Corso di fisica generale con elementi di fisica tecnica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di fisica generale con elementi di fisica tecnica"

Transcript

1 Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo)

2 Lezione 4 Onde elettromagnetiche

3 Sommario L'esperimento di Hertz Onde elettromagnetiche L'energia trasportata da un'onda e.m. Lo spettro elettromagnetico

4 Onde elettromagnetiche L'esperimento di Hertz

5 Campi elettrici e magnetici variabili + Nelle precedenti lezioni abbiamo visto una carica in quiete genera un campo elettrico statico, un magnete permanente genera un campo magnetico statico N S

6 Campi elettrici e magnetici variabili Nelle precedenti lezioni abbiamo visto una carica in quiete genera un campo elettrico statico, un magnete permanente genera un campo magnetico statico Abbiamo anche visto che una corrente elettrica (una carica in movimento) genera un campo magnetico, mentre una variazione di campo magnetico in presenza di una spira genera un corrente elettrica In presenza di una variazione nel tempo della carica o del campo magnetico i campi non possono esistere isolatamente

7 Maxwell e le sue equazioni Nel 1865 James Maxwell pubblica un lavoro teorico in cui sostiene che i campi elettrici e magnetici si possono propagare nel vuoto con un comportamento oscillatorio con le stesse caratteristiche della luce La propagazione dei campi elettrici e magnetici è descritta da quattro equazioni differenziali Nel 1887 Heinrich Hertz esegue un esperimento in cui prova l'esistenza delle onde elettromagnetiche Intervistato circa le possibili applicazioni pratiche della sua scoperta rispose: It's of no use whatsoever

8 L'esperimento di Hertz Generatore di tensione L'esperimento consisteva in un generatore ad alta tensione (a induzione) collegato a due sfere metalliche separate da uno spazio vuoto. +

9 L'esperimento di Hertz L'esperimento consisteva in un generatore ad alta tensione (a induzione) collegato a due sfere metalliche separate da uno spazio vuoto. Controllando la tensione e l'induttanza del generatore si generavano fra le sfere scariche elettriche di intensità variabile ad una certa frequenza (circa 100 MHz) + Una spira metallica collegata ad altre due sfere faceva da ricevitore

10 L'esperimento di Hertz L'esperimento consisteva in un generatore ad alta tensione (a induzione) collegato a due sfere metalliche separate da uno spazio vuoto. Controllando la tensione e l'induttanza del generatore si generavano fra le sfere scariche elettriche di intensità variabile ad una certa frequenza (circa 100 MHz) Una spira metallica collegata ad altre due sfere faceva da ricevitore Hertz osservò che fra le sfere del ricevitore si instauravano delle scariche elettriche alla stessa frequenza. Fu la dimostrazione che gli elettroni in movimento nel trasmettitore generavano un'onda di campo elettrico e magnetico che si propagava

11 L'esperimento di Hertz Hertz misurò anche la velocità di propagazione delle onde ponendo una lastra di rame a una certa distanza dal generatore in modo che le onde si riflettessero e generassero onde stazionarie Spostando il ricevitore in diverse posizioni fra il generatore e la lastra poté misurare la lunghezza d'onda, λ Dalla relazione v = λ poté calcolare v = ~ 3x10 8 m/s, che corrisponde alla velocità della luce

12 Onde elettromagnetiche Onde elettromagnetiche

13 Le equazioni di Maxwell La teoria di Maxwell delle onde elettromagnetiche mostra che se il campo elettrico e magnetico variano nel tempo allora si propagano con un moto oscillatorio Nella forma più semplice, di un'onda che si propaga in una sola direzione, le equazioni si scrivono come: dove c è la velocità della luce che dipende dalla costante dielettrica, ε 0, e dalla permeabilità magnetica, μ 0, del vuoto

14 Come si propagano i campi E e B La propagazione dell'onda è determinata dall'induzione reciproca dei campi elettrico e magnetico. Infatti un campo elettrico variabile induce un campo magnetico, il quale a sua volta induce una variazione nel campo elettrico. Questo genera un moto oscillatorio dei campi che si propaga come un'onda su una corda oscillante Secondo la teoria di Maxwell i vettori dei campi E e B sono sempre perpendicolari fra loro e il verso di propagazione è nella direzione del vettore direzione di propagazione

15 Come si propagano i campi E e B Risolvendo le equazioni di Maxwell (noi non lo faremo) si può dimostrare che i campi E e B si propagano oscillando come degli oscillatori armonici (lo stesso moto di oscillazione di una molla) k è detto numero d'onda e corrisponde a 2 π / λ, mentre ω è la frequenza angolare e corrisponde a 2 π, dove è la frequenza dell'onda. Il rapporto ω / k = λ corrisponde alla velocità di propagazione c = x 10 8 m/s.

