PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t."

Transcript

1 4/ PARTICELLA LIBERA 09/0 PARTICELLA LIBERA IN UNA DIMENSIONE L equazione i Schröinger per una particella libera in una imensione è ) i ħ t ψ ˆp t x) = m ψ t x). Poiché Ĥ ) i πħ) exp / ħ px = p m ) i πħ) exp / ħ px, la soluzione generale ella ) si può scrivere ) ψ t x) = p ψ πħ) / 0 p) exp i ħ )) px p m t. La funzione ona iniziale ψ 0 x) etermina la funzione ona a ogni tempo t secono lo schema ψ 0 x) ψ 0 p) ψ t x), 3) = x πħ) / exp i ) ħ px ψ 0 x ) ove l espressione i ψ 0 p) segue alla relazione i ortonormalità x πħ) exp i ) / ħ p x ) i πħ) exp / ħ px = δp p ). Per avere un espressione esplicita i ψ t x) occorre scegliere la funzione ona iniziale ψ 0 x) e calcolare gli integrali 3) e ). Rinviano per il momento questo lavoro, stabiliamo prima alcune proprietà notevoli elle istribuzioni i valori quantistiche che seguono all equazione i evoluzione libera ).

2 4/ PARTICELLA LIBERA 09/0 Evoluzione elle istribuzioni i valori quantistiche L evoluzione temporale el valore meio el momento pt) = ψ t ˆp ψ t è ata all equazione = i ˆp ħ m ψ t { }} ) { ) t pt) = ψ t ˆp t ψ t + t ψ t ˆp ψ t = i }{{} ħ = i ħ ψ t ˆp m m ψ t [ˆp, ˆp ] ψ t = 0 e quini pt) = p0) p. Il valore meio ella posizione xt) = ψ t ˆx ψ t evolve secono l equazione t xt) = i ħ = iħ ˆp {}}{ m ψ t [ˆx, ˆp ] ψ t = m p. Per lo scarto quaratico meio el momento si ottiene t p t) = i ħ t) p = ψ t ˆp p) ψ t, m ψ t [ ˆp p), ˆp ] ψ t = 0 e quini p t) = p 0) p. Consieriamo ancora la quantità xpt) = ψ t {ˆx xt))ˆp p)} sym ψ t ove {Â ˆB} sym = {Â ˆB + ˆBÂ}), la cui evoluzione è retta all equazione = iħ ˆpˆp p) t xp = i {}}{ ħ m ψ t [ {ˆx xt))ˆp p)}sym, ˆp ] ψ t + ψ t t sym) {ˆx xt))ˆp p)} ψ t }{{} = m ψ t ˆpˆp p) ψ t = m ψ t ˆp p) ψ t = m = 0. p

3 4/ PARTICELLA LIBERA 09/0 3 Infine, l evoluzione ello scarto quaratico meio ella posizione t) x = ψ t ˆx xt)) ψ t risulta t x t) = i ħ = 4iħ {ˆx xt))ˆp} sym [ ˆx xt)), ˆp ] ψ t + ψ t t ˆx xt))) ψ t }{{} = 0 {}}{ m ψ t = m ψ t {ˆx xt))ˆp} sym ψ t = m ψ t {ˆx xt))ˆp p)} sym ψ t = m xpt). Riassumeno, le equazioni i evoluzione e le corrisponenti soluzioni che subito si ottengono sono 4) pt) = 0, t t xt) = m p, t p t) = 0, t xpt) = m p, t) t x = m xpt), pt) = p, xt) = x0) + m p t, t) p =, p xpt) = xp0) + m p t, t) x = 0) x + m xp0) t + m p t. La costanza el valore meio e ello scarto quaratico meio el momento è conseguenza ella conservazione el momento. La quantità xp misura la correlazione esistente tra i valori elle quantità x e p. Ciò risulterà chiaro all analogia con la corrisponente quantità per il caso i una istribuzione statistica classica.

4 4/ PARTICELLA LIBERA 09/0 4 Evoluzione ella istribuzione statistica classica Per il sistema classico particella libera in una imensione, consieriamo un ensemble efinito alla istribuzione statistica iniziale nello spazio elle fasi ϱx, p, 0). Definiamo, in termini ella istribuzione statistica ϱx, p, t) al tempo t, le quantità pt) = x p p ϱx, p, t), xt) = x p x ϱx, p, t), t) p = x p p pt)) ϱx, p, t), xpt) = x p x xt))p pt)) ϱx, p, t), t) x = x p x xt)) ϱx, p, t). Poiché la relazione tra ϱx, p, t) e ϱx, p, 0) è ϱx, p, t) = ϱx p m t, p, 0) e quini, per qualsiasi variabile inamica fx, p, t), x p fx, p, t) ϱx, p, t) = x p fx + p m t, p, t) ϱx, p, 0), le quantità efinite sopra si calcolano facilmente: pt) = x p p ϱx, p, 0) = p0) p, xt) = x p x + p m t) ϱx, p, 0) = x0) + m p t, t) p = x p p p) ϱx, p, 0) = 0) p, p xpt) = x p x + p m t x0) m ) p t p p) ϱx, p, 0) = xp0) + m p t, t) x = x p x + p m t x0) m p t) ϱx, p, 0) = x p x x0)) ϱx, p, 0) + m t x p x x0))p p) ϱx, p, 0) + t m x p p p) ϱx, p, 0) = 0) x + m xp0) t + m p t.

