LA RADIOATTIVITA E GLI EFFETTI BIOLOGICI DELLE RADIAZIONI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA RADIOATTIVITA E GLI EFFETTI BIOLOGICI DELLE RADIAZIONI"

Transcript

1 LA RADIOATTIVITA E GLI EFFETTI BIOLOGICI DELLE RADIAZIONI Radioattività Decadimenti radioattivi Attività Legge del decadimento radioattivo Vita media e tempo di dimezzamento Effetti biologici delle radiazioni Range, esposizione Dose assorbita, equivalente, efficace Danno biologico Dosi limite e radioprotezione Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale Lezione 7 1

2 IL NUCLEO ATOMICO E L ENERGIA NUCLEARE Il nucleo atomico Struttura atomica Elementi e isotopi Forze nucleari Decadimento radioattivo Fissione e fusione L energia nucleare Reattori nucleari Centrali nucleari La bomba atomica Le mine antiuomo Chernobyl Il nucleare in Italia 2

3 L atomo R nucleo m = 1 fm R atomo m = 1 Å il nucleo è volte più piccolo dell atomo! R atomo 10 5! R nucleo Z protoni m p = kg q = +e = C N neutroni m n = kg q = 0 Z elettroni m e = kg q = -e = C Numero di massa: A = Z + N Notazione: A Z X 3

4 Atomi, nuclei, particelle: le loro dimensioni 4

5 Elementi chimici Elementi chimici: atomi con diverso Z naturali: da idrogeno (Z=1) a uranio (Z=92) artificiali: tecnezio (Z=43) e transuranici (Z>92) TAVOLA PERIODICA DI MENDELEEV 5

6 Isotopi Isotopi: stesso nb. protoni Z diverso nb. neutroni N (stessa specie chimica, diversa massa) N stabili radioattivi (naturali e artificiali) Stabilità dei nuclei: Nuclei leggeri (Z 20) à N = Z Nuclei pesanti (Z > 20) à N > Z Z come si spiega? 6

7 Ma i protoni non si respingono? Nel nucleo ci sono Z protoni molto vicini tra loro (d m). Essi risentono delle forze di: attrazione gravitazionale F G = G m r m p 2 p = ( ( ) 2 ) 2 = N repulsione elettrostatica q q p p 9 ( ) FE = + = 9 10 = 4πε r (10 ) 0 F E F G F G F E P P 230 N In base alle forze che conosciamo (gravitazionale ed elettromagnetica) i protoni dovrebbero respingersi violentemente e quindi distruggere o impedire la formazione dei nuclei atomic. A MENO CHE 7

8 La colla nucleare A MENO CHE All interno dei nuclei atomici si manifesti una ulteriore nuova forza di attrazione, capace di incollare tra loro i protoni vincendo la loro repulsione coulombiana. Caratteristiche della forza nucleare: E sempre attrattiva Si manifesta solo a distanze d m Vale tra protoni, tra neutroni, tra protoni e neutroni... ma ancora non basta a spiegare come sono fatti i nuclei... 8

9 Guardando i nuclei leggeri si verifica che quando ci sono troppi o pochi neutroni il nucleo non è stabile Idrogeno: Z=1 Elio: Z=2 1 1 H 2 1 H 3 1 H Deuterio Trizio à instabile! La forza nucleare non basta ancora: ci deve essere un altra forza responsabile dei decadimenti nucleari 2 2 He 3 2 He 4 2 He Non esiste! He 5 2 à instabile! 9

10 Ma quanti neutroni ci vogliono nel nucleo? N Né troppi, né troppo pochi! La forza nucleare p-p, p-n, n-n è uguale. Quindi il rapporto tra protoni e neutroni nel nucleo non dovrebbe influenzarne la stabilità, tranne che per la repulsione elettrostatica tra i protoni. Invece si verifica che in natura esistono solo nuclei leggeri (Z 20) con N Z nuclei pesanti (Z > 20) con N > Z Altri nuclei non esistono, o se prodotti decadono spontaneamente dopo un certo tempo, emettendo particelle, o trasformandosi in altre specie, o spezzandosi in nuclei più piccoli. Z 10

11 Il nucleo: Interazione Forte Il nucleo consiste di nucleoni, protoni e neutroni, che sono tenuti insieme da forze nucleari forti derivate dallo scambio reciproco di particelle elementari, chiamate mesoni Nei nuclei radioattivi queste forze non sono sufficienti a vincere le forze repulsive fra nucleoni e viene raggiunto uno stato stabile eliminando l eccesso di energia sotto forma di radiazione ionizzante. Gli atomi radioattivi sono presenti in natura ma possono anche essere prodotti artificialmente 11

12 Radioattività Radioattività = trasformazione spontanea o artificiale dei nuclei con emissione di radiazione corpuscolare à particelle elettromagnetica à energia Quando? Nei nuclei non compresi nella valle di stabilità : N nuclei con troppi protoni (Z>92) nuclei con troppi neutroni nuclei con pochi neutroni nuclei con troppa energia Z 12

13 Decadimenti radioattivi α β A A 4 4 Z X N Z 2 YN 2+ 2He2 Nuclei pesanti A A Z X N Z+ 1YN 1 + e Nuclei con troppi neutroni +ν β γ + A A Z X N Z 1YN Nuclei con pochi neutroni A A Z X N Z X N + hν e + +ν Spesso dopo decadimento α o β 13

14 Decadimenti a catena decadimenti dell'isotopo 232 Th N 232 Th decadimento α decadimento β Ra 224 Ra 220 Rn 216 Po 212 Pb 212 Bi 208 Tl 212 Po 208 Pb (stabile) Ac α : (Z, N, A) (Z 2, N 2, A 4) 228 Th β : (Z, N, A) (Z+1, N 1, A) (con emissione di neutrini) β + : (Z, N, A) (Z 1, N+1, A) (con emissione di neutrini) γ :(Z, N, A) (Z, N, A) Z Z 14

15 Attività radioattiva Attività radioattiva = nb. decadimenti / s (à velocità di decadimento ) Unità di misura SI: becquerel à 1 Bq = 1/s dimensionalmente uguale all hertz 1 Bq = 1 decadimento al secondo à unità troppo piccola Unità pratica: curie: attività di 1g di radio 1 Ci = Bq (decadimento α: 234 Ra à 230 Rn, t=1620 anni) 15

16 Legge esponenziale negativa Il decadimento radioattivo è un processo statistico a probabilità costante (= indipendente dal tempo) Il nb. di nuclei rimasti diminuisce nel tempo con legge esponenziale negativa Equivale alla legge probabilistica del lancio delle monete (binomiale) 16

17 Legge del decadimento radioattivo Il numero dei nuclei che decadono nell unità di tempo è proporzionale al numero di nuclei presenti: -Δn/Δt n -Δn/Δt = λ n n(t) = n 0 e - λt n(t) = n 0 e -t/ τ λ = costante di decadimento 1/λ = τ = vita media 17

18 Periodo di dimezzamento Vita media τ = tempo dopo il quale rimangono il 37 % dei nuclei (=1/e) Periodo di dimezzamento T 1/2 = tempo dopo il quale rimangono il 50 % dei nuclei n n 0 n(t) T 1/2 < τ Relazione tra τ e T 1/2 : n(t 1/2 ) = n 0 /2 = n 0 e -T 1/2/τ e -T 1/2/τ = 1/2 -T 1/2 /τ = ln ½ = -ln2 = n 0 0 T 1/2 τ t T 1/2 = τ 18

