X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3)"

Transcript

1 CICLI TERMODINAMICI Un ciclo termodinamico è un insieme di trasformazioni tali che lo stato iniziale del sistema coincide con lo stato finale. Un ciclo termodinamico è indivaduato nel diagramma XY generico di Figura 1, assieme al suo verso di percorrenza, cioè all'ordine in cui le trasformazioni sono effettuate. Il ciclo può essere ripetuto più volte e il concetto di ciclo sta alla base della descrizione di macchine termiche e impianti di condizionamento. Y i=f La rappresentazione di Fig. 1 è ideale perché le trasformazioni reali non saranno né quasistatiche né reversibili. Tuttavia per la descrizione dei cicli reali si usa il ciclo ideale che meglio lo approssima, che consente di calcolare alcune caratteristiche importanti del ciclo stesso, come il rendimento massimo possibile. Facciamo due esempi di questa descrizione ideale nel seguito del capitolo considerando il motore a scoppio e il motore Diesel. Il Primo Principio vale comunque sempre sia per trasformazioni ideali che per straformazioni reali. Quindi possiamo sempre scrivere in un ciclo: Δ U =0=Q L (1 Cioè: il calore scambiato in un ciclo è eguale al lavoro compiuto dal sistema sull'ambiente. Parte di questo calore è assorbito dal sistema, cioè passa dall'ambiente al sistema. Parte di questo lavoro è ceduto dal sitema, cioè passa dal sistema all'ambiente. Se indichiamo con Q 2 >0 il calore assorbito e con Q 1 >0 il valore assoluto del calore ceduto, otteniamo dalla (1: Q 2 Q 1 =L (2 Ovviamente, perché il ciclo produca lavoro del sistema sull'ambiente il calore assorbito deve essere maggiore di quello ceduto. Il rendimento del ciclo è definito da: η= L Q 2 (3 X Figura 1. Ciclo termodinamico In pratica il rendimento ci dice quale frazione dell'energia assorbita viene convertita in lavoro. Dalla (2 e dalla (3 si ottiene: η=1 Q 1 Q 2 (4 Si potrebbe pensare che esistano cicli che realizzano un rendimento del 100 %. Vedremo che questo è proibito dal Secondo Principio della Termodinamica.

2 CICLO DI UN MOTORE A SCOPPIO A QUATTRO TEMPI (CICLO DI OTTO Consideriamo, in modo approssimato, il ciclo termodinamico di un motore a quattro tempi. In figura è mostrato il cilindro entro cui scorre il pistone, la corsa (80-90 mm è data dalla distanza tra il punto morto inferiore PMI e il punto morto superiore PMS. Non sono invece raffigurate le valvole di ingresso e di uscita del combustibile e la candela di accensione. Il moto rettilineo alternativo del pistone è trasformato in moto rotatorio, praticamente uniforme, daa un sistema biella-manovella. PMS PMI Figura 2 Cilindro e pistone di un motore a scoppio Le illustrazioni seguenti, da: sono più dettagliate e mostrano le varie fasi del ciclo. Il ciclo ideale è rappresentato in Figura Il pistone, muovendosi verso il PMI aspira la miscela di aria e benzina attraverso la valvola di aspirazione, mentre è chiusa quella di scarico. Supponiamo che questa trasformazione avvenga idealmente a pressione atmosferica (isobara. 1 2 Nella corsa di ritorno, a valvole chiuse, la miscela viene compressa. Idealmente, questa compressione viene considerata adiabatica. Il processo è tanto più adiabatico quanto più velocemente gira il motore. La pressione e la temperatura aumentano. 2 3 Al termine della corsa avviene la combustione della miscela, idealmente a volume costante. La combustione è cioè considerata tanto veloce da trascurare il moto del pistone durante essa. 3 4 Terza corsa. Sempre a valvole chiuse il pistone si muove rapidamente verso il PMI, per effetto della spinta esercitata dai prodotti di combustione. L'espansione si considera idealmente adiabatica.

3 Questa è l'unica fase attiva del ciclo, cioè l'unica dove si compie lavoro utile. 4 1 Al termine della corsa si apre la valvola di scarico (nella pratica l'apertura viene anticipata per evitare che il pistone sprechi troppa energia nell'espellere i gas. Si trascura ancora il moto del cilindro durante l'apertura, idealmente istantanea, e si approssima questa trasformazione con una isocora in cui la pressione diminuisce istantaneamente per la fuoriuscita dei gas combusti. 1 0 Quarta corsa. Si ottiene la completa espulsione dei prodotti residui attraverso la valvola di scarico, che rimane aperta per tutta la trasformazione. Come la fase di immissione, questa fase è considerata idealmente isobara a pressione atmosferica V 1 Figura 3. Ciclo ideale di Otto.