5 4/ PARTICELLA LIBERA 09/0 5 Conclusione L evoluzione temporale elle quantità caratteristiche ella istribuzione statistica classica è ata alle stesse equazioni e espressioni 4) elle corrisponenti quantità quantistiche caratteristiche ello stato ψ. Avremmo potuto, anche nel caso ella istribuzione statistica classica, scrivere le equazioni i evoluzione elle iverse quantità e integrarle; sarebbe stato un po più complicato. Nel caso classico l evoluzione ella istribuzione i x è ovuta alla struttura in p ella istribuzione congiunta ϱx, p, t) i x e p. Si vee facilmente che la quantità xp è positiva quano nell ensemble prevalgono gli elementi per i quali i segni i x x e p p sono concori, è negativa se, all opposto, prevalgono gli elementi per i quali i segni i x x e p p sono iscori. Essa escrive quini le correlazioni tra x e p esistenti nell ensemble. xp La quantità r = è sempre compresa tra e e si ice coefficiente i correlazione tra x e p. x p Nel caso quantistico non esiste una istribuzione congiunta i x e p. Tuttavia la granezza {ˆx x)ˆp p)} sym, che corrispone in moo naturale alla granezza classica x x)p p), può essere legittimamente consierata e il suo valore meio xp nello stato ψ è una quantità ben efinita. La coincienza ell evoluzione temporale elle quantità quantistiche caratteristiche ello stato ψ con quella elle corrisponenti quantità caratteristiche ella istribuzione statistica classica suggerisce, nel caso quantistico, i interpretare l evoluzione ella istribuzione i x come ovuta alla struttura in p ella funzione ona ψx) = x ψ.

6 4/ PARTICELLA LIBERA 09/0 6 Differenze Nel caso ella statistica classica la istribuzione si riferisce, per costruzione, a un ensemble e corrispone ai valori naturalmente assunti al tempo t alle variabili x e p ei vari elementi ell ensemble. Nel caso ella meccanica quantistica il vettore i stato ψ può riferirsi a un singolo sistema e le istribuzioni rappresentano le istribuzioni ei valori elle granezze x e p, valori che iventano efiniti solo in caso i loro misurazioni separate) al tempo t. Se, in meccanica quantistica, si costruisce un ensemble i sistemi tutti escritti a ψ, questi sono tutti fisicamente equivalenti fino al tempo i un eventuale misurazione; nel caso ella statistica classica i iversi membri ell ensemble sono fisicamente iversi fin all inizio. Nel caso ella statistica classica non si possono avere fenomeni i interferenza ϱx, p, t) è comunque reale 0). Nel caso ella meccanica quantistica tutte le quantità che escrivono le istribuzioni sono quaratiche in ψ e, se l evoluzione porta ue parti ella funzione ona a sovrapporsi, le ue parti si sommano e i termini incrociati tra i esse anno luogo a interferenza. Nel caso ella statistica classica gli scarti quaratici mei x e p sono el tutto arbitrari. Nel caso ella meccanica quantistica essi sono limitati alla relazione i incertezza: isuguaglianza i Schwarz x p = ψ ˆx x)ˆx x) ψ ψ ˆp p)ˆp p) ψ ψ ˆx x)ˆp p) ψ Im ψ ˆx x)ˆp p) ψ ) [ ] ) = ψ ˆx x)ˆp p) ψ ψ ˆp p)ˆx x) ψ i ) ) ħ. = i ψ ˆxˆp ˆpˆx) ψ = Questa erivazione vale anche al i fuori el caso ella particella libera.

7 4/ PARTICELLA LIBERA 09/0 7 Contrazione e espansione ella istribuzione ella posizione Per tempi t positivi se xp0) 0 se xp0) < 0 t) x aumenta sempre al crescere i t; t) x inizialmente iminuisce, poi la iminuzione si arresta e t) x aumenta inefinitamente; il tempo i inversione t 0 è tale che xp0) + m p t 0 = xpt 0 ) = 0. È facile comprenere il motivo i questo comportamento in termini i correlazioni tra x e p. In meccanica quantistica il fenomeno per cui l estensione spaziale el pacchetto one i una particella libera inesorabilmente finisce per allargarsi si ice sparpagliamento el pacchetto one.

8 4/ PARTICELLA LIBERA 09/0 8 Pacchetto gaussiano Una funzione ona el tipo 5) ψx) = A expax + bx), ove A, a e b Re a < 0) sono numeri complessi si ice pacchetto gaussiano. Si può assumere un pacchetto gaussiano come funzione ona iniziale e risolvere il problema ella sua evoluzione temporale usano il metoo generale illustrato all inizio gli integrali si possono calcolare). Seguiremo invece un metoo i risoluzione iretta che è più semplice e anche più istruttivo. Risoluzione ell equazione Si trova facilmente che, se si ammette che A, a e b nella 5) siano funzioni el tempo assumeno 6) ψ t x) = At) exp at)x + bt)x ), l equazione i Schröinger libera, che nella rappresentazione ella posizione si scrive 7) i ħ t ψ ħ t x) = m fa evolvere ψ t x) in una funzione ona ello stesso tipo. x ψ t x), Infatti, sostitueno la 6) nella 7), si ottiene subito la conizione ) A i ħ A + ȧx + ḃx = ħ m 4a x + 8abx + 4b + a) che, oveno essere soisfatta per ogni x, à luogo al sistema i equazioni ȧ = i γ a, ḃ = i γ ab, A A = i γ b + a), ove γ = m ħ, la cui soluzione è 8) at) = a 0 ia 0 γt, bt) = b 0 a 0 at), At) = A 0 at) a 0 ) b0 exp a bt) b 0 ) 0 provare per creere).