16 Perché λ corrisponde alla velocità dell'onda? La lunghezza d'onda, λ, è la distanza fra due punti con la stessa fase (ad esempio due massimi, due minimi, due punti qualunque alla stessa altezza)

17 Perché λ corrisponde alla velocità dell'onda? Il periodo, T, è il tempo che impiega l'onda a percorrere una distanza pari alla lunghezza d'onda. La frequenza è l'inverso del periodo Il prodotto λ corrisponde, per definizione, a λ / T, che è lo spazio percorso dall'onda e nel periodo T e il tempo impiegato a percorrerlo. Per definizione questo rapporto corrisponde alla velocità dell'onda

18 Che rapporto c'è fra le ampiezze di E e B? Usando la terza delle equazioni di Maxwell mostrate prima possiamo trovare che relazione esiste fra le ampiezze dei campi elettrico e magnetico in un'onda elettromagnetica. L'equazione è: Applichiamo ora la derivata ai campi E e B come definiti nelle slide precedenti

19 Che rapporto c'è fra le ampiezze di E e B? Poiché Si ha Da cui deriva che Poiché questa equazione vale per ogni tempo t e per ogni punto dello spazio, x, possiamo scrivere che il rapporto fra il campo elettrico e il campo magnetico vale c per ogni x e per ogni t.

20 Onde elettromagnetiche L'energia trasportata da un'onda elettromagnetica

21 Il vettore di Poynting Il flusso di potenza (cioè l'energia per unità di tempo e di superficie) è descritto dal cosiddetto vettore di Poynting, definito da: Come si vede, S è diretto perpendicolarmente a E e B, cioè nella stessa direzione della propagazione dell'onda. Poiché i campi elettrico e magnetico sono perpendicolari fra loro, il modulo di S è dato da (le unità di misura sono W/m 2 ) (ricordiamo che E = c B)

22 L'intensità del campo elettromagnetico Il vettore di Poynting esprime il flusso di potenza istantaneo in ogni punto dello spazio. In genere noi siamo interessati alla potenza media di un segnale elettromagnetico. Calcoliamo, quindi, il valore medio di S in un periodo dell'onda. Scriviamo, quindi, B = B max cos(k x ω t); il flusso di potenza sarà S = c B 2 max cos2 (k x ω t) / μ 0 Qual è il valor medio di una funzione di tipo cos 2 (x)?

23 L'intensità del campo elettromagnetico y valor medio = 1/2 x

24 L'intensità del campo elettromagnetico L'intensità (cioè la potenza media per unità di superficie) dell'onda è, quindi:

25 20 cm Esercizio Consideriamo un forno a microonde da 1 kw. Supponiamo che la sorgente di microonde sia puntiforme e che una pietanza sia posta alla distanza di 20 cm dalla sorgente. Calcolare l'ampiezza dei campi elettrico e magnetico che incidono sulla pietanza. 1 kw

26 Esercizio Consideriamo la sorgente puntiforme. La potenza verrà irradiata in modo uniforme così che, alla distanza di 20 cm, la potenza per unità di area (cioè l'intensità) sarà data da: r = 20 cm Poiché si ha che

27 Esercizio Il flusso di energia ricevuto sulla Terra dal sole è di circa 1 kw / m 2. Calcolare la potenza totale che incide su un tetto di dimensioni 8.00 m x m 1 kw / m x m

28 Onde elettromagnetiche Lo spettro elettromagnetico

29 Lo spettro della radiazione elettromagnetica Le onde elettromagnetiche sono prodotte da cariche in accelerazione. Si propagano nello spazio vuoto a velocità c in un ampio range di lunghezze d'onda Frequenza e lunghezza d'onda sono legate dalla relazione = c / λ Diamo ora una descrizione sintetica dello spettro della radiazione elettromagnetica nei vari intervalli

30 Onde radio Le onde radio sono caratterizzate da lunghezze d'onda da qualche metro a vari chilometri Sono generate, ad esempio, da cariche in oscillazione nei fili conduttori delle antenne radio e in molti fenomeni astrofisici Onde con lunghezze d'onda > 10 km vengono riflesse dall'atmosfera e consentono la propagazione di onde radio a grandi distanze superando i limiti imposti dalla curvatura terrestre

31 Microonde Le microonde sono onde radio ad alta frequenza (lunghezze d'onda minori di 1 m fino a 1 mm) Hanno numerose applicazioni pratiche, dai sistemi radar, alla telefonia cellulare, alla visualizzazione in condizioni di scarsa visibilità, nella cottura dei cibi ecc. Sono utilizzate in astrofisica per lo studio dell'universo primordiale