4 Figura 4. Le varie fasi del ciclo del motore a scoppio (vedi testo

5 Calcoliamo il rendimento. I calori scambiati nelle isocore sono: Q 23 =n c V ( T 2 Q 41 =n c V (T 4 T 1 Dunque il rendimento è: η=1 Q 41 =1 T 4 T 1 =1 T 1 T 1 4 T 4 Q 23 T 2 1 T 2 Dalle adiabatiche: V 2 =T 4 V 1 T 2 =T 1 V 1 T 2 = T 4 T 4 =( T 1 V 1 Quindi: η=1 ( 1 r con r= V 1 rapporto di compressione Ponendo γ=1.41 per l'aria. In realtà il valore è intermedio tra quello dell'aria e quello del combustibile (circa 1.2. Il rendimento, tanto più elevato quanto maggiore è γ, è quindi maggiore per miscele povere di combustibile. Il rendimento del motore aumenta all'aumentare del rapporto di compressione. Non si può aumentare indefinitamente r per non incorrere nella accensione anticipata della miscela a causa dell'alta temperatura alla fine della fase di compressione. r=5-8 per motori a scoppio lenti, dunque con γ=1.41, η= r=10-12 per motori da competizione, dunque, con γ=1.41, η= Notiamo i seguenti fatti riguardanti il ciclo reale La Figura 5 è una indicazione del ciclo reale. La fase di aspirazione non avviene a pressione atmosferica, ma a una pressione inferiore, corrispondente alla depressione prodotta dal moto del pistone. La fase di scarico invece avviene a pressione leggermente superiore a quella atmosferica, perché i gas combusti sono spinti dal pistone verso l'esterno. Queste due trasformazioni costituiscono un ciclo termico percorso in senso antiorario (blu, tale lavoro è compiuto dall'ambiente sul sistema e deve essere detratto da quello utile prodotto dal motore. La fase di espansione e quella di compressione non sono adiabatiche ma politropiche a esponente tanto minore quando maggiore è il calore scambiato con l'esterno. Oltre all'impossibilità di realizzare una trasformazione adiabatica, c'è anche il fatto che il calore viene volutamente sottratto con dispositivi di refrigerazione per mantenere la temperatura del motore entro limiti tollerabili.

6 La fase di combustione non avviene in un tempo istantaneo, ma ha un tempo finito di propagazione, seppur breve, nella camera di combustione. Avviene a volume crescente, con conseguente minor incremento di pressione e temperatura. Figura 5 Nota: le trasformazioni politropiche sono trasformazioni del tipo indice della politropica. Per h=0 la trasformazione è isobara; per h=1 la trasformazione è isoterma; per h=γ la trasformazione è adiabatica. pv k = costante dove h è detto

7 CICLO DIESEL V 3 V 1 Figura 6 In Figura 6 è mostrato un ciclo Diesel ideale. Il motore Diesel differisce da quello a scoppio principalmente per l'organo infiammatore; candela nel motore a scoppio, iniettore nel motore Diesel. Descriviamo le fasi del ciclo: 0 1 Fase di aspirazione. Il pistone si muove dal punto morto superiore verso il basso, aspirando aria dalla corrispondente valvola aperta. Supponiamo che questa fase sia approssimabile con una trasformazione isobara. 1 2 Fase di compressione. Lo stantuffo comprime l'aria fino a pressioni di bar (incompatibili con una miscela di aria e benzina. L'aria compressa aumenta la sua temperatura fino a C. Approssimiamo questa trasformazione con una compressione adiabatica. 2 3 Iniezione. L'iniettore introduce entro il cilindro il combustibile in goccioline finissime, che, entrando in contatto con aria ad alta temperatura, si infiamma spontaneamente. La combustione avviene gradualmente, mentre il pisone ridiscende. Si suppone che l'incremento in volume compensi l'incremento di pressione dovuto ailla combustione e che, quindi, la pressione rimanga approssimativamente costante. 3 4 Fase di espansione, approssimativamente adiabatica, dopo la combustione.

8 4 1 Apertura della valvola di scarico. La pressione cala improvvisamente. La trsformazione è approssimata con una isocora. 1 0 Corsa di ritorno del pistone, che fa fuoriuscire i gas combusti. Questa fase si approssima con una isobara. Riguardo alla differenza tra ciclo reale e ideale valgono considerazioni analoghe a quelle fatte per il motore a scoppio. Le fasi 0-1 e 1-0 non avvengono a pressione costante e costituiscono un ciclo percorso in senso antiorario, quindi una perdita di lavoro utile. La espansione e la compressione non sono adiabatiche. La fase di combustione non avviene a pressione costante. Relazioni tra i parametri: V 3 =T 4 V 1 T 2 =T 1 V 1 p =n RT 2 pv 3 =nr quindi: T 1 T 2 =( T V 4 3 =( V 1 V 1 T 2 = T 4 = T 3 V 3 V 3 T 1 T 2 V = V γ 3 γ 2 Definiamo: r C = V 1 rapporto di compressione e c= V 3 rapporto di combustione Q 23 =nc P ( T 2 Q 41 =nc V (T 4 T 1 η=1 Q 41 Q 23 =1 c V c P T 4 T 1 T 2 =1 1 γ T 4 T 1 T 2 η=1 1 γ η=1 ( 1 r c T 4 T 1 T 2 T T 2 1 c γ 1 γ c 1 =1 1 γ ( V ( 2 V 1 V 3 γ 1 V 3 1 Confrontiamo il rendimento Diesel con quello del motore a scoppio: η Otto =1 ( 1 r c >η Diesel =1 ( 1 r c 1 c γ 1 γ c 1 Dunque a parità di rapporto di compressione il motore a scoppio è più efficiente del motore Diesel. Ma per il motore Diesel i rapporti di compressione possono essere r= 16-22, il che rende il motore

9 Diesel leggermente più efficiente di quello a scoppio. Ponendo r=22, c=2 e γ=1.41 si ottiene per il ciclo Diesel il rendimento η=0.66 CICLO FRIGORIFERO compressore vapore vapore serbatoio freddo serbatoio caldo evaporatore condensatore Q 1 Q 2 liquido+vapore Valvola a strozzatura liquido Figura 7 modificato da: ki/file:refrigeration.png In Figura 7 è rappresentato molto schematicamente un impianto di raffreddamento. Un fluido refrigerante segue un ciclo termodinamico simile a quello rappresentato idealmente in Figura 8. Nel condensatore il fluido è in condizioni di liquido saturo ad alta pressione e a temperatura elevata (il condensatore viene raffreddato ad aria o ad acqua. Esso è spinto a compiere una espansione strozzata (epansione di Joule-Thompson, cioè un passaggio attraverso un condotto stretto, in cui passa adiabaticamente da una pressione costante elevata a una più bassa. A seguito di questa trasformazione il fluido si raffredda e in parte vaporizza. Nell' evaporatore avviene la vaporizzazione completa. La quantità di calore che serve per fare evaporare il fluido viene fornita dai corpi da raffreddare. Il vapore viene compresso adiabaticamente aumentando la propria temperatura e diventando vapore surriscaldato. Nel condensatore il vapore viene raffreddato in modo da diventare completamente liquido. Esaminiamo Figura 8, presa da: Calore e Termodinamica, Mark W. Zemansky, 1970, Zanichelli.