9 4/ PARTICELLA LIBERA 09/0 9 Normalizzazione La norma quarata ella funzione ona ψ t x), faceno uso el primo integrale ella tabella alla fine el fascicolo, risulta ata a ψ t = A x expax + bx) = A x exp Re a x + Re b x) ) = A π Re a exp o anche, poiché la norma è conservata, Re b Re a alla meesima espressione in termini ei valori iniziali Re a 0, Re b 0, A 0. ), La conizione i normalizzazione ψ t = può essere scritta 9) A = Re a π o nello stesso moo in termini i Re a 0, Re b 0, A 0. exp ) Re b Re a La conservazione ella norma può essere verificata alla soluzione 8). Distribuzioni i x e p Usano la funzione ona ψ t x) normalizzata secono la 9), con l aiuto ella tabella i integrali, si trova facilmente 0) x = x = x ψ x)x ψx) = Re b Re a, 4 Re a, x ψ x)x x) ψx) = p = x ψ x) iħ ) Im a Re b Re a Im b ψx) = ħ, x Re a p = x ψ x) iħ ) ψx) x p = ħ Re a + Im a, Re a xp = x ψ x) { x x) iħ ) x p + iħ x p ) x x) } ψx) = ħ Ima Re a Usano la soluzione 8) si può verificare che la ipenenza temporale i x,, x p,, p xp coincie con la 4) già trovata per una funzione ona generale.

10 4/ PARTICELLA LIBERA 09/0 0 La funzione ona in termini ei parametri fisici Conviene esprimere Re a, Im a, Re b, Im b in funzione ei parametri i significato fisico immeiato x,, x p,, p xp uno ei quali è rionante). Inverteno le prime quattro elle relazioni 0) si ottiene ) Re a = 4 x, Re b = x 4 x, Im a = ± ħ x e, sostitueno nell espressione i xp, ) xp = ± x p ħ 4, Im b = p ħ x ħ x x p ħ 4 Da quanto sopra risulta che, per un pacchetto gaussiano, x p ħ 4 x, p,, x p sono, a un tempo ato, arbitrari purché x > 0, p > 0, x p ħ 4. Essi, assieme alla scelta el segno ella correlazione, eterminano i parametri el pacchetto. La relazione ) è caratteristica el pacchetto gaussiano. La correlazione xp ipene a, x p e alla scelta el suo segno. Per xp = 0 ovvero Im a = 0), cioè p x = ħ, il pacchetto si ice i minima incertezza. Sceglieno p quale parametro rionante, cioè sostitueno ± xp alla raice nelle espressioni i Im a, Im b, si ottiene 3) Im a = xp ħ x, Im b = p ħ x xp ħ x La conizione i normalizzazione 9) si riscrive A = π exp x x e, sceglieno in moo conveniente il fattore i fase arbitrario, l espressione i A è ) )) A = π exp x i xp x exp x 4 x ħ x p x. Sostitueno nella 6) questo valore i A e i valori i a e b ati alla prima riga elle ) e alle 3) la funzione ona ψ t x) risulta 4) ψ t x) = π exp x ) x x) i exp 4 x ħ x ) ) xp x x) x ) i exp ħ p x x), ove x = xt) = x0) + m p t, xp = xpt) = xp0) + m t, p x = t) x = 0) x + m xp0)t + t m p e p e p sono costanti.

11 4/ PARTICELLA LIBERA 09/0 Valutazione ello sparpagliamento Consieriamo un pacchetto gaussiano iniziale i minima incertezza. Allora lo scarto quaratico meio ella posizione è ato a t) x = 0) x + ) ħm 4 0) x t. Quanto più stringiamo in posizione il pacchetto iniziale tanto più lo allarghiamo in momento, e quini aumentiamo lo sparpagliamento. Ciò è conseguenza ella relazione 0) x 0) p = ħ 4 e non si verifica in meccanica classica. per una funzione ona generale x p ħ 4 ) Il tempo al quale l aumento ello scarto quaratico meio iventa uguale al suo valore iniziale è ato a t = m 0). ħ x Per un piccolo oggetto macroscopico, iciamo m g, si ha m ħ 07 g erg s. Allora per x 0 8 cm si ha t 0 s 0000 anni, x 0 5 cm si ha t 0 7 s 0 0 anni. Invece, per un elettrone, m ħ g erg s. Tuttavia, negli usuali esperimenti, i tempi i volo sono i solito piuttosto piccoli e lo sparpagliamento non è rilevante. Tabella i integrali Per r e s reali, r < 0 si ha x exprx + sx) = x x exprx + sx) = x x exprx + sx) = r ) π s r exp, 4r s ) π s r r exp, 4r ) ) + s π s r r exp. 4r

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

12. Teoria qualitativa

12. Teoria qualitativa 12. Teoria qualitativa Si esaminano le conizioni i regolarità per un campo vettoriale, che garantiscono esistenza e unicità ella soluzione per l equazione ifferenziale associata. La conizione i Lipschitz,

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

= x + x 0 2x 0 per x x 0,

= x + x 0 2x 0 per x x 0, Lezione el 17 ottobre. Derivate 1. Derivata i una funzione in un punto Definizione 1 Sia f una funzione efinita in un intorno I i un punto x 0. Per ciascun x I con x = x 0 consieriamo: l incremento a x

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 09/10 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