32 Infrarosso Le onde infrarosse hanno lunghezza d'onda dal millimetro al micron Sono generate da qualunque oggetto a temperatura ambiente e utilizzate in molti campi tecnologici (fotografia e visione notturna, telecomandi a infrarosso) In astrofisica la radiazione infrarossa è molto studiata perché è legata a processi fisici presenti nelle stellar nurseries, le zone ricche di polvere nella nostra galassia dove nascono le stelle

33 Luce visibile La luce visibile corrisponde a quella parte dello spettro che i nostri occhi possono rilevare L'intervallo di lunghezze d'onda (che noi chiamiamo colori) va da circa 0.6 micron (rosso) a circa 0.4 micron (violetto) È generata da oggetti molto caldi (come il filamento di una lampadina). Radiazione rossa viene generata a oggetti alla temperatura di circa 3000 gradi, radiazione blu da oggetti alla temperatura di circa gradi. Domanda: perché un paio di pantaloni, ad esempio, può avere colore blu senza avere la temperatura di gradi?

34 L'ultravioletto L'ultravioletto si manifesta a lunghezze d'onda fra 0.4 micron a 0.6 nanometri (0.6x10-9 m) Il sole è una sorgente importante di luce ultravioletta, che è la causa della reazione della pelle che genera abbronzature e scottature Gli occhiali fotocromatici reagiscono scurendosi solo in presenza di luce ultravioletta (ad esempio in auto non funzionano perché il vetro del parabrezza filtra gli ultravioletti) Le stelle giovani emettono grandi quantità di radiazione ultravioletta

35 I raggi X I raggi X hanno lunghezze d'onda comprese fra qualche nanometro (nm) fino a circa 10-4 nm Sono onde molto energetiche, prodotte, ad esempio, dall'accelerazione di elettroni energetici che bombardano una lastra di metallo. Gli usi medicali (diagnostici e terapeutici) e i rischi legati all'esposizione ai raggi X sono abbastanza noti a tutti Meno note sono le emissioni di origine astrofisica, ad esempio generate da buchi neri e stelle di neutroni in rapida rotazione

36 I raggi gamma I raggi gamma sono le onde più energetiche dello spettro elettromagnetico. Hanno lunghezze d'onda minori di un picometro (pm) ovvero < m Sono prodotte da reazioni nucleari come, ad esempio, quelle che avvengono nei reattori termonucleari e all'interno del sole. L'esposizione a raggi gamma è molto pericolosa, data l'elevata energia penetrante. Nell'universo sono note molte sorgenti di raggi gamma, (i cosiddetti GRB - Gamma Ray Bursts), molto brillanti e distanti, dall'origine ancora ignota Domanda: se nell'universo esistono (e sono state osservate) molte sorgenti di raggi X e gamma, che sono pericolose per l'uomo, perché non siamo tutti morti?

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 4 Onde elettromagnetiche Sommario

Dettagli

Elettromagnetismo (6/6) Onde elettromagnetiche Lezione 24, 8/1/2019, JW , 29.5

Elettromagnetismo (6/6) Onde elettromagnetiche Lezione 24, 8/1/2019, JW , 29.5 Elettromagnetismo (6/6) Onde elettromagnetiche Lezione 24, 8/1/2019, JW 29.1-29.3, 29.5 1 1. Le onde elettromagnetiche Le equazioni di Maxwell, elaborate nel 1864, prevedono l esistenza nello spazio vuoto

Dettagli

Le onde elettromagnetiche

Le onde elettromagnetiche Campi elettrici variabili... Proprietà delle onde elettromagnetiche L intuizione di Maxwell (1831-1879) Faraday ed Henry misero in evidenza che un campo magnetico variabile genera un campo elettrico indotto.

Dettagli

Fisica II - CdL Chimica

Fisica II - CdL Chimica x z y Corrente di spostamento Applichiamo il teorema di Ampere nel caso di un condensatore, considerando le sup. S 1 ed S 2 : L integrale di linea è esteso a qualsiasi percorso chiuso concatenato con la

Dettagli

Prerequisiti Lezione 1. Ripasso

Prerequisiti Lezione 1. Ripasso Prerequisiti Lezione 1 Ripasso Misura di angoli Nel sistema sessagesimale l'angolo completo o angolo giro è suddiviso in 360 spicchi, equivalenti all'unità di misura convenzionale denominata grado sessagesimale,