10 p 1 Q 2 4 θ 2 Q θ 1 Figura 8 V Le sioterme sono indicate in rosso, il lciclo è indicato in blu e la curva a campana che delimita le zone di liquido saturo è indicata in nero. 1 2 Espansione strozzata che determina una diminuzione di pressione e temperatura: θ 2 θ 1 L'espansione non è né reversibile né quasistatica. Pertanto è indicata con una linea tratteggiata. 2 3 Vaporizzazione isoterma (e siobara in cui il refrigerante assorbe calore dal serbatoio freddo. 3 4 Compressione adiabatica del vapore a una temperatura θ 2 superiore a quella del condensatore Dunque è possibile compiere un ciclo termico in senso inverso a quello di una macchina termica (come la macchina Diesel o il il motore a scoppio. In questo caso una quantità di calore, Q 1, viene assorbita dalla parte di ambiente a bassa temperatura, e una quantità di calore, Q 2 (in valore assoluto, viene ceduta alla parte dell'ambiente a temperatura più alta. Dal Primo Principio: Q 1 Q 2 =L (5 Dove L<0 perché viene compiuto dall'ambiente sul sistema. Il coefficiente di prestazione del ciclo frigorifero è definito da: COP= Q 1 L Questa cifra di merito indica la quantità di calore che si può estrarrre da un corpo alla temperatura

11 più bassa, dato il lavoro che si può spendere. Da notare che il COP è in generale maggiore di 1. La finalità di un frigorifero è quella di mantenere a bassa temperatura un ambiente a temperatura più bassa, cedendo calore all'ambiente a temperatura più alta. Il ciclo frigorifero si può anche utilizzare per realizzare una pompa di calore, dove è l'ambiente a temperatura più alta che deve essere mantenuto caldo, mentre calore viene estratto dall'ambiente esterno freddo. Il COP per una pompa di calore è definito da: COP= Q 2 L cioè dal rapporto tra la quantità di calore che si riesce a somministrare a un ambiente in un ciclo e il lavoro che si deve spendere corrispondentemente. Dato che COP>1, la pompa di calore è un metodo di riscaldamento più vantaggioso di una stufa, dove il COP è al massimo unitario, dato che si ha dissipazione di lavor in energia interna.

Applicazioni del secondo principio. ovvero. Macchine a vapore a combustione esterna: Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel

Applicazioni del secondo principio. ovvero. Macchine a vapore a combustione esterna: Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel Termodinamica Applicazioni del secondo principio ovvero Macchine a vapore a combustione esterna: macchina di Newcomen e macchina di Watt Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel

Dettagli

COMPOSIZIONE E FUNZIONAMENTO DEL MOTORE QUATTRO TEMPI(4-Stroke)

COMPOSIZIONE E FUNZIONAMENTO DEL MOTORE QUATTRO TEMPI(4-Stroke) COMPOSIZIONE E FUNZIONAMENTO DEL MOTORE QUATTRO TEMPI(4-Stroke) Salve a tutti. In questa recensione spiegherò la composizione e il funzionamento del motore a scoppio Quattro Tempi, in inglese 4-stroke.

Dettagli

Motori e cicli termodinamici

Motori e cicli termodinamici Motori e cicli termodinamici 1. Motore a scoppio 2. Motore diesel 3. Frigoriferi 4. Centrali elettriche XXII - 0 Trasformazioni Trasformazioni reversibili (quasistatiche: Ciascun passo della trasformazione

Dettagli

PMS PMI CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO)

PMS PMI CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO) CICLO DI UN MOTORE A QUATTRO TEMPI (CICOLO DI OTTO Consideriamo, in modo approssimato, il ciclo termodinamico di un motore a quattro tempi. In figura è mostrato il cilindro entro cui scorre il pistone,

Dettagli

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro.

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Lezione IX - 9/03/003 ora 8:30-0:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Ciclo di Carnot Si consideri una macchina termica semplice che compie trasformazioni reversibili,

Dettagli

Esercizi di Fisica Tecnica 2013-2014. Termodinamica

Esercizi di Fisica Tecnica 2013-2014. Termodinamica Esercizi di Fisica Tecnica 2013-2014 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas ( = 1,29 ed R * = 190 J/(kg K)) si espande da 5 bar e 90 C ad 1 bar. Nell'ipotesi che la trasformazione

Dettagli

Formulario di Fisica Tecnica Matteo Guarnerio 1

Formulario di Fisica Tecnica Matteo Guarnerio 1 Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI

Dettagli

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma

Dettagli

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA 1 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA I MOTORI A COMBUSTIONE INTERNA SONO MACCHINE MOTRICI E POSSONO ESSERE BASATI SU

Dettagli

Macchine termiche. Alla fine di ogni ciclo il fluido ripassa per lo stesso stato.