Applicazioni chimiche dell integrazione sistemi di equazioni differenziali

Applicazioni chimiche dell integrazione sistemi di equazioni differenziali Applicazioni chimiche ell integrazione sistemi i equazioni ifferenziali Cinetica i reazione con intermeio Si consieri una reazione chimica el tipo: A + 2 B C che, segueno un meccanismo a ue step, procee

Dettagli

Lezione XII Analisi Formale

Lezione XII Analisi Formale SCENZA DE MATERAL Chimica Fisica Lezione X Analisi Formale Dr. Fabio Mavelli Dipartimento i Chimica Università egli Stui i Bari Analisi Cinetica Fenomenologica Analisi Cinetica Fenomenologica Meccanismo

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

Esperimentazioni di Fisica 1. Prova d esame del 22 gennaio 2019 SOLUZIONI

Esperimentazioni di Fisica 1. Prova d esame del 22 gennaio 2019 SOLUZIONI Esperimentazioni i Fisica 1 Prova esame el 22 gennaio 2019 SOLUZIONI Esp-1-Soluzioni - - Page 2 of 7 22/06/2018 1. (12 Punti) Quesito. Una misura ell accelerazione i gravità in un certo luogo è eseguita

Dettagli

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti Sistemi i ue equazioni ifferenziali el primo orine a coefficienti costanti Enrico Schlesinger In questo paragrafo si risolve il sistema i equazioni ifferenziali x ax + by () y cx + y ove x e y sono ue

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 SETTEMBRE 4 Si calcoli l integrale S = Γ Re(z) z 4 + z, con Γ = {z : z = Re iθ, θ [, π]}

Dettagli

Problemi di Meccanica Quantistica. Capitolo VIII. Campo Elettromagnetico

Problemi di Meccanica Quantistica. Capitolo VIII. Campo Elettromagnetico Problemi i Meccanica Quantistica Capitolo VIII Campo Elettromagnetico a cura i Feele Lizzi, Gennaro Miele e Francesco Nicoemi http://people.na.infn.it/%7epq-qp Un sistema escritto all Hamiltoniana Problema

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

In questo capitolo verrà studiato il problema descritto dal seguente Hamiltoniano:

In questo capitolo verrà studiato il problema descritto dal seguente Hamiltoniano: Capitolo Oscillatore Armonico In questo capitolo verrà stuiato il problema escritto al seguente Hamiltoniano: H = p m + mω x corrisponente, classicamente, a un oscillatore armonico i massa m e frequenza

Dettagli

Curve in R n. Curve parametrizzate.

Curve in R n. Curve parametrizzate. Curve in R n Generalmente ci sono ue moi per escrivere una curva in R n, ovvero è possibile scrivere un equazione parametrica o un equazione cartesiana. Esempio: una retta in R 2 può essere escritta in

Dettagli

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii)

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii) Si usano ue metoi ifferenti per misurare il carico i rottura i un filo i acciaio e si fanno 0 misure per ognuno ei metoi. I risultati, espressi in tonnellate, sono i seguenti: Metoo :..5.7..6.5.6.4.6.9

Dettagli

2. Analisi di un sistema caotico

2. Analisi di un sistema caotico . Analisi i un sistema caotico. Ricostruzione ello spazio elle fasi Il primo problema a risolvere nell analisi i un sistema caotico è la ricostruzione ello spazio elle fasi a partire a un segnale monoimensionale.

Dettagli

11. Equazioni quasilineari del primo ordine

11. Equazioni quasilineari del primo ordine 11. Equazioni quasilineari el primo orine Una equazione quasilineare el primo orine in ue variabili è una espressione el tipo (1) a(x, y, u)u x + b(x, y, u)u y = c(x, y, u) ove x e y variano in un aperto

Dettagli

Esercitazioni del 18 marzo Calcolo della curvatura di un arco di curva regolare γ in R 3

Esercitazioni del 18 marzo Calcolo della curvatura di un arco di curva regolare γ in R 3 Esercitazioni el 18 marzo 2013 Calcolo ella curvatura i un arco i curva regolare γ in R 3 Consieriamo un arco i curva regolare γ, escritta analiticamente a una parametrizzazione α : I R 3, con I intervallo

Dettagli

Sistemi di equazioni dierenziali ordinarie

Sistemi di equazioni dierenziali ordinarie 4 Giugno 2012 - Lab. i Complementi i Matematica e Calcolo Numerico Sistemi i equazioni ierenziali orinarie Inice 1 Cinetica i una reazione con intermeio 1 2 Cinetica i un ciclo catalitico 6 1 Cinetica

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso i Laurea in Matematica GE0 - Geometria a.a. 20-206 Prima prova i esonero TESTO E SOLUZIONI. Si etermini, utilizzano esclusivamente operazioni elementari, per quali

Dettagli

E sem pi di E serci zi e Qui z d E sam e

E sem pi di E serci zi e Qui z d E sam e E sem pi i E serci zi e Qui z E sam e Eser cit azion i i Cont r olli Au t om at ici Quiz. Il segnale x(t), antitrasformata i Laplace i X(s) = s(s+a) : è nullo per t=0 [x(0) = 0]; ha erivata nulla per t=0

Dettagli

SISTEMI A SIMMETRIA CENTRALE

SISTEMI A SIMMETRIA CENTRALE 5/3 SISTEMI A SIMMETRIA CENTRALE 09/10 1 SISTEMI A SIMMETRIA CENTRALE Una particella che si muove in un campo i forze centrale è escritta a un operatore hamiltoniano el tipo 1 Ĥ = 1 2m ˆp2 +V ˆr = ħ2 2m