19 Decadimento radioattivo I nuclei instabili sono caratterizzati quindi sia dalle radiazioni che emettono sia dal loro tempo di dimezzamento. Il decadimento radioattivo è un processo casuale e la probabilità che un atomo instabile cambi il suo stato è costante entro un dato periodo La probabilità non dipende dalla storia dell atomo, dal suo stato chimico o fisico, o dal passare del tempo Il tasso al quale una quantità di isotopi decade è tuttavia proporzionale al numero di atomi instabili presenti (N) t 1/2 = ln2 / λ = / λ 19

20 Misura del periodo di dimezzamento Per vite medie abbastanza lunghe: misura di attività (contatore Geiger) R T = 1/2 Δn Δt n ' 0.693$ = = n % T " τ & 1/2 # n = R Esempi di periodi di dimezzamento: decadimento T 1/2 3 H (β) anni 14 C (β) 5730 anni 40 K (β) anni 60 Co (β) 5.7 anni 137 Cs (β) 30 anni 131 I (β) 8 giorni 222 Rn (α) 3.82 giorni 235 U (α) anni 238 U (α) anni 20

21 La fissione nucleare I nuclei pesanti (Z>92), se bombardati ad es. con neutroni, tendono a decadere spezzandosi in due nuclei di massa circa metà di quella di partenza, emettendo inoltre altri neutroni, che possono provocare una reazione a catena. Nella fissione viene emessa energia: circa 200 MeV (contro i 20 ev delle reazioni chimiche) n U U * Ba Xe Kr + 3n Sr + 2n 1g di fissione à kwh di energia = consumo familiare di 5 anni!!! 21

22 La fusione nucleare I nuclei leggeri (Z<15), in condizioni particolari (es. altissime temperature) in cui riescono ad avvicinarsi l un l altro a piccolissime distanze, possono fondersi a due a due in nuclei più pesanti. Nella fusione viene emessa energia: alcuni MeV (contro i 20 ev delle reazioni chimiche) Nel Sole, a ogni secondo, 564,500 ton di idrogeno si convertono in 560 ton di elio; le restanti 4,5 ton diventano energia che viene irraggiata nello spazio. 22

23 Radiazioni e vita 23

24 Radiazioni naturali e artificiali 24

25 Radiazione cosmica 25

26 Il radon nel terreno 26

27 Radioattività ambientale in Italia 27

28 Verso l energia nucleare: le tappe Dai fenomeni naturali : Roentgen à raggi X 1896: Becquerel à radioattività naturale 1898: Curie à elementi radioattivi 1899: Rutherford à radiazioni α, β, γ 1905: Einstein à E=mc 2 nel senso che si può trasformare in energia...ai fenomeni artificiali 1919: Rutherford à reazioni nucleari 1932: Chadwick à neutrone 1934: Curie à produzione di radioisotopi 1934: Fermi à neutroni lenti su uranio 1938: Hahn-Strassmann à fissione 1942: Fermi à reattore nucleare 28

29 I neutroni lenti e l uranio 1932: scoperta del neutrone Il neutrone è neutro, e quindi non è soggetto a repulsione elettrica. Ha quindi un elevata capacità di penetrazione nel nucleo. Bombardando nuclei di uranio con neutroni si ottengono moltissime sostanze radioattive. Se i neutroni passano attraverso sostanze particolari (moderatori: es. acqua o paraffina) che diminuiscono la loro velocità, l effetto radioattivo aumenta molto. Inoltre vengono emessi altri neutroni che possono essere utilizzati a loro volta per continuare il processo a catena. 29

30 Reazioni a catena La fissione nucleare può avvenire con reazioni a catena. Se controllata, è una enorme sorgente di energia! Se incontrollata, ha effetti devastanti! 30

31 Il reattore nucleare Cubo di grafite (moderatore dei neutroni) barre di uranio barre di controllo di boro e cadmio (assorbitori dei neutroni in eccesso) Pila di Fermi, Chicago 1942 Sollevando o abbassando le barre di controllo, è possibile innescare o bloccare la reazione a catena. 31

32 Centrali nucleari Reattore protetto da una campana di rivestimento + sistema di raffreddamento in cui circola acqua. L acqua trasformata in vapore mette in azione una turbina collegata con un alternatore che produce energia elettrica. Il vapore uscito dalla turbina passa in un condensatore dove viene raffreddato e trasformato in acqua. Quest'acqua viene di solito inviata al reattore per essere riutilizzata. 32

33 Lo sminamento umanitario Tecniche nucleari possono essere preziosi alleati in tempo di pace. Un esempio: le MINE ANTIUOMO. Ogni anno: vittime per vecchie mine antiuomo (20% bambini). Sminamento troppo costoso: ispezione del terreno con sensori di anomalia à allarme à estrazione e neutralizzazione esplosivo tempo: > 30 minuti costo: $ falsi allarmi: 99 % Tutti gli esplosivi contengono azoto in gran quantità (20-30%, contro il <2 % normale) à I terreni minati sono ricchissimi di azoto 33

34 Il nucleare contro le mine antiuomo INFN Padova, Bari, Pavia. Bombardando con neutroni il terreno, si può rivelare una anomala quantità di azoto. Reazione di cattura neutronica: 14 N + n à 15 N + γ (E g =10.8 MeV) Metodo proposto: tubo portatile (dimensioni 50 cm) azionato da robot neutroni da fissione spontanea di 252 Cf rivelazione dell energia mediante scintillatori analisi automatica (computer) durante le successive ispezioni intervento umano solo dopo la conferma 34

35 L energia nucleare è buona o cattiva? Come ogni cosa, ha vantaggi e svantaggi. Fissione: + facile innesco e controllo - costo e produzione combustibile forte inquinamento radioattivo pericolo di catastrofe Fusione: + disponibilità illimitata combustibile nessun inquinamento - difficile innesco (altissime temperature) 35

36 Energia nucleare 36

37 Il disastro di Chernobyl Chernobyl, Ucraina, 26 aprile 1986 Per un test:interruzione del vapore + disattivazione sistemi di sicurezza reazione a catena incontrollata à energia 100 volte superiore aumento di temperatura à fusione del reattore aumento di pressione à esplosione del tetto incendio della grafite per 10 giorni Nube radioattiva in tutta Europa: 131 I à T 1/2 8 giorni 137 Cs à T 1/2 30 anni 37

38 Chernobyl prima e dopo 38

39 Rinunciare all energia nucleare? La verità è che non vi abbiamo mai rinunciato... L'energia elettronucleare soddisfa il 18% del fabbisogno elettrico mondiale e il 35% di quello europeo. Dal 1995 a oggi, anche l'italia ha importato elettricità nucleare dall estero per quote variabili fra il 14 e il 18%. Con la decisione di fermare le nostre centrali non abbiamo rinunciato all'energia nucleare: l'abbiamo resa una nuova fonte d'importazione. Nel frattempo il nostro sistema energetico continua a dipendere per oltre l'80% dall'estero. Bilanciamento tra pro e contro: ma nei contro esiste la possibilità di perdita di vite umane più il problema (ancora irrisolto) delle scorie 39