Dettagli

Sovrapposizione di onde sinusoidali

Sovrapposizione di onde sinusoidali Sovrapposizione di onde sinusoidali Consideriamo due onde sinusoidali che si propagano verso destra con stessa f, λ e ampiezza ma con differenza di fase φ: y1 = Asen(kx ωt) y 2 = Asen(kx ωt + φ ) La funzione

Dettagli

prof.ssa Caterina Vespia LE ONDE ELETTROMAGNETICHE

prof.ssa Caterina Vespia LE ONDE ELETTROMAGNETICHE prof.ssa Caterina Vespia LE ONDE ELETTROMAGNETICHE Il campo elettromagnetico Maxwell sistemò in una teoria unitaria tutte le leggi dei fenomeni elettrici e magnetici. In questa teoria i due tipi di campi

Dettagli

Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides)

Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides) Lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche (sintesi slides) Questa sintesi fa riferimento alla lezione 10 Equazioni del campo elettromagnetico e onde elettromagnetiche del

Dettagli

LE EQUAZIONI DI MAXWELL

LE EQUAZIONI DI MAXWELL LE EQUAZIONI DI MAXWELL Le Equazioni di Maxwell son un insieme di quattro equazioni abbastanza complicate che descrivono in modo completo la Teoria dell Elettromagnetismo, ovvero ci dicono come il campo

Dettagli

Lezione 21 - Onde elettromagnetiche

Lezione 21 - Onde elettromagnetiche Lezione 21 - Onde elettromagnetiche Nella prima metà dell 800 Maxwell dimostrò definitivamente che un raggio di luce non è altro che una configurazione di campi elettrici e magnetici in moto Si deve quindi

Dettagli

Onde e oscillazioni. Fabio Peron. Onde e oscillazioni. Le grandezze che caratterizzano le onde

Onde e oscillazioni. Fabio Peron. Onde e oscillazioni. Le grandezze che caratterizzano le onde Onde e oscillazioni Lezioni di illuminotecnica. Luce e Onde elettromagnetiche Fabio Peron Università IUAV - Venezia Si parla di onde tutte le volte che una grandezza fisica varia la sua entità nel tempo

Dettagli

Onde e oscillazioni. Fabio Peron. Onde e oscillazioni. Le grandezze che caratterizzano le onde

Onde e oscillazioni. Fabio Peron. Onde e oscillazioni. Le grandezze che caratterizzano le onde Onde e oscillazioni Lezioni di illuminotecnica. Luce e Onde elettromagnetiche Fabio Peron Università IUAV - Venezia Si parla di onde tutte le volte che una grandezza fisica varia la sua entità nel tempo

Dettagli

G. Bracco -Appunti di Fisica Generale

G. Bracco -Appunti di Fisica Generale Equazioni di Maxwell ε 0 E= ρ B= 0 E= - B / t B = μ 0 J+ ε 0 μ 0 E / t= μ 0 (J+ ε 0 E / t) il termine ε 0 E / t è la corrente di spostamento e fu introdotto da Maxwell per rendere consistenti le 4 equazioni

Dettagli

Fisica Tecnica Ambientale TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

Fisica Tecnica Ambientale TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO PUNTO ENERGIA Fisica Tecnica Ambientale TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO Con il patrocinio del: Davide Astiaso Garcia Sapienza Università di Roma Come si caratterizza un'onda Lunghezza d onda

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche Alla metà del XIX secolo Maxwell prevede teoricamente le onde e.m. Sono scoperte sperimentalmente da Hertz Danno la possibilità di comunicare a distanza (radio, televisione, telecomandi

Dettagli

Modulo 8 Elettromagnetismo

Modulo 8 Elettromagnetismo Elettromagnetismo 1 Modulo 8 Elettromagnetismo 8.1. Elettrostatica: carica, forza e campo. 8.2. Tensione e corrente elettica 8.3. Conduttori e isolanti 8.4. Circuiti elettrici 8.5. Magnetismo 8.6. Onde

Dettagli

LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A PRIMA PARTE: Elettrostatica LISTA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il principio di

Dettagli

"Principi fisici alla base della formazione delle immagini radiologiche"

Principi fisici alla base della formazione delle immagini radiologiche Master in Verifiche di qualità in radiodiagnostica, medicina nucleare e radioterapia "Principi fisici alla base della Michele Guida Dipartimento di Fisica E. R. Caianiello e Facoltà di Ingegneria Università

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Spettroscopia. Spettroscopia

Spettroscopia. Spettroscopia Spettroscopia Spettroscopia IR Spettroscopia NMR Spettrometria di massa 1 Spettroscopia E un insieme di tecniche che permettono di ottenere informazioni sulla struttura di una molecola attraverso l interazione