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

EQUILIBRIO CHIMICO. Alcune reazioni chimiche decorrono fino a completezza, con un consumo completo dei reagenti (reazioni quantitative)

EQUILIBRIO CHIMICO. Alcune reazioni chimiche decorrono fino a completezza, con un consumo completo dei reagenti (reazioni quantitative) EQUILIBRIO CHIMICO Alcune reazioni chimiche ecorrono fino a completezza, con un consumo completo ei reagenti (reazioni quantitative) NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l) Molte reazioni chimiche effettuate

Dettagli

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 )

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 ) I polinomi i Taylor Il resto i Peano Una funzione f efinita in un intorno i un punto x 0 si ice erivabile in x 0 se e solo se a sua volta la (1.1) equivale a lim f(x) f(x 0 ) x x 0 = m R ; (1.1) f(x) f(x

Dettagli

8. Muri di sostegno e NTC 2008

8. Muri di sostegno e NTC 2008 8. Muri i sostegno e NTC 008 Normativa (NTC 008, par. 5.3..) Le combinazioni i carico per le azioni sono poste nella forma: F = γ G G + γ G G + γ Q Q + γ Q Q + γ Q3 Q 3 +... Le spinte ella terra e ell

Dettagli

1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA

1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA 1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA Per una serie i applicazioni legate allo stuio elle antenne interessa valutare come si moifica il comportamento i una antenna in presenza el suolo. Per frequenze

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 2

Esercizi proposti di Fondamenti di Automatica - Parte 2 Esercizi proposti i Fonamenti i Automatica - Parte Febbraio 5 Es. Dimostrare che le matrici A, a elementi reali, e A D, a elementi complessi, sono simili. α ω α + ω A, A ω α D α ω Es. Calcolare e A t e

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione ESAME SCRITTO DI FISICA MODERNA giugno 08 Traccia di soluzione ) Ponendo α = /σ ), il valore medio della posizione è + ψ ˆx ψ = dx ψ ˆx x x ψ = dx ψ x)xψx) = α + dx x e αx x 0), ) e con un semplice cambio

Dettagli

90 0 L F s (Lavoro motore- lavoro positivo) n n

90 0 L F s (Lavoro motore- lavoro positivo) n n Lavoro i una Forza. Siano ata una Forza costante F, applicata a corpo i massa m e sia s, il suo spostamento rettilineo el corpo, si chiama lavoro ella forza il prootto scalare tra la forza e lo spostamento.

Dettagli

IL TRASPORTO DEGLI INQUINANTI

IL TRASPORTO DEGLI INQUINANTI La iffusione molecolare La ispersione avviene principalmente in irezione longituinale rispetto al flusso meio, e le variazioni i velocità non spiegano l aumento l i ampiezza in irezione normale al moto

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

POTENZIALE ELETTRICO. La situazione è schematizzata nella figura seguente:

POTENZIALE ELETTRICO. La situazione è schematizzata nella figura seguente: POTENZILE ELETTRIO 1) Un fascio i elettroni, con velocità iniziale trascurabile, viene accelerato a una ifferenza i potenziale i 5 kv. Trova la velocità finale egli elettroni, trascurano gli effetti relativistici

Dettagli

Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014

Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014 Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014 Scrivere immeiatamente, ED IN EVIDENZA, sui ue fogli protocollo consegnati (e eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

Spazi di Haar e polinomi in più variabili

Spazi di Haar e polinomi in più variabili Spazi i Haar e polinomi in più variabili Davie Boscaini Queste sono le note a cui ho tratto il seminario el giorno 25 Ottobre 2011. Per scriverle mi sono basato sul secono capitolo el testo Scattare Data

Dettagli

PRIMA SCRITTA DEL MODULO DI

PRIMA SCRITTA DEL MODULO DI PRIMA SCRITTA DEL MODULO DI CORSO DI LAUREA IN INGEGNERIA ELETTRICA, ELETTRONICA ED INFORMATICA CORSO DI LAUREA IN INGEGNERIA BIOMEDICA 23 giugno 26 NOME: COGNOME: MATRICOLA: CFU: ESERCIZIO (8 punti) (a)

Dettagli

6. Applicazione di curve di probabilità pluviometrica in ambito di verifica.

6. Applicazione di curve di probabilità pluviometrica in ambito di verifica. 6. Applicazione i curve i probabilità pluviometrica in ambito i verifica. Viene qui riportato un esempio i applicazione i curve i probabilità pluviometrica per la eterminazione el perioo i ritorno i un

Dettagli

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1)

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1) ESERCITAZIONE DELL DICEMBRE 008 SOLUZIONI Corso i Matematica I per Geologia A. Calcolare le erivate elle seguenti funzioni:. sin cos, sin 3, e sin 3 4 cos 3; +. log, log, arctan. Soluzioni.. Prima erivata.

Dettagli

Processi stocastici soluzione di equazioni differenziali Consideriamo l equazione differenziale (o più precisamente il problema di Cauchy) dx t dt

Processi stocastici soluzione di equazioni differenziali Consideriamo l equazione differenziale (o più precisamente il problema di Cauchy) dx t dt Processi stocastici soluzione i equazioni ifferenziali Consieriamo l equazione ifferenziale (o più precisamente il problema i Cauchy) x t t b t,x t, x x. Se tutti i termini, cioè b t,x e x, sono eterministici,

Dettagli

Nome, Cognome: punti totali possibili, 50 punti corrispondono alla nota massima.