Macchine termiche. Alla fine di ogni ciclo il fluido ripassa per lo stesso stato. Macchine termiche In una macchina termica - ad esempio un motore - un fluido (il vapore delle vecchie locomotive, la miscela del motore a scoppio) esegue qualche tipo di ciclo termodinamico. Alla fine

Dettagli

Motori endotermici I MOTORI ENDOTERMICI. Corso di Laurea Scienze e Tecnologie Agrarie

Motori endotermici I MOTORI ENDOTERMICI. Corso di Laurea Scienze e Tecnologie Agrarie Corso di Laurea Scienze e Tecnologie Agrarie Motori endotermici Dipartimento Ingegneria del Territorio - Università degli Studi di Sassari I MOTORI ENDOTERMICI Il motore converte l energia termica del

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

MOTORI ENDOTERMICI di Ezio Fornero

MOTORI ENDOTERMICI di Ezio Fornero MOTORI ENDOTERMICI di Ezio Fornero Nei motori endotermici (m.e.t.) l energia termica è prodotta mediante combustione di sostanze liquide o gassose, generalmente dette carburanti. Si tratta di motori a

Dettagli

Le macchine termiche e il secondo principio della termodinamica

Le macchine termiche e il secondo principio della termodinamica Le macchine termiche e il secondo principio della termodinamica ) Definizione di macchina termica È sperimentalmente verificato che nel rispetto del primo principio della termodinamica (ovvero della conservazione

Dettagli

Presentazione del progetto. I cicli termodinamici:

Presentazione del progetto. I cicli termodinamici: Presentazione del progetto I cicli termodinamici: OTTO DIESEL Obiettivi Presentare in modo sintetico ed efficace i concetti base relativi ai cicli termodinamici OTTO e DIESEL Organizzare e realizzare con

Dettagli

POMPA DI CALORE CICLO FRIGORIFERO A COMPRESSIONE DI VAPORE

POMPA DI CALORE CICLO FRIGORIFERO A COMPRESSIONE DI VAPORE POMPA DI CALORE CONDENSATORE = + L T = + L C ORGANO DI ESPANSIONE LIQUIDO COMPRESSORE T COND. E D T 1 VAPORE T EVAP. A B T 2 Schema a blocchi di una macchina frigorifera EVAPORATORE Dal punto di vista

Dettagli

Seconda legge della termodinamica

Seconda legge della termodinamica Seconda legge della termodinamica In natura tutti i processi devono soddisfare il principio di conservazione dell energia (e quindi anche la a legge della termodinamica) ma non tutti i processi che conservano

Dettagli

COMPONENTI TERMODINAMICI APERTI

COMPONENTI TERMODINAMICI APERTI CAPITOLO NONO COMPONENTI TERMODINAMICI APERTI Esempi applicativi Vengono di seguito esaminati alcuni componenti di macchine termiche che possono essere considerati come sistemi aperti A) Macchina termica

Dettagli

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. Negli ultimi anni, il concetto di risparmio energetico sta diventando di fondamentale

Dettagli

CICLO FRIGORIFERO PER RAFFREDDAMENTO

CICLO FRIGORIFERO PER RAFFREDDAMENTO CICLO FRIGORIFERO PER RAFFREDDAMENTO REGIONE CALDA Liquido saturo o sottoraffreddato Q out 3 2 Vapore surriscaldato valvola di espansione condensatore compressore P c evaporatore 4 1 Miscela bifase liquidovapore

Dettagli

IMPIANTI DI RISCALDAMENTO. Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it

IMPIANTI DI RISCALDAMENTO. Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it IMPIANTI DI RISCALDAMENTO Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it SISTEMI DI GENERAZIONE Tipologie più diffuse o in sviluppo Generatori a combustione Caldaie

Dettagli

IMPIANTI DI CONDIZIONAMENTO

IMPIANTI DI CONDIZIONAMENTO IMPIANTI DI CONDIZIONAMENTO Trasferimento di calore dall ambiente interno a quello esterno L aria del locale da raffrescare cede calore all unità interna del climatizzatore ed in tal modo si raffredda

Dettagli

Le Macchine Frigorifere. Termodinamica dell Ingegneria Chimica

Le Macchine Frigorifere. Termodinamica dell Ingegneria Chimica Le Macchine Frigorifere Termodinamica dell Ingegneria Chimica 1 Le macchine frigorifere Le macchine refrigeranti realizzano il trasporto di calore da un ambiente freddo ad un ambiente utilizzando lavoro

Dettagli

LA MACCHINA FRIGORIFERA E LA POMPA DI

LA MACCHINA FRIGORIFERA E LA POMPA DI asdf LA MACCHINA FRIGORIFERA E LA POMPA DI CALORE 12 March 2012 Il ciclo di Carnot... "al contrario" Nell'articolo dedicato alla macchina termica, avevamo visto nel finale la macchina di Carnot e il ciclo

Dettagli

Impianti motori termici

Impianti motori termici Impianti motori termici Classificazione: impianto motore termico con turbina a vapore il fluido evolvente nell impianto è acqua in diversi stati di aggregazione impianto motore termico con turbina a gas

Dettagli

Cos è una. pompa di calore?

