università di Pavia. Stacec s.r.l. Software e servizi per

Dettagli

Ing. Stefano Di Sangro REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA RETE

Ing. Stefano Di Sangro REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA RETE Studio di Ingegneria Stefano Di Sangro CITTA DI ROSETO DEGLI ABRUZZI Provincia di Teramo PIANO REGIONALE TRIENNALE TUTELA E RISANAMENTO AMBIENTALE 2006/2008 ART. 225 L.R. N. 15 DEL 26.04.04 INSTALLAZIONE

Dettagli

MANUALE D USO E MANUTENZIONE DELLE STRUTTURE

MANUALE D USO E MANUTENZIONE DELLE STRUTTURE MANUALE D USO E MANUTENZIONE DELLE STRUTTURE Cap. 10.1 del D.M. 14 gennaio 2008 e cap. C10.1 par. 4.1 della Circ. n. 617/2009 1. PIANO DI MANUTENZIONE DELLE STRUTTURE PREMESSA Ai sensi del C10.1 punto

Dettagli

dott. LUIGI A. CANALE I N G E G N E R E Schio (Vi) - via Veneto n. 2/c tel. 0445.500.148 fax 0445.577.628 canale@ordine.ingegneri.vi.

dott. LUIGI A. CANALE I N G E G N E R E Schio (Vi) - via Veneto n. 2/c tel. 0445.500.148 fax 0445.577.628 canale@ordine.ingegneri.vi. dott. LUIGI A. CANALE I N G E G N E R E Schio (Vi) - via Veneto n. 2/c tel. 0445.500.148 fax 0445.577.628 canale@ordine.ingegneri.vi.it Comune di xxx Provincia di xxx C O L L A U D O S T A T I C O SCUOLA

Dettagli

NUOVA TIPOLOGIA ANTISISMICA DI EDIFICI INDUSTRIALI

NUOVA TIPOLOGIA ANTISISMICA DI EDIFICI INDUSTRIALI ARCHITETTONICO NUOVA TIPOLOGIA ANTISISMICA DI EDIFICI INDUSTRIALI STRUTTURALE Pagina 1 di 9 Sommario SOLUZIONE TIPO :... 3 VANTAGGI RISPETTO AL SISTEMA USUALE DI CAPANNONI PREFABBRICATI :... 6 SCELTA TIPOLOGIA

Dettagli

COMUNE DI: SCAFA RELAZIONE TECNICA

COMUNE DI: SCAFA RELAZIONE TECNICA COMUNE DI: SCAFA PROVINCIA DI: PESCARA OGGETTO: Piano Scuole Abruzzo il Futuro in Sicurezza edificio scolastico c.so I Maggio Scuola Elementare. Intervento indicato al n.132 dell allegato al D.C.D. n.

Dettagli

Progetto di un edificio da destinare ad officina di riparazione autovetture con annesso salone di esposizione e vendita

Progetto di un edificio da destinare ad officina di riparazione autovetture con annesso salone di esposizione e vendita Progetto di un edificio da destinare ad officina di riparazione autovetture con annesso salone di esposizione e vendita Sessione anno 1990 Prima prova scritto-grafica A confine con una strada di un centro

Dettagli

INTERVENTI DI MIGLIORAMENTO SISMICO FASE 3 - DELLA SCUOLA SECONDARIA I "DANTE ALIGHIERI"DI COLOGNA VENETA

INTERVENTI DI MIGLIORAMENTO SISMICO FASE 3 - DELLA SCUOLA SECONDARIA I DANTE ALIGHIERIDI COLOGNA VENETA RELAZIONE ILLUSTRATIVA DEGLI INTERVENTI Pag. 1 di 13 SOMMARIO 1 DESCRIZIONE DELL EDIFICIO... 2 2 DESCRIZIONE DEGLI INTERVENTI... 7 2.1 INTERVENTI ESEGUITI IN FASE 1... 7 2.2 INTERVENTI ESEGUITI IN FASE

Dettagli

Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria.

Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria. Politecnico di Torino Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria. III parte Pag. 1 Le componenti dell azione sismica devono essere considerate come agenti simultaneamente,

Dettagli

COMUNE DI ARNESANO PROVINCIA DI LECCE

COMUNE DI ARNESANO PROVINCIA DI LECCE COMUNE DI ARNESANO PROVINCIA DI LECCE PROGETTO: COSTRUZIONE DI UN FABBRICATO DI ERP COMPOSTO DA N 8 ALLOGGI SITO NEL COMUNE DI ARNESANO (LE) IN VIA ELMO ANGOLO CON VIA DA REALIZZARE (C.U.P. I77E09000050006

Dettagli

I.I.S. Morea Vivarelli --- Fabriano. Disciplina: SCIENZE TECNOLOGIE APPLICATE

I.I.S. Morea Vivarelli --- Fabriano. Disciplina: SCIENZE TECNOLOGIE APPLICATE I.I.S. Morea Vivarelli --- Fabriano Disciplina: SCIENZE TECNOLOGIE APPLICATE Classe 2^ C.A.T. Modulo N. 2 _ ORGANISMO EDILIZIO E SUOI ELEMENTI E RAPPRESENTAZIONE GRAFICA Questionario N. 3a Fondazioni Muratura

Dettagli

QUESTIONARIO Per l Assicurazione DECENNALE POSTUMA di immobili di nuova realizzazione ad uso esclusivo civile abitazione

QUESTIONARIO Per l Assicurazione DECENNALE POSTUMA di immobili di nuova realizzazione ad uso esclusivo civile abitazione QUESTIONARIO Per l Assicurazione DECENNALE POSTUMA di immobili di nuova realizzazione ad uso esclusivo civile abitazione La Società si impegna a fare uso riservato di queste notizie ed informazioni. È

Dettagli

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Cognome e nome PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Si ricorda al candidato di rispondere alle domande di Idraulica, Scienza delle costruzioni e Tecnica delle

Dettagli

FORMULE UTILIZZATE NEI CALCOLI

FORMULE UTILIZZATE NEI CALCOLI OGGETTO LAVORI Committente: FORMULE UTILIZZATE NEI CALCOLI Il Progettista Strutturale VERIFICA DELLE RIGIDEZZE. La rigidezza iniziale (K in ) si calcola con la formula: K = GAEl 2 h 3 G1,2hEl 2 dove: E,G

Dettagli

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti;

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti; !""##"!$%&'((""!" )**&)+,)-./0)*$1110,)-./0)*!""##"!$%&'((""!" *&)23+-0-$4--56%--0.),0-,-%323 -&3%/ La presente relazione ha lo scopo di illustrare il meccanismo di calcolo che sta alla base del dimensionamento

Dettagli

ASPETTI DELLA PROGETTAZIONE STRUTTURALE DI IMPIANTI FOTOVOLTAICI

ASPETTI DELLA PROGETTAZIONE STRUTTURALE DI IMPIANTI FOTOVOLTAICI ASPETTI DELLA PROGETTAZIONE STRUTTURALE DI IMPIANTI FOTOVOLTAICI Pescara 13 Aprile 2011 Relatore Dott. Ing. Maria Angelucci Fattori che influenzano la progettazione strutturale Caratteristiche del pannello

Dettagli

Spett. le Comune di Xxxxxx

Spett. le Comune di Xxxxxx Spett. le Comune di Xxxxxx OFFERTA n 28/13 Breganze, 05/02/2013 C.A. Xxxxx Xxxxx Oggetto: Indagini varie su Magazzino-Ufficio Tecnico, Scuola Media, Scuola Elementare, Palestra e Municipio di Xxxxxx (XX)

Dettagli

Istruzioni per l uso dei programmi MomCad, TraveCon, TraveFon

Istruzioni per l uso dei programmi MomCad, TraveCon, TraveFon Istruzioni per l uso dei programmi MomCad, TraveCon, TraveFon I tre programmi sono utility generali preparate appositamente per gli studenti (ma che potrebbero essere utili anche per professionisti). MomCad

Dettagli

STRUTTURE MISTE ACCIAIO-CLS Lezione 2

STRUTTURE MISTE ACCIAIO-CLS Lezione 2 STRUTTURE MISTE ACCIAIO-CLS Lezione 2 I SISTEMI DI CONNESSIONE Tipologie di connettori Calcolo della sollecitazione nei connettori Connettori a totale ripristino di resistenza Connettori a parziale ripristino