Nome, Cognome: punti totali possibili, 50 punti corrispondono alla nota massima. Nome, Cognome:................................................................ 55 punti totali possibili, 5 punti corrisponono alla nota massima. 3 ottobre 23 ing. Ivan Furlan . Controllo i un oscillatore

Dettagli

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2.

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2. 4/7 OSCILLATORE ARMONICO 09/10 1 OSCILLATORE ARMONICO UNIDIMENSIONALE Lo spazio di Hilbert e l operatore hamiltoniano Consideriamo una particella sottoposta a una forza armonica di costante mω 2. Nello

Dettagli

Meccanica quantistica (3)

Meccanica quantistica (3) Meccanica quanisica 3 03/11/13 1-MQ-3.oc 0 03/11/13 1-MQ-3.oc 1 Equazione i Scröinger La funzione 'ona Ψ, per le paricelle quanisice è soluzione all'equazione i Scröinger: i V m,,, Ψ Ψ + Ψ Se si pone:,

Dettagli

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

I sistemi lineari. In questo capitolo verranno descritte le proprietà dei sistemi lineari stazionari continui e discreti.

I sistemi lineari. In questo capitolo verranno descritte le proprietà dei sistemi lineari stazionari continui e discreti. 3 I sistemi lineari In questo capitolo verranno escritte le proprietà ei sistemi lineari stazionari continui e iscreti 3 MOTO E RISPOSTA DEI SISTEMI LINEARI DISCRETI Si consieri un sistema lineare e stazionario

Dettagli

Fisica II. 14 Esercitazioni

Fisica II. 14 Esercitazioni Esercizi svolti Esercizio 141 La lunghezza 'ona in aria ella luce gialla el soio è λ 0 = 589nm eterminare: a) la sua frequenza f; b) la sua lunghezza 'ona λ in un vetro il cui inice i rifrazione è n =

Dettagli

1 di 27 29/12/2018, 00:01

1 di 27 29/12/2018, 00:01 Stuente: Data: Docente: Luciano Seta Corso: Metoi matematici per l'economia Attività: La erivazione prima parte 1. Trova la penenza ella curva nel punto assegnato. P A. 0 1 C. 1 3 D. 3 4. In quale punto

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale II Prova in itinere di Fisica Sperimentale A+B 3 Luglio 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale II Prova in itinere di Fisica Sperimentale A+B 3 Luglio 2007 POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale II Prova in itinere i Fisica Sperimentale A+B 3 Luglio 7 Giustificare le risposte e scrivere in moo chiaro e leggibile. Sostituire i valori numerici

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione el Problema Prima ell istante t 0 il circuito opera in regime stazionario e l inuttore si comporta come un corto circuito, come mostrato nella seguente figura: i(t) I 0 V V Poiché è cortocircuitata

Dettagli

CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI

CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI Ing. Tel. e-ail: cristian.secchi@uniore.it http://www.isi.uniore.it/mebers/csecchi

Dettagli

PROVA SCRITTA DEL MODULO INTEGRATO E DEL CORSO DI NOME: COGNOME: MATRICOLA: CFU:

PROVA SCRITTA DEL MODULO INTEGRATO E DEL CORSO DI NOME: COGNOME: MATRICOLA: CFU: PROVA SCRITTA DEL MODULO INTEGRATO E DEL CORSO DI CORSO DI LAUREA IN INGEGNERIA BIOMEDICA CORSO DI LAUREA IN INGEGNERIA ELETTRICA, ELETTRONICA E INFORMATICA 7 Febbraio 29 NOME: COGNOME: MATRICOLA: CFU:

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.6

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.6 ESERCZO n.6 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia. 6cm cm A#6 1 1. Determinazione

Dettagli

NOME: COGNOME: MATRICOLA:

NOME: COGNOME: MATRICOLA: PROVA SCRITTA DEL CORSO DI CALCOLATORI ELETTRONICI CORSO DI LAUREA IN INGEGNERIA BIOMEDICA CORSO DI LAUREA IN INGEGNERIA ELETTRICA, ELETTRONICA ED INFORMATICA 4 ottobre 27 NOME: COGNOME: MATRICOLA: ESERCIZIO

Dettagli

b) La velocità del centro di massa è identica prima e dopo l urto a causa della conservazione della quantità di moto del sistema: v CM = v.

b) La velocità del centro di massa è identica prima e dopo l urto a causa della conservazione della quantità di moto del sistema: v CM = v. Esercizio a) Il sistema elle ue masse è sottoposto a una risultante elle forze nulla in irezione orizzontale nell istante ell urto. Si conserva la quantità i moto in tale irezione. Assumeno come positiva

Dettagli

Test di autovalutazione

Test di autovalutazione Test i autovalutazione Marco Mougno Corso i laurea in Ingegneria per l Ambiente, le Risorse e il Territorio Facoltà i Ingegneria, Università i Firenze Via S. Marta 3, 5139 Firenze, Italia email: marco.mougno@unifi.it

Dettagli

Outline. Inversione della trasformata di Laplace. Formula di Bromwich-Mellin o di Riemann-Fourier. Teorema (Inversione della trasformata)

Outline. Inversione della trasformata di Laplace. Formula di Bromwich-Mellin o di Riemann-Fourier. Teorema (Inversione della trasformata) Outline Inversione ella trasformata i Laplace (Metoi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università i Trento anno accaemico 2008/2009 1 Antitrasformata i Laplace 2 Trattamento elle

Dettagli

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni

Complementi di Analisi Matematica e Statistica 04/07/ Testo e Soluzioni Complementi i Analisi Matematica e Statistica 04/07/016 - Testo e Soluzioni Parte A 1. Esercizio A1: Dati α, β, Si consieri la seguente serie i potenze: e αn n + 1 ( β)n. eterminare il raggio i convergenza