Cos è una. pompa di calore? Cos è una pompa di calore? !? La pompa di calore aria/acqua La pompa di calore (PDC) aria-acqua è una macchina in grado di trasferire energia termica (calore) dall aria esterna all acqua dell impianto

Dettagli

Funzionamento del motore 4 tempi I componenti fondamentali del motore 4 tempi I componenti ausiliari del motore 4 tempi La trasmissione del moto Le innovazioni motoristiche L influenza dell aerodinamica

Dettagli

3. Le Trasformazioni Termodinamiche

3. Le Trasformazioni Termodinamiche 3. Le Trasformazioni Termodinamiche Lo stato termodinamico di un gas (perfetto) è determinato dalle sue variabili di stato: ressione, olume, Temperatura, n moli ffinché esse siano determinate è necessario

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 22 Il primo principio della termodinamica non è altro che una affermazione del principio di conservazione dell energia. Ci dice che se un sistema

Dettagli

I MOTORI ALTERNATIVI A COMBUSTIONE

I MOTORI ALTERNATIVI A COMBUSTIONE asdf I MOTORI ALTERNATIVI A COMBUSTIONE INTERNA : UN PRIMO SGUARDO 31 March 2012 Introduzione Il seguente articolo vuole essere una prima introduzione a quelli che sono i motori alternativi a combustione

Dettagli

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1 L - SISTEMI APERTI ENERGIA INTERNA E = n Cv T E = m cv T (Cv molare = J/kmol C) (cv massico = J/kg C) ENERGIA INTERNA SPECIFICA e = E/m = cv T ENTALPIA H = E + pv H = n Cp T H = m cp T (Cp molare = J/kmol

Dettagli

IMPIANTI DI CLIMATIZZAZIONE: TERMODINAMICA DEI CICLI FRIGORIFERI AD ARIA ED ACQUA. Ing. Attilio Pianese (commissione Energia e Impianti)

IMPIANTI DI CLIMATIZZAZIONE: TERMODINAMICA DEI CICLI FRIGORIFERI AD ARIA ED ACQUA. Ing. Attilio Pianese (commissione Energia e Impianti) IMPIANTI DI CLIMATIZZAZIONE: TERMODINAMICA DEI CICLI FRIGORIFERI AD ARIA ED ACQUA Ing. Attilio Pianese (commissione Energia e Impianti) SCOPO DEGLI IMPIANTI DI CONDIZIONAMENTO Gli impianti di condizionamento

Dettagli

Secondo principio della Termodinamica

Secondo principio della Termodinamica Secondo principio della Termodinamica Enunciato di Kelvin Enunciato di Clausius Ciclo di Carnot Entropia Antonio Pierro Per consigli, suggerimenti, eventuali errori o altro potete scrivere una email a

Dettagli

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 1 Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 2 Esercizio 3, 5 luglio 2005 Una macchina di Carnot produce

Dettagli

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia Secondo principio della termodinamica Macchine termiche Rendimento Secondo principio della ermodinamica Macchina di arnot Entropia Introduzione al secondo principio della termodinamica Da quanto studiato

Dettagli

PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4)

PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) PROBLEMA 1 Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) Deve possedere un elevato calore latente, cioè, deve evaporare asportando molto calore dall ambiente

Dettagli

Dimensionamento di massima di una compressore volumetrico alternativo

Dimensionamento di massima di una compressore volumetrico alternativo Dimensionamento di massima di una compressore volumetrico alternativo Giulio Cazzoli Giugno 2013 v1.0 Si chiede di eettuare il dimensionamento di massima di un compressore volumetrico alternativo che aspiri

Dettagli

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2 LA LEZIONE Lo studio di una macchina termica ideale [ ] Si può paragonare molto bene la potenza motrice del calore a quella di una cascata d acqua: entrambe hanno un massimo che non si può superare, qualunque

Dettagli

COSA E COSA E UNA POMP UNA

COSA E COSA E UNA POMP UNA COSA E UNA POMPA DI CALORE Una pompa di calore è un dispositivo che sposta calore da un luogo in bassa temperatura (chiamato sorgente) ad uno in alta temperatura (chiamato utenza), utilizzando dell energia.

Dettagli

Ciclo Rankine. Macchina tipica di un ciclo a vapore

Ciclo Rankine. Macchina tipica di un ciclo a vapore di Piraccini Davide OBBIETTIVI : Inserire un impianto ORC (Organic Rankine Cycle) nel ciclo di bassa pressione della centrale Enel di Porto Corsini e studiare la convenienza tramite il confronto dei rendimenti

Dettagli

352&(662',&20%867,21(

352&(662',&20%867,21( 352&(662',&20%867,21( Il calore utilizzato come fonte energetica convertibile in lavoro nella maggior parte dei casi, è prodotto dalla combustione di sostanze (es. carbone, metano, gasolio) chiamate combustibili.

Dettagli

Scuola di Ingegneria. Tecnica del freddo G. Grazzini, A. Milazzo

Scuola di Ingegneria. Tecnica del freddo G. Grazzini, A. Milazzo Cicli ad assorbimento Anche in questo caso si ha la sostituzione dell'energia meccanica necessaria al funzionamento del compressore, con energia termica a temperatura non elevata; il compressore viene

Dettagli

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA LE MACCHINE TERMICHE Sono sistemi termodinamici che trasformano il calore in lavoro. Operano ciclicamente, cioè

Dettagli

Fresco con il sol e 60% de risparmio energetico. SOLARCOOL TECNOLOGIA Spiegazione termodinamica

Fresco con il sol e 60% de risparmio energetico. SOLARCOOL TECNOLOGIA Spiegazione termodinamica Fresco con il sol e 60% de risparmio energetico SOLARCOOL TECNOLOGIA Spiegazione termodinamica L efficienza del sistema Solar Cool è possibile grazie ad un effetto fisico del flusso di massa, che è un

Dettagli

Esercitazione X - Legge dei gas perfetti e trasformazioni

Esercitazione X - Legge dei gas perfetti e trasformazioni Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma

Dettagli

ENERGIA DA OLI VEGETALI

ENERGIA DA OLI VEGETALI PROGETTO 012 ENERGIA DA OLI VEGETALI IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA TRAMITE DIESEL GENSET ALIMENTATO AD OLIO DI PALMA Prove effettuate nell anno 2009 1 Scopo del documento Riportare i risultati

Dettagli

La propulsione Informazioni per il PD

La propulsione Informazioni per il PD Informazioni per il PD 1/10 Compito Come funziona un automobile? Gli alunni studiano i diversi tipi di propulsione (motore) dell auto e imparano qual è la differenza tra un motore diesel e uno a benzina.