Dettagli

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Programma svolto Lezione 1 Carica elettrica, legge di Coulomb, campo elettrico, potenziale elettrico Breve storia dell elettricità

Dettagli

q t i = C s CORRENTE ELETTRICA CORRENTE ELETTRICA LEGGI DI OHM

q t i = C s CORRENTE ELETTRICA CORRENTE ELETTRICA LEGGI DI OHM CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle cariche positive (opposto a quello delle cariche

Dettagli

Lezione 44: le onde elettromagnetiche

Lezione 44: le onde elettromagnetiche Lezione 44 - pag.1 Lezione 44: le onde elettromagnetiche 44.1. Oscillazioni che si propagano Le equazioni di Maxwell prevedono l'esistenza di campi elettrici e magnetici le cui oscillazioni si propagano

Dettagli

Fondamenti di fisica

Fondamenti di fisica Fondamenti di fisica Elettromagnetismo: 6-7 Circuiti in corrente alternata Tensioni e correnti alternate Vettori di fase, valori quadratici medi Potenza media Sicurezza nei circuiti domestici Circuiti

Dettagli

Che cosa è la luce? 1

Che cosa è la luce? 1 Che cosa è la luce? 1 CAMPO ELETTROMAGNETICO 2 Onde Che cosa è un onda? Un onda è una perturbazione di un mezzo, dove il mezzo può essere un campo (es: il campo gravitazionale) o di una sostanza materiale

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la 1 E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la lunghezza d onda ( ), definita come la distanza fra due

Dettagli

Meccanica quantistica Mathesis 2016 Prof. S. Savarino

Meccanica quantistica Mathesis 2016 Prof. S. Savarino Meccanica quantistica Mathesis 2016 Prof. S. Savarino Quanti Corpo nero: è un oggetto che assorbe tutta la radiazione senza rifletterla. Come una corda legata agli estremi può produrre onde stazionarie

Dettagli

Approfondimenti sull elettromagnetismo

Approfondimenti sull elettromagnetismo Approfondimenti sull elettromagnetismo I campi elettromagnetici Ogni onda elettromagnetica è definita dalla sua frequenza. Questa rappresenta il numero delle oscillazioni compiute in un secondo dall'onda

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Prima parte: introduzione e concetti di base Parte 1 Lezione 3 Caratteristiche principali delle linee di trasmissione Linee

Dettagli

Le onde. Enrico Degiuli Classe Terza

Le onde. Enrico Degiuli Classe Terza Le onde Enrico Degiuli Classe Terza Cos è un onda? Un onda è una perturbazione che si propaga nello spazio. La perturbazione può essere di diverso tipo (onde del mare, onde sonore, onde elettromagnetiche).

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche SQ Campo determinato da cariche in moto Campo elettrico E dato da una carica puntiforme collocata in E {x 0, y 0, z 0 } E(x, y, z) = q r 4πɛ 0 r 2 con r = {x x 0, y y 0, z z 0 }

Dettagli

SPETTRO ELETTROMAGNETICO. Lunghezza d onda (m)

SPETTRO ELETTROMAGNETICO. Lunghezza d onda (m) SPETTRO ELETTROMAGNETICO Lunghezza d onda (m) ONDE RADIO λ 1 m f 3 10 8 Hz DOVE LE OSSERVIAMO? Radio, televisione, SCOPERTA Hertz (1888) Marconi: comunicazioni radiofoniche SORGENTE Circuiti oscillanti

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 PRIMA PARTE: Elettrostatica A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 36 22.05.2018 Propagazione nella materia Riflessione e rifrazione. Incidenza obliqua Potenziali elettrodinamici. Trasformazioni

Dettagli

Le equazioni di Maxwell

Le equazioni di Maxwell Le equazioni di Maxwell B E S E s B da da 0 q int Teorema di Gauss (flusso elettrico totale attraverso superficie chiusa = carica netta) Flusso magnetico netto attraverso una superficie chiusa è nullo

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 38 5.06.2018 Potenziali per una carica puntiforme Quantità di moto elettromagnetica Radiazione. Dipolo oscillante Anno

Dettagli

Onde(1/2) Onde e suono Lezione 15, 26/11/2018, JW

Onde(1/2) Onde e suono Lezione 15, 26/11/2018, JW Onde(1/2) Onde e suono Lezione 15, 26/11/2018, JW 18.1-18.5 1 1. Onde trasversale Un onda è una perturbazione che si propaga da un posto a un altro. L onda più semplice da visualizzare è un onda trasversale,

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 1.06.2016 Riflessione e rifrazione Incidenza obliqua Potenziali elettrodinamici Anno Accademico 2016/2017 Quantità