Dettagli

Compito di Fisica II per Chimica Prof. Paola LEACI e Prof. Piero RAPAGNANI

Compito di Fisica II per Chimica Prof. Paola LEACI e Prof. Piero RAPAGNANI Compito i Fisica II per Chimica 13-0-017 Prof. Paola LEACI e Prof. Piero RAPAGNANI ESERCIZIO 1 Due anelli, i raggi R 1 = 10 cm e R = 0 cm, sono isposti sullo stesso asse, come in figura, con i rispettivi

Dettagli

0 λ/4 λ/2 3λ/4 λ 5λ/4

0 λ/4 λ/2 3λ/4 λ 5λ/4 3 a (4, può esser scritta anche nella forma : I( τ = 4 I cos ω ( τ Quini sullo schermo la moulazione ell intensità va come il coseno quarato el ritaro, corrisponente alla metà ella ifferenza ei bracci

Dettagli

Controllo di Robot Industriali

Controllo di Robot Industriali CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI Ing. Tel. e-ail: cristian.secchi@uniore.it http://www.isi.uniore.it/mebers/csecchi

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) Prova in Itinere 22 Giugno 2012 SOLUZIONI Domana 1 Con riferimento al sistema rappresentato in figura, enunciare con precisione il criterio i Boe per la stabilità a

Dettagli

0/0 1/0 1/0 0/0 0/1 1/0 1/0

0/0 1/0 1/0 0/0 0/1 1/0 1/0 SOLUZIONI DELLA PROVA SCRITTA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO E VECCHIO ORDINAMENTO DIDATTICO Gennaio 2008 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI

Dettagli

CAPITOLO 24. Il modello di Friedmann Le equazioni di questo modello sono la (23 7) e la (23 4): R + k. Ṙ 2 + k = R

CAPITOLO 24. Il modello di Friedmann Le equazioni di questo modello sono la (23 7) e la (23 4): R + k. Ṙ 2 + k = R CAPITOLO 24 Dinamica cosmologica Nel cap. prec. abbiamo scritto le equazioni inamiche per un universo omogeneo e isotropo, e abbiamo iscusso i iversi contributi alla materia. Vogliamo ora stuiare l evoluzione

Dettagli

AM210/ : Tracce delle lezioni- Settimana XI

AM210/ : Tracce delle lezioni- Settimana XI AM21/213-14: Tracce elle lezioni- Settimana XI PROBLEMA DI CAUCHY Esistenza e unicitá locale, unicitá globale, soluzione massimale. Teorema i Picar locale) esistenza/unicitá locale in ipotesi Lip loc )

Dettagli

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0 Moulo i Elementi i Fluioinamica Corso i Laurea in Ingegneria ei Materiali/Meccanica AA 00/005 Ing Paola CINNELLA ESERCIZI SVOLTI I FLUIOINAMICA Parte 3: Equazione i Bernoulli Versione 10 Esercizio 1 Si

Dettagli

PRIMA PROVA INTERMEDIA DEL MODULO DI. 23 aprile 2015 NOME: COGNOME: MATRICOLA: CFU:

PRIMA PROVA INTERMEDIA DEL MODULO DI. 23 aprile 2015 NOME: COGNOME: MATRICOLA: CFU: PRIMA PROVA INTERMEDIA DEL MODULO DI 23 aprile 25 NOME: COGNOME: MATRICOLA: CFU: ESERCIZIO (0 punti) Sintetizzare una rete sequenziale, otata i un ingresso X e un uscita Z= in corrisponenza ella sequenza

Dettagli

Esercizi su Derivate parziali, differenziabilità e piani tangenti

Esercizi su Derivate parziali, differenziabilità e piani tangenti Esercizi su Derivate parziali, ifferenziabilità e piani tangenti 1. Per le funzioni che seguono, eterminare il graiente ella funzione ata nel punto inicato e l equazione el piano tangente al grafico ella

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

Esperimentazioni di Fisica 1. Prova in itinere del 12 giugno 2018

Esperimentazioni di Fisica 1. Prova in itinere del 12 giugno 2018 Esperimentazioni di Fisica 1 Prova in itinere del 1 giugno 018 Esp-1 Prova in Itinere n. - - Page of 6 1/06/018 1. (1 Punti) Quesito L incertezza da associare alle misurazioni eseguite con un certo strumento

Dettagli

2. Canali radio, propagazione per canali a banda larga/stretta.

2. Canali radio, propagazione per canali a banda larga/stretta. istemi i raiocomunicazione: esercitazioni.. Canali raio, propagazione per canali a bana larga/stretta.. Definizione i bana i coerenza e tempo i coerenza Bana i coerenza B C : Misura statistica ell intervallo

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia; ) i momenti i inerzia

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

L'equazione di continuità

L'equazione di continuità L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

PRIMA PROVA INTERMEDIA DEL MODULO DI. CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 2014

PRIMA PROVA INTERMEDIA DEL MODULO DI. CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 2014 PRIMA PROVA INTERMEDIA DEL MODULO DI CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 24 NOME: COGNOME: MATRICOLA: CFU: ESERCIZIO (7 punti) (a) (5 punti) Si progetti

Dettagli

Ingegneria dei Sistemi Elettrici_3b (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3b (ultima modifica 22/03/2010) Ingegneria ei Sistemi Elettrici_3b (ultima moifica /03/00) Distribuzioni i carica equivalente nei ielettrici polarizzati Per analizzare l effetto macroscopico ei ipoli inotti, si efinisce un vettore i