Dettagli

CORSO DI IMPIANTI DI PROPULSIONE NAVALE

CORSO DI IMPIANTI DI PROPULSIONE NAVALE ACCADEMIA NAVALE 1 ANNO CORSO APPLICATIVO GENIO NAVALE CORSO DI IMPIANTI DI PROPULSIONE NAVALE Lezione 09 Motori diesel lenti a due tempi A.A. 2011 /2012 Prof. Flavio Balsamo Nel motore a due tempi l intero

Dettagli

Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo

Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo Università di Catania Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile AA 1011 1 Fondamenti di Trasporti Meccanica della Locomozione Utilizzazione della potenza a bordo Giuseppe Inturri Dipartimento

Dettagli

Impianti di propulsione navale

Impianti di propulsione navale Motori diesel 4T Sistemi per ridurre la fumosità e le emissioni La sempre più continua attenzione alle problematiche ambientali e l inasprirsi di alcune normative regionali in tema di fumosità ed emissioni,

Dettagli

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale

Dettagli

Corso di Laurea in Scienze e Tecnologie Agrarie. Corso di Meccanica e. Meccanizzazione Agricola

Corso di Laurea in Scienze e Tecnologie Agrarie. Corso di Meccanica e. Meccanizzazione Agricola Corso di Laurea in Scienze e Tecnologie Agrarie Corso di Meccanica e Meccanizzazione Agricola Prof. S. Pascuzzi 1 Motori endotermici 2 Il motore endotermico L energia da legame chimico, posseduta dai combustibili

Dettagli

Motori 4 tempi a ciclo Otto

Motori 4 tempi a ciclo Otto Motori 4 tempi a ciclo Otto 1. Premessa I motori automobilistici più comuni sono del tipo a combustione interna quattro tempi e appartengono a due grandi famiglie, a seconda del tipo di combustibile impiegato

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 4 MOTORI A COMBUSTIONE INTERNA

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 4 MOTORI A COMBUSTIONE INTERNA Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 4 MOTORI A COMBUSTIONE INTERNA Prof. Matteo Intermite 1 4. FUNZIONAMENTO DEL MOTORE A 4 TEMPI 4.1 LE 4 FASI DEL CICLO

Dettagli

Il lavoro nelle macchine

Il lavoro nelle macchine Il lavoro nelle macchine Corso di Impiego industriale dell energia Ing. Gabriele Comodi I sistemi termodinamici CHIUSO: se attraverso il contorno non c è flusso di materia in entrata ed in uscita APERTO:

Dettagli

SISTEMI ELETTRICI PER LA PRODUZIONE DI CALORE:

SISTEMI ELETTRICI PER LA PRODUZIONE DI CALORE: SISTEMI ELETTRICI PER LA PRODUZIONE DI CALORE: VALUTAZIONI TECNICO-ECONOMICHE TRA POMPE DI CALORE E GENERATORI DI CALORE I CICLI Cicli diretti = cicli termodinamici che riguardano i motori forniscono lavoro

Dettagli

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V 1 Esercizio (tratto dal Problema 13.4 del Mazzoldi 2) Un gas ideale compie un espansione adiabatica contro la pressione atmosferica, dallo stato A di coordinate, T A, p A (tutte note, con p A > ) allo

Dettagli

IMPIANTI DI CLIMATIZZAZIONE

IMPIANTI DI CLIMATIZZAZIONE IMPIANTI DI CLIMATIZZAZIONE parti 3 4 1 IMPIANTO TERMICO In generale si può pensare articolato nelle seguenti parti: Generatore uno o più apparati che forniscono energia termica ad un mezzo di trasporto

Dettagli

Compressori volumetrici a) Compressori alternativi

Compressori volumetrici a) Compressori alternativi Compressori volumetrici a) Compressori alternativi Il parametro fondamentale per la valutazione di un compressore alternativo è l efficienza volumetrica: η v = (Portata volumetrica effettiva) / (Volume

Dettagli

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi:

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi: LA COGENERAZIONE TERMICA ED ELETTRICA 1. Introduzione 2. Turbine a Gas 3. Turbine a vapore a ciclo combinato 4. Motori alternativi 5. Confronto tra le diverse soluzioni 6. Benefici ambientali 7. Vantaggi

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

SOLUZIONE SECONDA PROVA - TEMA N 2 - TECNICO DEI SISTEMI ENERGETICI 2015

SOLUZIONE SECONDA PROVA - TEMA N 2 - TECNICO DEI SISTEMI ENERGETICI 2015 SOLUZIONE SECONDA PROVA - TEMA N 2 - TECNICO DEI SISTEMI ENERGETICI 2015 Svolgimento : PUNTO 1) La figura soprastante mostra il circuito frigorifero di una macchina per la climatizzazione; si evidenziano

Dettagli

CC C T U Gruppo turbogas 3

CC C T U Gruppo turbogas 3 Corso di IMPIANI di CONVERSIONE dell ENERGIA L energia, fonti, trasformazioni i ed usi finali Impianti a vapore I generatori di vapore Impianti turbogas Cicli combinati e cogenerazione Il mercato dell