40 Il nucleare in Europa Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale Lezione 7 40

41 Il nucleare ai nostri confini Dal 1987 l'italia ha chiuso col nucleare, ma 13 centrali straniere sono a un passo da noi. L'Anpa (Agenzia nazionale per la protezione ambientale) le considera come se fossero praticamente nel territorio italiano, per le conseguenze di un incidente sulla popolazione e sull ambiente. Mappa delle fonti di un possibile inquinamento nucleare per l Italia. Il nostro Paese è circondato da una serie di centrali nucleari stanziate a pochi centinaia di km dai confini. Sono evidenziati in rosso i centri di rilevamento di radiazioni che dovrebbero dare tempestivamente l allarme in caso di incidente nucleare. 41

42 Il nucleare in Italia In Italia non esistono più centrali nucleari: le 4 esistenti, a Caorso (PC), Trino (VC), Latina, Garigliano (FR), sono state smantellate e messe in sicurezza. 42

43 Verso la bomba Il processo di fissione realizzato da Fermi in Italia nel 1934 viene capito solo nel 1939 da Hahn e Strassmann in Germania. Negli Stati Uniti, dove Fermi e molti altri sono emigrati dopo le leggi razziali del 1938, si teme che la Germania produca la bomba atomica. I fisici europei emigrati negli Stati Uniti, con l appoggio determinante di Einstein, convincono il presidente Roosevelt della necessità di iniziare le ricerche per costruire la bomba prima della Germania. "Se avessi saputo che i tedeschi non sarebbero riusciti a costruire la bomba atomica, non avrei mai alzato un dito. Albert Einstein 43

44 Los Alamos Dicembre 1941: gli USA entrano in guerra Estate 1942: Roosevelt crea il Progetto Manhattan per le ricerche sulla bomba atomica Dicembre 1942: Fermi realizza il reattore nucleare (pila di Fermi) Marzo 1943: inizia in gran segreto la costruzione della cittadella di Los Alamos (direttore Oppenheimer) Novembre 1944: si capisce che la Germania non riuscirà ad arrivare alla bomba. Inizia il dubbio degli scienziati: non ci sono più motivi per la bomba. Primavera 1945: alcuni scienziati scrivono a Roosevelt: fermiamoci! Aprile 1945: muore Roosevelt. 44

45 Via alla bomba! Aprile 1945: Truman nuovo Presidente USA. Finisce la guerra in Europa. Il Giappone non si arrende. Giugno 1945: un gruppo di fisici (Oppenheimer, Fermi e altri) chiede di lanciare subito la bomba sul Giappone; un altro gruppo di fisici (Slizard e altri) chiede di usare la bomba solo nel deserto, a scopo dimostrativo. Truman decide per il lancio sul Giappone. Luglio 1945: pronti 2 tipi di bombe, a uranio 235 e plutonio 239. Lancio dimostrativo nel Nuovo Messico: potenza: tonnellate di tritolo. Ultimatum al Giappone: respinto. 6 agosto 1945: Hiroshima 9 agosto 1945: Nagasaki 45

46 La bomba atomica Principio contrario a quello del reattore: fissione totalmente incontrollata. la bomba di Hiroshima Tempi accelerati: uso di neutroni veloci à eliminato il moderatore Si ha fissione quando l uranio supera una certa massa critica à per programmare l esplosione, il combustibile viene suddiviso in più parti, e la reazione viene innescata mediante un normale esplosivo, posto sulla testata, che fa scontrare le diverse parti di uranio. In base ai danni che si vogliono procurare, l esplosione viene fatta avvenire a una certa quota, determinata da un altimetro. 46

47 Hiroshima e Nagasaki Hiroshima uranio % distruzione morti Nagasaki plutonio % distruzione morti La scienza in crisi Prima bomba: necessaria? à sgomento... Seconda bomba: inutile! à rabbia!... 47

48 Effetti biologici delle Radiazioni: Range, esposizione Dose assorbita, equivalente, efficace Danno biologico Dosi limite e radioprotezione 48

49 Le radiazioni nella materia Ogni radiazione, interagendo con la materia, cede energia alla struttura atomica/molecolare del materiale attraversato. Se l energia ceduta è sufficiente (radiazioni ionizzanti: E 100 ev), si verificano nel materiale effetti distruttivi (frammentazioni, rotture di legami, ionizzazione,...). Radiazioni ionizzanti: - elettromagnetiche (m=0, E=hν) à raggi X e γ - corpuscolari (m>0, E= ½ mv 2 ) à particelle α, β ±, p,n,.. L assorbimento delle radiazioni nella materia è un processo molto vario e complesso. I parametri importanti sono: tipo e energia della radiazione incidente, natura del materiale. 49

50 Interazione radiazione materia Le radiazioni interagiscono fortemente con atomi e molecole che incontrano Hanno energia sufficiente a produrre ionizzazione e perciò sono chiamate radiazioni ionizzanti Il prodotto finale è il danno indotto nel materiale 50

51 Interazione radiazioni (X) I raggi X vengono assorbiti tramite il trasferimento della loro energia a elettroni atomici come i fotoni luminosi I x = I 0 exp(-µ x) I 0 = intensità all ingresso del materiale I x intensità ad una distanza x dalla superficie coefficiente di assorbimento del materiale, µ, (aumenta con il numero atomico) (più il materiale è denso maggiore è l attenuazione) Il grado di penetrazione dipende anche dall energia 51

52 Emissione e assorbimento di radiazioni Le radiazioni emesse da una sorgente radioattiva vengono irraggiate nello spazio in tutte le direzioni. Una loro frazione, dipendente dall angolo solido e dalla distanza (I Ω/r 2 ), colpisce il soggetto esposto cedendogli energia. I danni che esso ne riceve dipendono dall energia, dal tipo di radiazione, dagli organi che ne vengono colpiti. 52

53 Penetrazione (range) Radiazioni α,β,γ in diversi materiali... Range R ( E) = distanza media percorsa nella materia... e nel corpo umano (impiego terapeutico) cm cm γ da 60 Co γ da elettroni protoni E=1.3 MeV E=25 MeV E=200 MeV

54 Schermi protettivi 54

55 Esposizione I raggi X e γ nella materia provocano ionizzazione, cioè creano coppie di ioni carichi. Esposizione (dose irraggiata) = misura della ionizzazione prodotta da una radiazione in un materiale Materiale di riferimento: aria (1 cm 3, 0 o C, 1 atm) Unità di misura: Sist.Int.: Coulomb/kg pratico: Röntgen à C in 1 cm 3 di aria a 0 o C, 1 atm 1 R = C/kg 55

56 Effetti biologici delle radiazioni ionizzanti ATOMI eccitazione ionizzazione MOLECOLE eccitazione ionizzazione dissociazione ORGANI effetti sulla crescita effetti su funzioni nervose effetti su risposta umorale STRUTTURE SUB-CELLULARI blocco biosintesi effetti genetici effetti funzioni nucleo CELLULE blocco della divisione effetti sul metabolismo 56