Dettagli

Matematica e statistica Versione didascalica: parte 1

Matematica e statistica Versione didascalica: parte 1 Matematica e statistica Versione iascalica: parte 1 Sito web el corso http://www.labmat.it/iattica Docente: Prof. Sergio Invernizzi, Università i Trieste e-mail: inverniz@units.it 2. Derivata e integrale

Dettagli

11/1 PRINCIPI GENERALI DELLA MECCANICA QUANTISTICA 08/09 1 STATI E GRANDEZZE

11/1 PRINCIPI GENERALI DELLA MECCANICA QUANTISTICA 08/09 1 STATI E GRANDEZZE 11/1 PRINCIPI GENERALI DELLA MECCANICA QUANTISTICA 08/09 1 STATI E GRANDEZZE Principio S: stati di un sistema fisico A ogni sistema fisico S è associato un opportuno spazio di Hilbert H S. Se il sistema

Dettagli

Interazione tra i modelli quasi stazionari: il risuonatore

Interazione tra i modelli quasi stazionari: il risuonatore Interazione tra i moelli quasi stazionari: il risuonatore Il sistema in esame è un cavo coassiale chiuso alle ue estremità, che geometricamente può essere rappresentato tramite ue cilinri come in fig.1.

Dettagli

La strategia di campionamento 1

La strategia di campionamento 1 La strategia i campionamento. Descrizione el isegno i campionamento Nelle pagine ce seguono si illustrano gli obiettivi conoscitivi e gli aspetti più significativi ella strategia i campionamento ell inagine

Dettagli

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA:

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA: PROVA SCRITTA DEL MODULO DI NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 9 febbraio 205 NOME: COGNOME: MATRICOLA: ESERCIZIO (5-6 CFU: 0 punti; 7 CFU: 8 punti) Progettare una rete sequenziale che presenti

Dettagli

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε I conensatori. onsieriamo il potenziale per un conensatore sferico: Possiamo scrivere Il fattore Q π R Q π R π R contiene valori costanti che escrivono caratteristiche fisiche(il ielettrico ) e geometriche

Dettagli

Distribuzioni di dose e Treatment Planning System per fasci di fotoni ed elettroni W.R. Hendee Part B - cap., F.M. Khan cap.9

Distribuzioni di dose e Treatment Planning System per fasci di fotoni ed elettroni W.R. Hendee Part B - cap., F.M. Khan cap.9 Distribuzioni i ose e Treatment Planning System per fasci i fotoni e elettroni W.R. Henee Part B - cap., F.M. Khan cap.9 Dosimetria i fasci i fotoni %DD Percentage Depth Dose TAR Tissue-Air Ratio BSF Backscatter

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima moifica 7/0/07) Distribuzioni i carica equivalente nei ielettrici polarizzati Per analizzare l effetto macroscopico ei ipoli

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

ESERCIZIO n.9. B 7cm H 3cm. b 3cm d 1cm. c 2cm. d d d

ESERCIZIO n.9. B 7cm H 3cm. b 3cm d 1cm. c 2cm. d d d ESERCZO n.9 Data la sezione cava riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; ) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia; ) i momenti i

Dettagli

APPUNTI DI FISICA MATEMATICA A.A. 2014/15

APPUNTI DI FISICA MATEMATICA A.A. 2014/15 APPUNTI DI FISICA MATEMATICA A.A. 214/15 PARTE PRIMA: SISTEMI MECCANICI I Introuzione e richiami i cinematica In questa prima parte el corso si applicano metoi matematici rigorosi nell ambito i moelli

Dettagli

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 11 Aprile 2006

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 11 Aprile 2006 SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI NUOVO ORDINAMENTO DIDATTICO Aprile 26 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI ESERCIZIO (8 punti) Progettare

Dettagli

1 Premio Alessandro Rabuzzi

1 Premio Alessandro Rabuzzi Premio Alessanro Rabuzzi Gara a square i matematica 6 Febbraio 05 SOLUZIONI Quarati nei quarati 50 Insufficienze a fine anno 005 Fetta i torta 00 4 Giochi enigmistici 07 5 Solii platonici 04 6 Divisori

Dettagli

PROVA SCRITTA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO E VECCHIO ORDINAMENTO DIDATTICO 26 Settembre 2007

PROVA SCRITTA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO E VECCHIO ORDINAMENTO DIDATTICO 26 Settembre 2007 PROVA SCRITTA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO E VECCHIO ORDINAMENTO DIDATTICO 26 Settembre 27 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esercizi Schea N. 45 Fisica II Esercizio. Esercizi con soluzione svolti Si calcoli la capacità ei conensatori a piatti paralleli riempiti a iversi ielettrici come in figura caso a) caso b) caso c) 3 a)

Dettagli

Università degli Studi di Milano Bicocca Corso di Laurea in Scienze Statistiche ed Economiche. Appello di MACROECONOMIA 10Novembre 2015

Università degli Studi di Milano Bicocca Corso di Laurea in Scienze Statistiche ed Economiche. Appello di MACROECONOMIA 10Novembre 2015 Università egli Stui i Milano Bicocca Corso i Laurea in Scienze Statistiche e Economiche Appello i MACROECONOMIA 10Novembre 2015 RISPONDETE A TUTTE LE DOMANDE DURATA 1 ORA E 30 BUON LAVORO TRACCIA DI SOLUZIONE

Dettagli