Dettagli

Macchina ad Aria Compressa

Macchina ad Aria Compressa Macchina ad Aria Compressa La nostra ricerca si occuperà del motore ad aria compressa. L'obbiettivo è quello di trovare motori alternativi in totale rispetto dell'ambiente. Il motore in questione ha presentato

Dettagli

anidride carbonica: il refrigerante del futuro?

anidride carbonica: il refrigerante del futuro? 1 anidride carbonica: il refrigerante del futuro? prof. ing. Fabio POLONARA 2 ANIDRIDE CARBONICA CO 2 R744 è abbondante e poco costosa è un refrigerante naturale, senza alcun impatto ambientale globale

Dettagli

Definizione di sorgente di calore e di macchina termica

Definizione di sorgente di calore e di macchina termica 34 Unità Didattica N 19C I principi della ermodinamica Definizione di sorgente di calore e di macchina termica Sorgente di calore è un corpo ( o un sistema di corpi ) a temperatura costante che ha la proprietà

Dettagli

CENTRALI TERMOELETTRICHE

CENTRALI TERMOELETTRICHE CENTRALI TERMOELETTRICHE Le centrali termoelettriche sono impianti che utilizzano l energia chimica dei combustibili per trasformarla in energia elettrica. Nelle centrali termoelettriche la produzione

Dettagli

Capitolo 18 - Sistemi ad assorbimento

Capitolo 18 - Sistemi ad assorbimento Appunti di Fisica Tecnica Capitolo 18 - Sistemi ad assorbimento Introduzione...1 Funzionamento di una macchina frigorifera ad assorbimento...2 Macchina ad acqua-bromuro di litio...4 Macchina ad acqua-ammoniaca...5

Dettagli

Generalità sulle elettropompe

Generalità sulle elettropompe Generalità sulle elettropompe 1) Introduzione Ne esistono diverse tipologie ma si possono inizialmente suddividere in turbopompe e pompe volumetriche. Le prime sono caratterizzate da un flusso continuo

Dettagli

Come funziona una centrale a ciclo combinato? Aggiungere l immagine sotto e fare un mix dei due testi di spiegazione del funzionamento

Come funziona una centrale a ciclo combinato? Aggiungere l immagine sotto e fare un mix dei due testi di spiegazione del funzionamento LA TECNOLOGIA DEL CICLO COMBINATO A GAS NATURALE La maggiore quantità di energia elettrica generata da Edison è prodotta da 28 centrali termoelettriche. Edison sviluppa, progetta e costruisce interamente,

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

Essiccatori ad adsorbimento rigenerati a caldo

Essiccatori ad adsorbimento rigenerati a caldo Essiccatori ad adsorbimento rigenerati a caldo Soluzioni di sistemi innovativi Perché l aria compressa pulita e asciutta è importante In quasi tutti i settori dell industria l aria compressa è uno strumento

Dettagli

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro Cos è il calore? Per rispondere si osservino le seguenti immagini Temperatura e calore Il calore del termosifone fa girare una girandola Il calore del termosifone fa scoppiare un palloncino Il calore del

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Amplificatori Audio di Potenza

Amplificatori Audio di Potenza Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso

Dettagli

Glide dei refrigeranti e impatto sulla dichiarazione delle prestazioni

Glide dei refrigeranti e impatto sulla dichiarazione delle prestazioni Glide dei refrigeranti e impatto sulla dichiarazione delle prestazioni Ambito e scopo In seguito al regolamento UE 517/2014 (F-gas), i futuri refrigeranti sintetici con un basso potenziale di riscaldamento

Dettagli

POMPE DI CALORE. Introduzione

POMPE DI CALORE. Introduzione POMPE DI CALORE Introduzione In impianto tradizionale di riscaldamento si utilizza il potere calorifico di un combustibile (gasolio, metano, legno, carbone, ecc.) per riscaldare a bassa temperatura dei

Dettagli

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE Classificazione delle pompe Pompe rotative volumetriche POMPE VOLUMETRICHE si dividono in... POMPE ROTATIVE VOLUMETRICHE Pompe rotative volumetriche Principio di funzionamento Le pompe rotative sono caratterizzate

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG

GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG Il ciclo frigorifero Esempio di ciclo frigorifero ad assorbimento con generatore a fiamma diretta Il principio di funzionamento /informazioni utili La termodinamica

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013 Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti

Dettagli

I QUADERNI DEL FREDDO Materiale Didattico per il Conseguimento del Patentino per il Trattamento dei Gas Effetto Serra

I QUADERNI DEL FREDDO Materiale Didattico per il Conseguimento del Patentino per il Trattamento dei Gas Effetto Serra Materiale Didattico per il Conseguimento del Patentino per il Trattamento dei Gas Effetto Serra Parte 1 I Processi di Refrigerazione Chiariamo i concetti di base La refrigerazione è un aspetto particolare

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 8. Sistemi Termici Operatori. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 8. Sistemi Termici Operatori. Roberto Lensi Roberto Lensi 8. Sistemi Termici Operatori Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 8. Sistemi Termici Operatori Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2005-06 Roberto

Dettagli

ACCUMULATORI IDRAULICI

ACCUMULATORI IDRAULICI In generale, un accumulatore idraulico può accumulare liquido sotto pressione e restituirlo in caso di necessità; IMPIEGHI 1/2 Riserva di liquido Nei circuiti idraulici per i quali le condizioni di esercizio

Dettagli

PROVE SU PISTA CAN LCU-ONE. LCU-ONE CAN su motori 2 Tempi. Per migliorare la tecnica di guida e per perfezionare la messa a punto del kart