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 2/207 Generalità Indicando con Ω un arbitraria superficie chiusa e con S una qualunque superficie avente come contorno

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

Dalla Gazzetta Ufficiale del /2

Dalla Gazzetta Ufficiale del /2 Gabriele Ferrari 1 Dalla Gazzetta Ufficiale del 12-12-2017 2/2 2 3 4 5 6 7 N.B. Kg PESO e non Kg MASSA Composizione di vettori Regola del «parallelogramma» 10 11 12 13 14 15 16 17 18 La pressione è la

Dettagli

LE EQUAZIONI DI MAXWELL E LE ONDE ELETTROMAGNETICHE. Problemi di Fisica. Elettromagnetismo. Le Equazioni di Maxwell e le Onde Elettromagnetiche

LE EQUAZIONI DI MAXWELL E LE ONDE ELETTROMAGNETICHE. Problemi di Fisica. Elettromagnetismo. Le Equazioni di Maxwell e le Onde Elettromagnetiche Problemi di Fisica Elettromagnetismo Le Euazioni di Maxwell e le Onde Elettromagnetiche Calcolare la corrente di spostamento che attraversa un condensatore piano avente armature circolari di raggio 5,0

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

Le onde. Enrico Degiuli Classe Terza

Le onde. Enrico Degiuli Classe Terza Le onde Enrico Degiuli Classe Terza Cos è un onda? Un onda è una perturbazione che si propaga nello spazio. La perturbazione può essere di diverso tipo (onde del mare, onde sonore, onde elettromagnetiche).

Dettagli

LE ONDE. Le onde. pag.1

LE ONDE. Le onde. pag.1 LE ONDE Fenomeni ondulatori - Generalità Periodo e frequenza Lunghezza d onda e velocità Legge di propagazione Energia trasportata Onde meccaniche: il suono Onde elettromagnetiche Velocità della luce Spettro

Dettagli

L irraggiamento - Onde elettromagnetiche:

L irraggiamento - Onde elettromagnetiche: L irraggiamento - Onde elettromagnetiche: Le onde elettromagnetiche sono un fenomeno fisico attraverso il quale l energia elettromagnetica può trasferirsi da un luogo all altro per propagazione. Tale fenomeno

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro?

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro? QUESITI 1 FENOMENI ONDULATORI 1. (Da Medicina 2008) Perché un raggio di luce proveniente dal Sole e fatto passare attraverso un prisma ne emerge mostrando tutti i colori dell'arcobaleno? a) Perché riceve

Dettagli

Raccolta di esercizi di fisica moderna

Raccolta di esercizi di fisica moderna Raccolta di esercizi di fisica moderna M. Quaglia IIS Avogadro Torino M. Quaglia (IIS Avogadro Torino) Raccolta di esercizi di fisica moderna Torino, 20/11/2014 1 / 30 Prova AIF e Sillabo http://www.aif.it/archivioa/aif_seconda_prova_di_fisica.pdf

Dettagli

Lezione 4. Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna

Lezione 4. Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna Lezione 4 Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna Il fascio di antenna Un'antenna puntata in una certa direzione nel cielo riceve (o trasmette) radiazione anche

Dettagli

Corso di Campi Elettromagnetici

Corso di Campi Elettromagnetici UNIVERSITÀ DEGLI STUDI DI PARMA Dipartimento di Ingegneria dell Informazione Corso di Campi Elettromagnetici Corso di Laurea Tecniche della Prevenzione nell Ambiente e nei Luoghi di Lavoro Sommario Campo

Dettagli

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo; Prova scritta di Elettromagnetismo e Ottica (CCS Fisica), 21 gennaio 2013 Nel piano x = 0 giace una lastra conduttrice collegata a terra. Nei punti di coordinate (a, a, 0) e (a, a, 0) si trovano due cariche,

Dettagli

Spettro di corpo nero, temperatura di brillanza e temperatura di antenna

Spettro di corpo nero, temperatura di brillanza e temperatura di antenna Spettro di corpo nero, temperatura di brillanza e temperatura di antenna Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Lo spettro di corpo nero Perché il

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Le meravigliose equazioni di Maxwell

Le meravigliose equazioni di Maxwell Le meravigliose equazioni di Maxwell Φ S ( E)=Q int /ϵ 0 Φ S ( B)=0 E d s= d Φ( B) dt B d d Φ( E ) s=μ 0 (i+ϵ 0 ) dt Cominciamo con ordine. I La prima delle equazioni di Maxwell è il teorema di Gauss.