Dettagli

Laboratorio di Costruzione dell Archite5ura I A. a.a. 2014/15. Prof. Sergio Rinaldi. sergio.rinaldi@unina2.it. LE SCALE: elementi per il progetto

Laboratorio di Costruzione dell Archite5ura I A. a.a. 2014/15. Prof. Sergio Rinaldi. sergio.rinaldi@unina2.it. LE SCALE: elementi per il progetto Dipar&mento di archite0ura e Disegno Industriale L. Vanvitelli Corso di Laurea Magistrale in Archite0ura Laboratorio di Costruzione dell Archite5ura I A a.a. 2014/15 Prof. Sergio Rinaldi sergio.rinaldi@unina2.it

Dettagli

Corsi di Laurea in Ingegneria Edile ed Edile-Architettura. Costruzioni in Zona Sismica. Parte 7.

Corsi di Laurea in Ingegneria Edile ed Edile-Architettura. Costruzioni in Zona Sismica. Parte 7. Università di Pisa DIPARTIMENTO DI INGEGNERIA STRUTTURALE Corsi di Laurea in Ingegneria Edile ed Edile-Architettura Costruzioni in Zona Sismica. Parte 7. Danneggiamento e riparazione di elementi strutturali

Dettagli

Lezione. Progetto di Strutture

Lezione. Progetto di Strutture Lezione Progetto di Strutture Impostazione della carpenteria Impostazione della carpenteria Definizione dell orditura dei solai e della posizione di travi e pilastri ( La struttura deve essere in grado

Dettagli

INDICE 1. INTRODUZIONE... 2 2. NORMATIVA... 8 3. MATERIALI... 8 4. DEFINIZIONE DEI CARICHI... 9 5. CRITERI DI VERIFICA... 9

INDICE 1. INTRODUZIONE... 2 2. NORMATIVA... 8 3. MATERIALI... 8 4. DEFINIZIONE DEI CARICHI... 9 5. CRITERI DI VERIFICA... 9 R4M engineering INDICE 1. INTRODUZIONE... 2 1.1. CHIUSURA DEL FORO SCALA A CHIOCCIOLA ESISTENTE... 4 1.2. CHIUSURA CAVEDI IMPIANTISTICI ESISTENTI... 5 1.3. AMPLIAMENTO DELLA VASCA... 6 1.4. ORDITURA PORTANTE

Dettagli

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi Incontro di aggiornamento Edifici antisismici in calcestruzzo armato Aspetti strutturali e geotecnici secondo le NTC08 1 Esame visivo della struttura Orizzonte Hotel, Acireale 16-17 dicembre 2010 Aurelio

Dettagli

AZIONI SULLE COSTRUZIONI, CARICHI VENTO, NEVE. Maurizio Orlando

AZIONI SULLE COSTRUZIONI, CARICHI VENTO, NEVE. Maurizio Orlando AZIONI SULLE COSTRUZIONI, CARICHI PERMANENTI, CARICHI VARIABILI DI ESERCIZIO, VENTO, NEVE Dipartimento di Ingegneria Civile e Ambientale - Università degli Studi di Firenze www.dicea.unifi.it/maurizio.orlando

Dettagli

L ingombro ed il numero delle corsie si calcola attraverso lo schema e la tabella riportata a seguito.

L ingombro ed il numero delle corsie si calcola attraverso lo schema e la tabella riportata a seguito. 4.2 IL COLLAUDO STATICO DEI PONTI 4.2.1 Ponti stradali Per i ponti stradali le norme per l effettuazione del collaudo statico sono contenute nel D.M. LL. PP. del 4 maggio 1990 Aggiornamento delle norme

Dettagli

Verifica di una struttura esistente

Verifica di una struttura esistente Il metodo agli Stati Limite per la verifica delle strutture in c.a. Giovanni A. Plizzari Università di Bergamo Paolo Riva Università di Brescia Corso Pandini Bergamo, 14-15 Novembre, 2003 Verifica di una

Dettagli

MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI

MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI MODELLAZIONE DI UN EDIFICIO IN MURATURA CON IL PROGRAMMA DI CALCOLO 3MURI 1) CREARE UN FILE.DXF IN AUTOCAD NEL QUALE VENGONO RIPORTATE LE PIANTE DEI VARI PIANI DELL EDIFICIO DA ANALIZZARE. RISULTA CONVENIENTE