PROVE SU PISTA CAN LCU-ONE. LCU-ONE CAN su motori 2 Tempi. Per migliorare la tecnica di guida e per perfezionare la messa a punto del kart LCU-ONE CAN + TERMOCOPPIA GAS DI SCARICO CONTROLLO PUNTUALE DEL TUO MOTORE PROVE SU PISTA LA PROVA LCU-ONE CAN su motori 2 Tempi UNO STRUMENTO ESSENZIALE Per migliorare la tecnica di guida e per perfezionare

Dettagli

CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE

CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE 1 CICLO RANKINE IL CICLO TERM ODINAM ICO RANKINE E COMPO STO DA Q UATTRO TRASFO RM AZIO NI PRINCIPALI (COMPRESSIO NE, RISCALDAM ENTO, ESPANSIO

Dettagli

Cicli Inversi. Ciclo Frigorifero L effetto utile è Q 2 Pompa di calore L effetto utile è Q 1

Cicli Inversi. Ciclo Frigorifero L effetto utile è Q 2 Pompa di calore L effetto utile è Q 1 Cicli Inversi I cicli inversi hanno lo scopo di asportare calore da una sorgente fredda (Cicli frigoriferi) o di trasferirlo ad una sorgente calda (Pompe di calore) Ciclo Frigorifero L effetto utile è

Dettagli

CHIMICA GENERALE MODULO

CHIMICA GENERALE MODULO Corso di Scienze Naturali CHIMICA GENERALE MODULO 6 Termodinamica Entalpia Entropia Energia libera - Spontaneità Relatore: Prof. Finelli Mario Scienza che studia i flussi energetici tra un sistema e l

Dettagli

APPLICAZIONI DEL 2 PRINCIPIO DELLA TERMODINAMICA ENUNCIATO DEL 2 PRINCIPIO DELLA TERMODINAMICA

APPLICAZIONI DEL 2 PRINCIPIO DELLA TERMODINAMICA ENUNCIATO DEL 2 PRINCIPIO DELLA TERMODINAMICA APPLICAZIONI DEL 2 PRINCIPIO DELLA TERMODINAMICA Per poter illustrare alcune applicazioni del 2 principio della termodinamica penso sia necessario riprendere l'enunciato stesso e ciò che da esso consegue,

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi Roberto Lensi 1. Complementi sui sistemi termici Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 1. Complementi sui sistemi termici Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico

Dettagli

Esame sezione Brevetti 2003-2004 Prova Pratica di meccanica

Esame sezione Brevetti 2003-2004 Prova Pratica di meccanica Esame sezione Brevetti 2003-2004 Prova Pratica di meccanica OGGETVO: Brevettazione dl un perfezionamento riguardante I pressatori per mescolatori dl gomma Egregio dottore, Le invio una breve relazione

Dettagli

CORSO DI SISTEMI ENERGETICI II - A.A. 2014-2015 Prof. Ing. Giorgio Cau

CORSO DI SISTEMI ENERGETICI II - A.A. 2014-2015 Prof. Ing. Giorgio Cau CORSO DI SISTEMI ENERGETICI II A.A. 20142015 Prof. Ing. Giorgio Cau VALUTAZIONE DELLE PRESTAZIONI DI UN IMPIANTO DI COGENERAZIONE E VERIFICA DEGLI INDICI ENERGETICI AI SENSI DELLA DELIBERA AEEG 42/02 Caratteristiche

Dettagli

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1 LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)

Dettagli

Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose.

Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose. Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose. 2.1 Spettro di emissione Lo spettro di emissione di

Dettagli

CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/2015 --- Prova di valutazione intermedia del 9 Gennaio 2015

CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/2015 --- Prova di valutazione intermedia del 9 Gennaio 2015 CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/2015 --- Prova di valutazione intermedia del 9 Gennaio 2015 C= prima lettera del cognome C = 0 Nome e Cognome Matricola Corso di Studio A B C D E F G H

Dettagli

LEGGE GAS PERFETTI. Gas perfetto è governato dalla legge: PV=nRT=(N/NA) RT. kb=1.38*10-23 (J/K) cost Boltzmann

LEGGE GAS PERFETTI. Gas perfetto è governato dalla legge: PV=nRT=(N/NA) RT. kb=1.38*10-23 (J/K) cost Boltzmann LEGGE GAS PERFETTI Gas perfetto è governato dalla legge: PV=nRT=(N/NA) RT PV=NkBT dove kb=r/na kb=1.38*10-23 (J/K) cost Boltzmann TEORIA CINETICA DEI GAS Scopo: legame tra quantità macroscopiche e microscopiche

Dettagli

Gli impianti per la climatizzazione

Gli impianti per la climatizzazione Università IUAV di Venezia Gli impianti per la climatizzazione 1 Tipologie secondo il fluido termovettore Componenti elementi costruttivi Produzione del calore/ frigorifera Dimensioni dei canali d aria

Dettagli

Università degli Studi Mediterranea di Reggio Calabria Facoltà di Ingegneria Esame di Stato per l Abilitazione all Esercizio della Professione di

Università degli Studi Mediterranea di Reggio Calabria Facoltà di Ingegneria Esame di Stato per l Abilitazione all Esercizio della Professione di Esame di Stato per l Abilitazione all Esercizio della Professione di Ingegnere Traccia di Meccanica Vecchio Ordinamento Sessione: Novembre 2005, 2 a Sessione Descrivere sinteticamente i manovellismi con

Dettagli

Esercizi sui Compressori e Ventilatori

Esercizi sui Compressori e Ventilatori Esercizi sui Compressori e Ventilatori 27 COMPRESSORE VOLUMETRICO (Appello del 08.06.1998, esercizio N 2) Testo Un compressore alternativo monocilindrico di cilindrata V c = 100 cm 3 e volume nocivo V

Dettagli