57 Dose assorbita Dose = energia assorbita per unità di massa D = ΔE/Δm Unità di misura: Sist.Int. à Gray = J/kg pratico à rad = 100 erg/g m = massa del materiale assorbitore, non della radiazione! 1 Gy = 100 rad 1 J = 10 7 erg 1 Gy = 10 2 rad Problema: la stessa dose dovuta a radiazioni diverse e/o assorbita da materiali diversi produce effetti/danni diversi! 57

58 Dose equivalente Per uniformità si definisce una radiazione standard: raggi X a 200 kev Efficacia Biologica Relativa: Dose equivalente = RBE Dose RBE = D (X 200 kev) /D R = rapporto tra le dosi della radiazione standard e della radiazione R che producono lo stesso effetto nel materiale di riferimento. Unità di misura: SI à Sievert = RBE Gray pratico à rem = RBE rad 1 Sv = 100 rem 58

59 Dose equivalente Dose equivalente = RBE Dose Al posto della RBE si usa il fattore di qualità QF che tiene conto degli effetti globali di ionizzazione Dose equivalente = QF Dose Radiazione QF fotoni, elettroni 1 protoni 5 neutroni (varie energie) 5-20 particelle alfa, nuclei pesanti 20 es. 1 Gy (α) = 10 Sv 1 Gy (X 200 kev) = 1 Sv Dose equivalente tiene conto del tipo di radiazione! 59

60 Dose efficace Ulteriore problema: la stessa dose equivalente assorbita in organi o tessuti diversi produce effetti/danni diversi! Dose efficace = dose equivalente pesata a seconda del diverso impatto sugli organi: Deff = w Deq = w QF D 60

61 Fattore di peso w A ogni organo/tessuto si assegna un fattore di peso w. La somma dei fattori di peso di tutti gli organi è 1 (su tutto il corpo: dose efficace = dose equivalente) Organi w gonadi 0.20 midollo osseo 0.12 colon 0.12 polmone 0.12 Stomaco 0.12 vescica 0.05 mammella 0.05 fegato 0.05 esofago 0.05 tiroide 0.05 cute 0.01 superfici ossee 0.01 altri tessuti (tot.) 0.05 totale

62 Dall irraggiatore all irraggiato: sintesi Dall emissione... Sorgente radioattiva Attività à becquerel, curie Materiale irraggiato Esposizione à C/kg, röntgen Assorbimento Dose assorbita à gray, rad Danno biologico Dose equivalente/efficace à sievert, rem...all assorbimento 62

63 Gli effetti biologici dipendono da... 63

64 Dose da radiazioni naturali e artificiali Radiazioni naturali Dose media annuale Sorgenti esterne 1 msv raggi cosmici 0.5 msv radiazione ambientale 0.5 msv Sorgenti interne 0.25 msv 40 K, 226 Ra, 228 Ra, 210 Pb, 14 C, 222 Rn (nel sangue) totale 1.25 msv Dose media assorbita in una radiografia Addome 1 mgy Urografia endovenosa 30 mgy Colonna lombare 20 mgy Torace 7 mgy Radioscopia 100 mgy per min. 64

65 Tempo di esposizione E determinante la durata dell esposizione: una stessa dose, assorbita senza danno su tempi lunghi, può essere letale se assorbita in tempi brevi (irraggiamento acuto). L irradiazione dipende da: materiale interposto distanza tempo di esposizione inserire schermi allontanarsi abbreviare le procedure RADIOPROTEZIONE 65

66 Limiti di dose annua Dosi efficaci annue in msv Radiazioni Dose media popolazione Raggi cosmici 0.39 Radiazione terrestre 0.46 Radionuclidi naturali nel corpo 0.23 Radon e suoi discendenti 1.3 TOTALE rad.naturali 2.4 Dosi efficaci annue in msv Radiazioni Dose media lavoratori Attività ciclo nucleare 2.9 Attività altra industria 0.9 Attività diagnosi/terapia medica 0.5 MEDIA in attività con radiazioni 1.1 Rad.diagnostica medica 0.33 (paesi industrializzati 1.1 ) Limiti di dose annua per radiazioni artificiali: popolazione normale 1 msv/anno lavoratori esposti 50 msv/anno 66

67 67

68 Danno biologico per irraggiamento acuto In caso di dose assorbita su tutto il corpo in qualche ora: Dose (Sv): Effetto: < 0.25 nessuno lievi alterazioni sangue, raddoppio rischio leucemia e anomalie genetiche 1 2 notevoli alterazioni sangue, nausea, emorragie intestinali, forte rischio leucemia e anomalie genetiche 2 3 gravi emorragie, shock, stato di prostrazione 4 7 morte nel 30-60% dei casi > 8 morte nel 100% dei casi 160 volte la dose limite dei lavoratori professionalmente esposti! 68

69 Dosi annuali e dosi acute: sintesi 69

70 70

71 Dosimetria 71

72 La ionizzazione Specifica 72

73 Grandezze dosimetriche 73

74 Dose Biologica Equivalente 74

DOSIMETRIA e primi cenni di radioprotezione

DOSIMETRIA e primi cenni di radioprotezione DOSIMETRIA e primi cenni di radioprotezione Effetti biologici delle radiazioni Range, esposizione Dose assorbita, equivalente, efficace Danno biologico Dosi limite e radioprotezione pag.1 Le radiazioni

Dettagli

IL NUCLEO ATOMICO E L ENERGIA NUCLEARE

IL NUCLEO ATOMICO E L ENERGIA NUCLEARE IL NUCLEO ATOMICO E L ENERGIA NUCLEARE Il nucleo atomico Struttura atomica Elementi e isotopi Forze nucleari Decadimento radioattivo Fissione e fusione L energia nucleare Reattori nucleari Centrali nucleari

Dettagli

RADIAZIONI RADIAZIONI IONIZZANTI RADIAZIONI IONIZZANTI

RADIAZIONI RADIAZIONI IONIZZANTI RADIAZIONI IONIZZANTI RADIAZIONI Le radiazioni ionizzanti sono quelle onde elettromagnetiche in grado di produrre coppie di ioni al loro passaggio nella materia (raggi X, raggi gamma, raggi corpuscolari). Le radiazioni non

Dettagli

Capitolo 7 Le particelle dell atomo

Capitolo 7 Le particelle dell atomo Capitolo 7 Le particelle dell atomo 1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone 5. L esperimento

Dettagli

LE RADIAZIONI. E = h. in cui è la frequenza ed h una costante, detta costante di Plank.

LE RADIAZIONI. E = h. in cui è la frequenza ed h una costante, detta costante di Plank. LE RADIAZIONI Nel campo specifico di nostro interesse la radiazione è un flusso di energia elettromagnetica o di particelle, generato da processi fisici che si producono nell atomo o nel nucleo atomico.