Dettagli

Schöck Isokorb Tipo QP, QP-VV

Schöck Isokorb Tipo QP, QP-VV Schöck Isokorb Tipo Schöck Isokorb Tipo, -VV Schöck Isokorb Tipo (sollecitazione di taglio) Per carichi puntuali. Adatto a balconi appoggiati. Trasferisce forze di taglio positive Schöck Isokorb Tipo -VV

Dettagli

LAVORI SPECIALI. (Articolo 148 D.Lgs 81/08)

LAVORI SPECIALI. (Articolo 148 D.Lgs 81/08) 146 LAVORI SPECIALI (Articolo 148 D.Lgs 81/08) Prima di procedere alla esecuzione di lavori su lucernari, tetti, coperture e simili, fermo restando l obbligo di predisporre misure di protezione collettiva,

Dettagli

Progetto di un solaio in legno a semplice orditura (a cura di: ing. E. Grande)

Progetto di un solaio in legno a semplice orditura (a cura di: ing. E. Grande) Progetto i un solaio in legno a semplice oritura (a cura i: ing. E. Grane) 1. PREMESSA Il presente elaborato concerne la progettazione i un solaio in legno a semplice oritura con estinazione uso i civile

Dettagli

MILANOSPORT S.P.A. CENTRO SPORTIVO SAINI Viale Corelli, 136 20134 Milano. piscina 50 m NUOVA DISTRIBUZIONE IDRAULICA PROGETTO ESECUTIVO

MILANOSPORT S.P.A. CENTRO SPORTIVO SAINI Viale Corelli, 136 20134 Milano. piscina 50 m NUOVA DISTRIBUZIONE IDRAULICA PROGETTO ESECUTIVO MILANOSPORT S.P.A. CENTRO SPORTIVO SAINI Viale Corelli, 136 20134 Milano piscina 50 m NUOVA DISTRIBUZIONE IDRAULICA PROGETTO ESECUTIVO DIRETTORE TECNICO ARCH. STEFANO PEDULLA R4M engineering ELABORATO

Dettagli

DIVISIONE: [ ] MILANO [ ] LA PREVIDENTE [ ] NUOVA MAA [ ] ITALIA AGENZIA DI:

DIVISIONE: [ ] MILANO [ ] LA PREVIDENTE [ ] NUOVA MAA [ ] ITALIA AGENZIA DI: GENNAIO2013 DIVISIONE: [ ] MILANO [ ] LA PREVIDENTE [ ] NUOVA MAA [ ] ITALIA AGENZIA DI: COD. Il presente questionario deve essere compilato in tutte le sue parti. La Società s'impegna a fare uso riservato

Dettagli

- Manuale d uso, contenente le indicazioni per il corretto uso e la conservazione del bene in oggetto;

- Manuale d uso, contenente le indicazioni per il corretto uso e la conservazione del bene in oggetto; piano di manutenzione Committente: COMUNE DI CASALE MONFERRATO (AL) Oggetto: LAVORI DI AMPLIAMENTO DEL PALAZZETTO DELLO SPORT (adeguamento alle norme vigenti in materia di sicurezza ed igiene ai fini dell

Dettagli

Elementi di interposizione: Pannelli Compound. Tavelle e tavelloncini in laterizio. Perlinati in legno. Pannelli composti (gesso, sughero, osb).

Elementi di interposizione: Pannelli Compound. Tavelle e tavelloncini in laterizio. Perlinati in legno. Pannelli composti (gesso, sughero, osb). SOLAIO.. Elementi di interposizione: Pannelli Compound. Tavelle e tavelloncini in laterizio. Perlinati in legno. Pannelli composti (gesso, sughero, osb). Pignatte in laterizio. Consente molteplici soluzioni

Dettagli

IL METODO DEGLI STATI LIMITE Esempi di verifica

IL METODO DEGLI STATI LIMITE Esempi di verifica Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 374/003) POTENZA, 004 IL METODO DEGLI STATI LIMITE Esempi di verifica Dott. Ing.. Marco VONA DiSGG, Università di Basilicata

Dettagli