Dettagli

Induttanza. L induttore è un elemento circuitale che immagazzina energia nel campo magnetico generato dalle spire percorse da corrente.

Induttanza. L induttore è un elemento circuitale che immagazzina energia nel campo magnetico generato dalle spire percorse da corrente. Induttanza L induttore è un elemento circuitale che immagazzina energia nel campo magnetico generato dalle spire percorse da corrente. Un induttore è caratterizzato da una induttanza che dipende dalle

Dettagli

Dati Relativi all organizzazione didattica FISICA II PHYSICS II. Corso di studio: Corso di Laurea in Scienze Geologiche

Dati Relativi all organizzazione didattica FISICA II PHYSICS II. Corso di studio: Corso di Laurea in Scienze Geologiche Scheda dati relativa all insegnamento di: Dati Relativi all organizzazione didattica FISICA II Denominazione insegnamento in lingua inglese: PHYSICS II Corso di studio: Corso di Laurea in Scienze Geologiche

Dettagli

Astronomia Parte I Proprietà fondamentali delle stelle

Astronomia Parte I Proprietà fondamentali delle stelle Astronomia 016-17 Parte I Proprietà fondamentali delle stelle 1 PARTE I Proprietà fondamentali delle stelle Radiazione continua dalle stelle Brillanza. Spettro elettromagnetico. Legge di Planck. Indici

Dettagli

Il legame fra la velocità la lunghezza d'onda e la frequenza di un'onda è dato dall'equazione:

Il legame fra la velocità la lunghezza d'onda e la frequenza di un'onda è dato dall'equazione: Per frequenza di un'onda periodica si intende: a) la durata di un'onda completa. b) la velocità con cui il moto ondulatorio si ripete. c) il numero delle oscillazioni compiute in un secondo. d) l'intervallo

Dettagli

Fascio di antenna, spettro di corpo nero, temperatura di brillanza e temperatura di antenna

Fascio di antenna, spettro di corpo nero, temperatura di brillanza e temperatura di antenna Fascio di antenna, spettro di corpo nero, temperatura di brillanza e temperatura di antenna Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Fascio di antenna,

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

ONDA. Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico.

ONDA. Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico. ONDA Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico. Una qualsiasi perturbazione (originata da una sorgente), impulsiva o periodica, che

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche 24 ordini di grandezza in f (o λ) si propagano nel vuoto con velocita c = 299,792,458m/s in mezzi trasparenti, leggermente meno veloci 206 Origini delle onde elettromagnetiche Legge

Dettagli

Le onde elastiche e il suono. à 8

Le onde elastiche e il suono. à 8 Le onde elastiche e il suono à 8 1. Le onde Un'onda è una perturbazione che si propaga trasportando energia senza trasporto di materia. Ad esempio l'onda in una pozzanghera in cui cade una goccia d'acqua:

Dettagli

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1 Chimica Fisica Biotecnologie sanitarie Lezione n. 13 Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo di idrogeno Antonino Polimeno 1 Radiazione elettromagnetica (1) - Rappresentazione

Dettagli

LE ONDE nella Fisica classica

LE ONDE nella Fisica classica LE ONDE nella Fisica classica Le onde costituiscono un trasporto di energia da un punto a un altro, senza spostamento di materia. Caratteri principali: Lunghezza d onda: Distanza percorsa dall onda durante

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Faraday 2. Estensione della legge di Ampere 3. Equazioni di Maxwell 4. Onde elettromagnetiche VI - 0 Legge di Faraday Campo elettrico Campo di induzione

Dettagli

Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e

Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e costituiscono il modello matematico della teoria elettromagnetica.

Dettagli

1/9/2005 A.Di Bartolomeo Master in Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia.

1/9/2005 A.Di Bartolomeo Master in Verifiche di Qualità in Radiodiagnostica, Medicina Nucleare e Radioterapia. Raggi X Introduzione ai raggi X Atomi (cenni) Radiazione elettromagnetica Generazione e spettri di raggi X Circuiti per la produzione di raggi X Tubi radiogeni Interazione di raggi X con la materia Controllo

Dettagli

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da:

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da: SIMULAZIONE II PROVA DI FISICA ESAME DI STATO LICEI SCIENTIFICI. SOLUZIONI QUESITI Soluzione quesito Detta la potenza media assorbita, la potenza elettrica media emessa sarà:,,,, L intensità è uguale alla

Dettagli

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale Serie 36: Soluzioni FAM C Ferrari Esercizio Un identità utile Abbiamo F G = e quindi, applicando la regola di Leibnitz, F y G z F z G y F z G x F x G z F x G y F y G x F G = ( x F y )G z +F y x G z ( x

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 34 17.05.2019 Il tensore degli stress Energia e quantità di moto dell'onda Propagazione nella materia Riflessione e

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile.