Dettagli

April 11, 2011. Fisica Nucleare. Monica Sambo. Sommario. Introduzione. Radioattivitá. Fisica del nucleo. Bibliografia. Esempio. Raggi emessi Esempio

April 11, 2011. Fisica Nucleare. Monica Sambo. Sommario. Introduzione. Radioattivitá. Fisica del nucleo. Bibliografia. Esempio. Raggi emessi Esempio April 11, 2011 1 2 3 4 Indicando con Z il numero dei protoni (numero atomico dell atomo) e con N il numero dei neutroni si definisce A il numero di massa del : A = Z + N (1) Nei nuclei leggeri si ha la

Dettagli

ELEMENTI DI DI OTTICA E FISICA NUCLEARE INSEGNAMENTO COMPLEMENTARE (9 CFU) PER:

ELEMENTI DI DI OTTICA E FISICA NUCLEARE INSEGNAMENTO COMPLEMENTARE (9 CFU) PER: ELEMENTI DI DI OTTICA E FISICA NUCLEARE INSEGNAMENTO COMPLEMENTARE (9 CFU) PER: CORSO DI LAUREA TRIENNALE IN SCIENZE E TECNOLOGIE PER LO STUDIO E LA CONSERVAZIONE DEI BENI CULTURALI E DEI SUPPORTI DELLA

Dettagli

L ATOMO. Risponde (o almeno ci prova)

L ATOMO. Risponde (o almeno ci prova) L ATOMO Di cosa sono fatte le cose? Come si è arrivati a capire gli atomi? Com è fatto un atomo? Quanto è grande un atomo? Che atomi esistono in natura? Perché esistono gli atomi? Risponde (o almeno ci

Dettagli

L ATOMO. Struttura atomica Numero atomico Peso atomico Raggio atomico Energia di ionizzazione Elementi e isotopi Abbondanza isotopica.

L ATOMO. Struttura atomica Numero atomico Peso atomico Raggio atomico Energia di ionizzazione Elementi e isotopi Abbondanza isotopica. L ATOMO Cristallo Atomo 10 9 m 10 10 m Cellula 10 5 m Molecola Struttura atomica Numero atomico Peso atomico Raggio atomico Energia di ionizzazione Elementi e isotopi Abbondanza isotopica 10 14 m Nucleo

Dettagli

LA RADIOATTIVITA. Nel caso degli isotopi dell idrogeno: Nel caso degli isotopi del Carbonio:

LA RADIOATTIVITA. Nel caso degli isotopi dell idrogeno: Nel caso degli isotopi del Carbonio: LA RADIOATTIVITA Gli atomi di un elemento non sono in realtà tutti uguali, una piccola percentuale di essi ha un numero di neutroni differente, questi atomi si chiamano isotopi di quell elemento. Il 99,9%

Dettagli

La radioattività e la datazione al radio-carbonio

La radioattività e la datazione al radio-carbonio 1 Espansione 2.2 La radioattività e la datazione al radio-carbonio Henry Becquerel. I coniugi Pierre e Marie Curie. La radioattività La radioattività è un fenomeno naturale provocato dai nuclei atomici

Dettagli

Stabilita' dei nuclei

Stabilita' dei nuclei Il Nucleo Nucleo e' costituito da nucleoni (protoni e neutroni). Mentre i neutroni liberi sono abbastanza instabili tendono a decadere in un protone ed un elettrone (t1/2 circa 900 s), i protoni sono stabili.

Dettagli

DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA D =!E AREA CONTROLLATA. energia assorbita nell'unità di massa

DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA D =!E AREA CONTROLLATA. energia assorbita nell'unità di massa DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA AREA CONTROLLATA D =!E!m energia assorbita nell'unità di massa 2 UNITA' DI MISURA dose assorbita D =!E!m dimensioni [D] =

Dettagli

Il nucleo degli atomi

Il nucleo degli atomi Il nucleo atomico 1. Energia di legame nucleare 2. La radioattività naturale 3. Banda di stabilità degli isotopi degli elementi naturali 4. Decadimenti radioattivi 5. Reazioni nucleari Il nucleo degli

Dettagli

Sicurezza nel Laboratorio: Radiazioni ionizzanti

Sicurezza nel Laboratorio: Radiazioni ionizzanti Sicurezza nel Laboratorio: Radiazioni ionizzanti Per questo corso non si consiglia nessun libro di testo t pertanto t il file contiene sia pagine didattiche sia pagine di approfondimento messe a punto

Dettagli

LEZIONE 12 Esposizioni da Radioattività Naturale

LEZIONE 12 Esposizioni da Radioattività Naturale LEZIONE 12 Esposizioni da Radioattività Naturale Radioattività naturale Sorgenti esterne e sorgenti interne L uomo è sottoposto ad irradiazione naturale dovuta a sorgenti sia esterne che interne. L irradiazione

Dettagli

1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone

1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone Unità n 7 Le particelle dell atomo 1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone 5. L esperimento

Dettagli

INTERAZIONE RADIAZIONE-MATERIA e DOSIMETRIA

INTERAZIONE RADIAZIONE-MATERIA e DOSIMETRIA INTERAZIONE RADIAZIONE-MATERIA e DOSIMETRIA Le radiazioni nucleari Interazione tra radiazioni e materia Effetti biologici della radiazione ionizzante Dosimetria Radioattività naturale Radioprotezione Liceo

Dettagli

IL DECADIMENTO RADIOATTIVO

IL DECADIMENTO RADIOATTIVO IL DECADIMENTO RADIOATTIVO Principi di fisica sub-nucleare Le interazioni fondamentali Principi di fisica nucleare Stabilità dei nuclei Tipi di decadimento Bilancio energetico Attività Legge del decadimento

Dettagli

Radioattività e dosimetria

Radioattività e dosimetria Radioattività e dosimetria Un nucleo atomico è caratterizzato da: IL IL NUCLEO ATOMICO numero atomico (Z) che indica il numero di protoni numero di massa (A) che rappresenta il numero totale di nucleoni

Dettagli

Atomo: Particelle sub atomiche (appunti prof. Paolo Marchesi)

Atomo: Particelle sub atomiche (appunti prof. Paolo Marchesi) Atomo: Particelle sub atomiche (appunti prof. Paolo Marchesi) Il presente documento schematizza le principali particelle sub atomiche. Lo scopo di questa dispensa è fornire una schematizzazione sintetica

Dettagli

L energia nucleare La radioattività

L energia nucleare La radioattività L energia nucleare La radioattività La radioattività fu scoperta nel 1896 da Henri Bequerel, un fisico francese che per primo osservò l emissione spontanea di radiazioni da un pezzo di un minerale di uranio,

Dettagli

Fisica nucleare radioattività, fusione e fissione nucleare

Fisica nucleare radioattività, fusione e fissione nucleare Fisica nucleare radioattività, fusione e fissione nucleare Christian Ferrari Liceo di Locarno Il nucleo atomico: aspetti storici 1 L ipotesi del nucleo atomico risale al 1911 e fu formulata da Rutherford

Dettagli

Ritorno all'energia nucleare. Una scelta sbagliata per l'italia

Ritorno all'energia nucleare. Una scelta sbagliata per l'italia Ritorno all'energia nucleare Una scelta sbagliata per l'italia Il nuovo governo di centrodestra sta promuovendo un ritorno all'energia nucleare. Perché mai? Ridurre la dipendenza energetica dall'estero

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE Sono parte integrante dell ambiente in cui viviamo e lavoriamo Di origine artificiale (per esempio le onde radio, radar e nelle telecomunicazioni) Di origine

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

RIVELAZIONE DELLE RADIAZIONI IONIZZANTI. Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse:

RIVELAZIONE DELLE RADIAZIONI IONIZZANTI. Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse: RIVELAZIONE DELLE RADIAZIONI IONIZZANTI Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse: -Fluenza di particelle -Fluenza di energia -Informazioni

Dettagli

Parte 1 - La questione energetica. Parte 2 - L energia nucleare come fonte energetica: fissione e fusione

Parte 1 - La questione energetica. Parte 2 - L energia nucleare come fonte energetica: fissione e fusione Parte 1 - La questione energetica Parte 2 - L energia nucleare come fonte energetica: fissione e fusione Gilio Cambi INFN Bologna & Dipartimento di Fisica ed Astronomia Università di Bologna Pesaro, 22

Dettagli

Danni Biologici da radiazioni ionizzanti

Danni Biologici da radiazioni ionizzanti Università degli Studi di Cagliari Servizio di Fisica Sanitaria e Radioprotezione Danni Biologici da radiazioni ionizzanti Qualità delle radiazioni Dose Danno biologico Limiti di legge Confronto fra esposizioni

Dettagli

Paleontologia. Archeologia. Radioisotopi. Industria. Biologia. Medicina

Paleontologia. Archeologia. Radioisotopi. Industria. Biologia. Medicina Paleontologia Industria Radioisotopi Archeologia Medicina Biologia I radioisotopi I radioisotopi (o radionuclidi), sono dei nuclidi instabili che decadono emettendo energia sottoforma di radiazioni, da

Dettagli

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme Da Newton a Planck Meccanica classica (Newton): insieme La struttura dell atomo di leggi che spiegano il mondo fisico fino alla fine del XIX secolo Prof.ssa Silvia Recchia Quantomeccanica (Planck): insieme

Dettagli

IL FOTOVOLTAICO E L ARCHITETTURA

IL FOTOVOLTAICO E L ARCHITETTURA IL FOTOVOLTAICO E L ARCHITETTURA Prof. Paolo ZAZZINI Ing. Nicola SIMIONATO COME FUNZIONA UNA CELLA FOTOVOLTAICA EFFETTO FOTOVOLTAICO: Un flusso luminoso che incide su un materiale semiconduttore opportunamente

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

La nuova direttiva UE sulle sostanze radioattive nell acqua potabile

La nuova direttiva UE sulle sostanze radioattive nell acqua potabile Abteilung 29 Landesagentur für Umwelt Amt 29.8 Labor für physikalische Chemie Ripartizione 29 Agenzia provinciale per l ambiente Ufficio 29.8 Laboratorio di chimica fisica La nuova direttiva UE sulle sostanze

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Radon. un problema per la salute negli ambienti confinati. Centro Regionale per le Radiazioni Ionizzanti e non Ionizzanti

Radon. un problema per la salute negli ambienti confinati. Centro Regionale per le Radiazioni Ionizzanti e non Ionizzanti Radon un problema per la salute negli ambienti confinati Centro Regionale per le Radiazioni Ionizzanti e non Ionizzanti 1 ARPA PIEMONTE Agenzia Regionale per la Protezione Ambientale del Piemonte Realizzazione

Dettagli

Metodi di datazione di interesse archeologico

Metodi di datazione di interesse archeologico Metodi di datazione di interesse archeologico Radioattività La radioattività, o decadimento radioattivo, è un insieme di processi fisico-nucleari attraverso i quali alcuni nuclei atomici instabili o radioattivi

Dettagli

Determinazione della composizione elementare dello ione molecolare. Metodo dell abbondanza isotopica. Misure di massa esatta

Determinazione della composizione elementare dello ione molecolare. Metodo dell abbondanza isotopica. Misure di massa esatta Determinazione della composizione elementare dello ione molecolare Metodo dell abbondanza isotopica Misure di massa esatta PREMESSA: ISOTOPI PICCHI ISOTOPICI Il picco dello ione molecolare è spesso accompagnato

Dettagli

Energia nucleare e nuove tecnologie: riflessioni su sicurezza e ambiente. Lezioni Lincee di Fisica Università di Milano Bicocca 20 maggio 2011

Energia nucleare e nuove tecnologie: riflessioni su sicurezza e ambiente. Lezioni Lincee di Fisica Università di Milano Bicocca 20 maggio 2011 Energia nucleare e nuove tecnologie: riflessioni su sicurezza e ambiente Lezioni Lincee di Fisica Università di Milano Bicocca 20 maggio 2011 RISCHI SANITARI DA FALL OUT RADIOATTIVO Giampiero Tosi Fall

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

LEZIONE 2 ( Interazione delle particelle con la materia)

LEZIONE 2 ( Interazione delle particelle con la materia) LEZIONE 2 ( Interazione delle particelle con la materia) INTERAZIONE DELLE RADIAZIONI FOTONICHE La materia viene ionizzata prevalentemente ad opera degli elettroni secondari prodotti a seguito di una interazione

Dettagli

XRF - Fluorescenza a raggi X

XRF - Fluorescenza a raggi X XRF - Fluorescenza a raggi X La Fluorescenza a raggi X (X-Ray-Fluorescence) è una metodologia che consente di determinare la composizione qualitativa e quantitativa di solidi, liquidi e polveri, usando

Dettagli

Classificazione dei Sensori. (raccolta di lucidi)

Classificazione dei Sensori. (raccolta di lucidi) Classificazione dei Sensori (raccolta di lucidi) 1 Le grandezze fisiche da rilevare nei processi industriali possono essere di varia natura; generalmente queste quantità sono difficili da trasmettere e

Dettagli

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti Energia nelle reazioni chimiche Lezioni d'autore di Giorgio Benedetti VIDEO Introduzione (I) L energia chimica è dovuta al particolare arrangiamento degli atomi nei composti chimici e le varie forme di

Dettagli

L energia nucleare. Tesina di SCIENZE. Studente: Filippo Turchi ESAME DI Classe 3ª Sez. E LICENZA MEDIA Anno scolastico 2008/2009

L energia nucleare. Tesina di SCIENZE. Studente: Filippo Turchi ESAME DI Classe 3ª Sez. E LICENZA MEDIA Anno scolastico 2008/2009 SCUOLA MEDIA STATALE BUSONI - VANGHETTI EMPOLI L energia nucleare Studente: Filippo Turchi ESAME DI Classe 3ª Sez. E LICENZA MEDIA Anno scolastico 2008/2009 Tesina di SCIENZE L ENERGIA NUCLEARE Massa ed

Dettagli

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari.

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari. Spettrofotometria. Con questo termine si intende l utilizzo della luce nella misura delle concentrazioni chimiche. Per affrontare questo argomento dovremo conoscere: Natura e proprietà della luce. Cosa

Dettagli

INCIDENTE DI CERNOBYL. 26 aprile 1986

INCIDENTE DI CERNOBYL. 26 aprile 1986 INCIDENTE DI CERNOBYL 26 aprile 1986 breve storia breve storia Il più grave incidente nella storia dell energia nucleare. Con l incidente avvenuto nel marzo 2011 alla centrale di Fukushima Dai-ichi è un

Dettagli

Nascita e morte delle stelle

Nascita e morte delle stelle Nascita e morte delle stelle Se la materia che componeva l universo primordiale fosse stata tutta perfettamente omogenea e diffusa in modo uguale, non esisterebbero né stelle né pianeti. C erano invece

Dettagli

Elettrostatica dei mezzi materiali

Elettrostatica dei mezzi materiali Elettrostatica dei mezzi materiali Nel caso dei conduttori si è visto che: Il campo elettrico farà muovere le cariche all interno del conduttore in modo tale che: Tutte le cariche sono sulla superficie

Dettagli

P.Volpe. Dip. Chim. Generale e Organica Applicata. Università di Torino

P.Volpe. Dip. Chim. Generale e Organica Applicata. Università di Torino P.Volpe. Dip. Chim. Generale e Organica Applicata. Università di Torino Dalla tabella si può vedere come la catena dell uranio è divisa in due dal Rn-222 e come nella parte che lo precede la radioattività

Dettagli

LE RADIAZIONI ELETTROMAGNETICHE IN MEDICINA

LE RADIAZIONI ELETTROMAGNETICHE IN MEDICINA LE RADIAZIONI ELETTROMAGNETICHE IN MEDICINA Spettro elettromagnetico Radiazioni termiche: microonde infrarossi Radiazioni ionizzanti: ultravioletti raggi X raggi gamma pag.1 Spettro elettromagnetico (fermi)

Dettagli

IL SOLE. Il Sole è una stella cioè un corpo che emette luce ed energia ed è formato da gas, principalmente idrogeno (74%) ed elio (24%)

IL SOLE. Il Sole è una stella cioè un corpo che emette luce ed energia ed è formato da gas, principalmente idrogeno (74%) ed elio (24%) IL SOLE Il Sole è una stella cioè un corpo che emette luce ed energia ed è formato da gas, principalmente idrogeno (74%) ed elio (24%) Struttura del Sole 0 - nel NUCLEO viene prodotta l energia emessa

Dettagli

RADIAZIONI IONIZZANTI: origine, prevenzione dai rischi e impieghi. RADIAZIONI IONIZZANTI Origine, prevenzione dai rischi e impieghi

RADIAZIONI IONIZZANTI: origine, prevenzione dai rischi e impieghi. RADIAZIONI IONIZZANTI Origine, prevenzione dai rischi e impieghi RADIAZIONI IONIZZANTI Origine, prevenzione dai rischi e impieghi RADIAZIONI IONIZZANTI e rischi connessi 2 La struttura dell atomo nucleo elettrone protone neutrone 3 Numero di protoni (e di elettroni)

Dettagli

ENERGIA SOLARE: Centrali fotovoltaiche e termosolari. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 -

ENERGIA SOLARE: Centrali fotovoltaiche e termosolari. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 - ENERGIA SOLARE: Centrali fotovoltaiche e termosolari L A V E R A N A T U R A D E L L A L U C E La luce, sia naturale sia artificiale, è una forma di energia fondamentale per la nostra esistenza e per quella

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

LE FONTI ENERGETICHE

LE FONTI ENERGETICHE LE FONTI ENERGETICHE Le fonti energetiche Nella vita di tutti i giorni utilizziamo, per gli scopi più diversi, energia; essa è immagazzinata in svariati corpi e materiali disponibili in natura. Quasi tutta

Dettagli

Cos è una. pompa di calore?

Cos è una. pompa di calore? Cos è una pompa di calore? !? La pompa di calore aria/acqua La pompa di calore (PDC) aria-acqua è una macchina in grado di trasferire energia termica (calore) dall aria esterna all acqua dell impianto

Dettagli

Il sistema monetario

Il sistema monetario Il sistema monetario Premessa: in un sistema economico senza moneta il commercio richiede la doppia coincidenza dei desideri. L esistenza del denaro rende più facili gli scambi. Moneta: insieme di tutti

Dettagli

Le proprietà periodiche degli elementi LA LEZIONE

Le proprietà periodiche degli elementi LA LEZIONE Le proprietà periodiche degli elementi LA LEZIONE Le proprietà degli elementi mostrano delle tendenze che possono essere predette usando il sistema periodico ed essere spiegate e comprese analizzando la

Dettagli

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA Poiché la luce è energia trasportata da oscillazioni del campo elettrico (fotoni) e la materia è fatta di particelle elettricamente cariche (atomi

Dettagli

Domande alla scienza: Come funzionano le centrali nucleari e cosa è successo a Fukushima?

Domande alla scienza: Come funzionano le centrali nucleari e cosa è successo a Fukushima? Domande alla scienza: Come funzionano le centrali nucleari e cosa è successo a Fukushima? Stefano Covino INAF / Osservatorio Astronomico di Brera Vimercate UTL 2011 Quanto è importante il nucleare? Il

Dettagli

Manuale sensore di radioattività

Manuale sensore di radioattività Manuale sensore di radioattività Introduzione allo strumento Questo strumento ha la funzione di monitorare la radioattività ambientale in particolare di registrare eventuali anomalie dovute a fallout di

Dettagli

TEST DI AUTOVALUTAZIONE PER STUDENTI CHE INTENDONO ISCRIVERSI ALLA LAUREA TRIENNALE IN ASTRONOMIA

TEST DI AUTOVALUTAZIONE PER STUDENTI CHE INTENDONO ISCRIVERSI ALLA LAUREA TRIENNALE IN ASTRONOMIA I TEST DI AUTOVALUTAZIONE PER STUDENTI CHE INTENDONO ISCRIVERSI ALLA LAUREA TRIENNALE IN ASTRONOMIA 1. Date le due frazioni 3/7 e 4/7, trovare una frazione compresa fra esse 2. Risolvere l equazione: (x

Dettagli

COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA

COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA Il principio di funzionamento: la cella fotovoltaica Le celle fotovoltaiche consentono di trasformare direttamente la radiazione solare in energia elettrica,

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Generatore radiologico

Generatore radiologico Generatore radiologico Radiazioni artificiali alimentazione: corrente elettrica www.med.unipg.it/ac/rad/ www.etsrm.it oscar fiorucci. laurea.tecn.radiol@ospedale.perugia.it Impianto radiologico trasformatore

Dettagli

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA Poiché è impossibile contare o pesare gli atomi o le molecole che formano una qualsiasi sostanza chimica, si ricorre alla grandezza detta quantità

Dettagli

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica Simulazione test di ingresso Ingegneria Industriale Viterbo Quesiti di Logica, Chimica e Fisica Logica L1 - Come continua questa serie di numeri? 1-4 - 10-22 - 46-94 -... A) 188 B) 190 C) 200 D) 47 L2

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

Progetto grafico e ricerche di: Carmine Filippelli IV A/Geometri Supervisione del Prof./Ing. : Francesco Bernardini 1 L energia: L'energia è la capacità di un corpo di compiere un lavoro. L unità di misura

Dettagli

RADIAZIONI IONIZZANTI

RADIAZIONI IONIZZANTI PRINCIPALI RIF.TI LEGISLATIVI RADIAZIONI IONIZZANTI DPR 547/55 D.Lgs. 230/95 D.L.gs 241/00 e D.L.gs 257/01 Norme per la prevenzione degli infortuni sul lavoro Attuazione delle direttive 89/618/Euratom,

Dettagli

ASPETTI TERMODINAMICI DEI SISTEMI BIOLOGICI

ASPETTI TERMODINAMICI DEI SISTEMI BIOLOGICI ASPETTI TERMODINAMICI DEI SISTEMI BIOLOGICI Sistemi biologici: soggetti a complessi processi di trasformazione e scambio di energia; I sistemi biologici sono costituiti perlopiù da quattro elementi: H,

Dettagli

Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose.

Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose. Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose. 2.1 Spettro di emissione Lo spettro di emissione di

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Il magnetismo nella materia

Il magnetismo nella materia Le orbite degli elettroni in atomo di idrogeno Forma spaziale degli Orbitali elettronici di atomo di idrogeno Un solido Il magnetismo nella materia ferrimagnetismo Dr. Daniele Di Gioacchino Istituto Nazionale

Dettagli

La radioattività - Un introduzione

La radioattività - Un introduzione La radioattività - Un introduzione L ATOMO E IL NUCLEO Mediante celebri esperimenti condotti all inizio del secolo scorso sotto la guida di Ernest Rutherford è stato stabilito che l atomo è composto di

Dettagli

MISURE DI CONCENTRAZIONE DI GAS RADON IN AMBIENTI CONFINATI VALUTAZIONE DELLA CONCENTRAZIONE MEDIA ANNUALE

MISURE DI CONCENTRAZIONE DI GAS RADON IN AMBIENTI CONFINATI VALUTAZIONE DELLA CONCENTRAZIONE MEDIA ANNUALE MISURE DI CONCENTRAZIONE DI GAS RADON IN AMBIENTI CONFINATI VALUTAZIONE DELLA CONCENTRAZIONE MEDIA ANNUALE richiedente: COMUNE DI RODENGO SAIANO -- DICEMBRE 2014-- PREMESSA Il Radon 222 ( 222 Rn) è un

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro Cos è il calore? Per rispondere si osservino le seguenti immagini Temperatura e calore Il calore del termosifone fa girare una girandola Il calore del termosifone fa scoppiare un palloncino Il calore del

Dettagli

Con il termine elettrosmogsi designa il presunto inquinamento derivante dalla formazione di campi elettromagnetici (CEM) dovuti a radiazioni

Con il termine elettrosmogsi designa il presunto inquinamento derivante dalla formazione di campi elettromagnetici (CEM) dovuti a radiazioni ELETTROSMOG Con il termine elettrosmogsi designa il presunto inquinamento derivante dalla formazione di campi elettromagnetici (CEM) dovuti a radiazioni elettromagnetiche non ionizzanti, quali quelle prodotte

Dettagli

L elettromagnetismo nella ricerca per l energia da fusione nucleare di plasma d idrogeno. R Cesario

L elettromagnetismo nella ricerca per l energia da fusione nucleare di plasma d idrogeno. R Cesario L elettromagnetismo nella ricerca per l energia da fusione nucleare di plasma d idrogeno R Cesario R Cesario I primi tesisti di Roma Tre a Frascati (2005-2006) Sommario del corso integrativo di Progetto

Dettagli

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine Il fotone Emanuele Pugliese, Lorenzo Santi URDF Udine Interpretazione di Einstein dell effetto fotoelettrico Esistono «particelle»* di luce: i fotoni! La luce è composta da quantità indivisibili di energia

Dettagli

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione REAZIONI ORGANICHE Variazioni di energia e velocità di reazione Abbiamo visto che i composti organici e le loro reazioni possono essere suddivisi in categorie omogenee. Per ottenere la massima razionalizzazione

Dettagli

Corso acceleratori per la produzione di radioisotopi: Progetto impianto produzione radioisotopi

Corso acceleratori per la produzione di radioisotopi: Progetto impianto produzione radioisotopi Corso acceleratori per la produzione di radioisotopi: Progetto impianto produzione radioisotopi Gabriele Chiodini Istituto Nazionale di Fisica Nucleare di Lecce! Progetto di ricerca e formazione Rif. PON01_03054

Dettagli

352&(662',&20%867,21(

352&(662',&20%867,21( 352&(662',&20%867,21( Il calore utilizzato come fonte energetica convertibile in lavoro nella maggior parte dei casi, è prodotto dalla combustione di sostanze (es. carbone, metano, gasolio) chiamate combustibili.

Dettagli

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE Nell ultima notte di osservazione abbiamo visto bellissime immagini della Galassia, delle sue stelle e delle nubi di gas che la compongono.

Dettagli

LA CHIMICA NUCLEARE. Figura 1 - La lastra fotografica trovata impressionata da Becquerel

LA CHIMICA NUCLEARE. Figura 1 - La lastra fotografica trovata impressionata da Becquerel LA CHIMICA NUCLEARE Lo studio delle trasformazione che avvengono nel nucleo atomico permette applicazioni che spaziano in numerosi campi della scienza, dallo studio della formazione degli elementi nell

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Piacenza Liceo Respighi 17 e 24 marzo 2015

Piacenza Liceo Respighi 17 e 24 marzo 2015 Piacenza Liceo Respighi 17 e 24 marzo 2015 Paolo Montagna, Paolo Vitulo Dipartimento di Fisica Università di Pavia INFN Sezione di Pavia paolo.montagna@unipv.it, it paolo.vitulo@unipv.it http://fisica.unipv.it/fisnucl/

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Tutti, ma proprio tutti, si fermano al passaggio a livello

Tutti, ma proprio tutti, si fermano al passaggio a livello Siamo arrivati così alla fine di questa piccola esplorazione nel mondo della sicurezza ferroviaria. La prossima volta che attraverserete la ferrovia, siamo sicuri che guarderete i binari con occhi diversi,

Dettagli

la PRODUZIONE di ENERGIA ELETTRICA nel MONDO

la PRODUZIONE di ENERGIA ELETTRICA nel MONDO la PRODUZIONE di ENERGIA ELETTRICA nel MONDO & CONSUMI procapite 17.800 miliardi di kwh RESTO del MONDO La produzione e quindi il consumo degli Stati Uniti rappresenta, da solo, ¼ di quello mondiale. Il

Dettagli

ISTITUTO PRIMO LEVI SEREGNO

ISTITUTO PRIMO LEVI SEREGNO ISTITUTO PRIMO LEVI SEREGNO According Dangerous Road è un accordo che regola il trasporto di merci pericolose in tutto il mondo ed è stipulato fra la maggior parte delle nazioni, che devono rispettarlo

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' i n e r z i a d e l l ' e n e r g i a L'inerzia dell'energia Questa è la denominazione più corretta, al posto della consueta equivalenza massa energia. Einstein

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Unità di misura e formule utili

Unità di misura e formule utili Unità di misura e formule utili Lezione 7 Unità di misura Il Sistema Internazionale di unità di misura (SI) nasce dall'esigenza di utilizzare comuni unità di misura per la quantificazione e la misura delle

Dettagli

IL RADON. Decadimento del Radon. protone Radon 222 neutrone. elettrone. radiazione alfa

IL RADON. Decadimento del Radon. protone Radon 222 neutrone. elettrone. radiazione alfa IL RADON Il Radon è un gas radioattivo presente nel suolo e nei materiali da costruzione. La presenza di Radon è legata all abbondanza di minerali radioattivi naturali nella crosta terrestre: le due forme

Dettagli

Genova 15 01 14 TIPOLOGIE DI LAMPADE

Genova 15 01 14 TIPOLOGIE DI LAMPADE Genova 15 01 14 TIPOLOGIE DI LAMPADE Le lampade a vapori di mercurio sono sicuramente le sorgenti di radiazione UV più utilizzate nella disinfezione delle acque destinate al consumo umano in quanto offrono

Dettagli