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile. PROPRIETA OTTICHE DEI MATERIALI Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile. Tratteremo inizialmente i concetti ed i principi

Dettagli

Onde elettromagnetiche ed altre storie

Onde elettromagnetiche ed altre storie Onde elettromagnetiche ed altre storie Onde elettromagnetiche Un onda elettromagnetica è una oscillazione del campo elettromagnetico che si propaga nello spazio. Le onde elettromagnetiche si propagano

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Matematica Seconda prova in itinere di Fisica (Prof. E. Santovetti) 13 gennaio 016 Nome: La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli

Dettagli

Un immagine digitale. Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa

Un immagine digitale. Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa Un immagine digitale Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa Y X x y f(x,y) = intensità luminosa in (x,y) Tre livelli di image

Dettagli

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Il presente documento individua le conoscenze, abilità e competenze che lo studente dovrà aver acquisito al termine

Dettagli

Appello del 17/2/ Soluzioni

Appello del 17/2/ Soluzioni Compito A - Testo Dipartimento di Ingegneria Enzo Ferrari Corso di Campi Elettromagnetici - a.a. 2014/15 Appello del 17/2/2015 - Soluzioni Esercizio 1. Un onda elettromagnetica con frequenza 300 MHz si

Dettagli

Il fenomeno luminoso

Il fenomeno luminoso Un immagine Dimensioni finite (X,Y) No profondità inerente Rappresentazione numerica energia luminosa Y X x y B(x,y) = intensità luminosa in (x,y) Il fenomeno luminoso Fisica della luce e grandezze fotometriche

Dettagli

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Ottica fisica La natura ondulatoria della luce è stata evidenziata da Young ai primi dell 800 usando l interferenza e confutando l idea corpuscolare di Newton Le onde elettromagnetiche sono state previste

Dettagli

EQUAZIONI DI MAXWELL

EQUAZIONI DI MAXWELL EQUAZIONI DI MAXWELL CAMPO ELETTRICO INDOTTO Per la legge di Faraday-Neumann-Lenz, in una spira conduttrice dove c è una variazione di Φ(B) concatenato si osserva una corrente indotta. Ricordando che una

Dettagli

Induzione e onde elettromagnetiche

Induzione e onde elettromagnetiche Induzione e onde elettromagnetiche 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. Il trasformatore 5. Le onde elettromagnetiche Prof Giovanni Ianne 1 Il

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

La modulazione. Fondamenti di Ingegneria delle Comunicazioni. A. Cianfrani, F. Colone Dip. DIET, Univ. di Roma La Sapienza 1

La modulazione. Fondamenti di Ingegneria delle Comunicazioni. A. Cianfrani, F. Colone Dip. DIET, Univ. di Roma La Sapienza 1 La modulazione A. Cianfrani, F. Colone Dip. DIET, Univ. di Roma La Sapienza 1 La modulazione Come si inserisce il segnale (l informazione) da trasmettere all interno di una sinusoide? Modulazione Si trasmette

Dettagli

Trasmissione di calore per radiazione

Trasmissione di calore per radiazione Trasmissione di calore per radiazione Sia la conduzione che la convezione, per poter avvenire, presuppongono l esistenza di un mezzo materiale. Esiste una terza modalità di trasmissione del calore: la

Dettagli

METODOLOGIE FISICHE PER I BENI CULTURALI

METODOLOGIE FISICHE PER I BENI CULTURALI METODOLOGIE FISICHE PER I BENI CULTURALI Progetto di alternanza scuola lavoro ITIS S. Cannizzaro - Colleferro Anno scolastico 2016-2017 Prof. L. Parisi TERMOGRAFIA http://www.brera.unimi.it/istituto/archeo/

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

LE ONDE. Tipi di onde e aspetti generali

LE ONDE. Tipi di onde e aspetti generali LE ONDE Tipi di onde e aspetti generali Che cos è un onda? In fisica con il termine onda si indica una perturbazione che nasce da una sorgente e si propaga nel tempo e nello spazio, trasportando energia

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli

= 2 10 C, sono mantenute in quiete a distanza 2l tra loro (vedi figura) con. = 2 10 C e avente massa

= 2 10 C, sono mantenute in quiete a distanza 2l tra loro (vedi figura) con. = 2 10 C e avente massa (Esercizi) Numero di matricola (allineato a destra): 1. Due particelle puntiformi, di carica l = 0.6 m. Una terza particella, anch essa di carica q q 7 = 2 10 C, sono mantenute in quiete a distanza 2l

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli