INTERFERENZA E DIFFRAZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTERFERENZA E DIFFRAZIONE"

Transcript

1 INTERFERENZA E DIFFRAZIONE Scopo dell esperienza:determinare sperimentalmente le seguenti caratteristiche fisiche: lunghezza d onda di una sorgente LASER apertura di una singola fenditura rettilinea apertura e passo di una doppia fenditura Teoria dei processi di diffrazione ed interferenza: Il fenomeno di diffrazione si manifesta ogniqualvolta la luce (onda elettromagnetica) si propaga in presenza di diaframmi che ne limitano parzialmente il cammino e che hanno spessore paragonabile alla lunghezza d onda. La luce al di là dei diaframmi si propaga anche in regioni dello spazio nelle quali l approssimazione dell ottica geometrica prevede oscurità completa. Infatti la luce si incurva intorno ad ostacoli opachi, di modo che le ombre hanno sempre contorni leggermente confusi, anche nel caso limite di sorgente puntiforme ideale. Possiamo spiegare la diffrazione utilizzando i concetti insiti nel principio di Huygens. Sarà necessario considerare la forma effettiva delle perturbazioni ottiche, e considerare in dettaglio come le onde secondarie interferiscono l una con l altra nei vari punti dello spazio. I risultati sono più facili nel caso di onde sinusoidali. Per questo particolare tipo di onde, il principio di Huygens si può esporre come segue: Si consideri una superficie arbitraria S che circondi una sorgente di luce monocromatica. I vari punti di S si comportano come sorgentipuntiformi secondarie virtuali di onde sinusoidali, e la perturbazione ottica al di là della superficie S è generata dall interferenza di queste onde. La frequenza delle sorgenti secondarie è, naturalmente, identica a quella dell onda primaria, e le loro relazioni di fase sono determinate dalle fasi relative dell onda primaria nei punti in cui si trovano le sorgenti secondarie. Sia nel caso della singola fenditura che nel caso di doppia fenditura si ha a che fare con i fenomeni della diffrazione di Fraunhofer, cioè la classe di fenomeni nei quali la sorgente ed il piano di osservazione possono essere considerati come posti all infinito. Prima di procedere alla spiegazione dell esperienza e ai relativi dati ottenuti, si tratterà in breve la teoria della singola e della doppia fenditura nel caso esaminato di diffrazione di Fraunhofer. Singola fenditura Per soddisfare le condizioni richieste dalla diffrazione di Fraunhofer, invece di una sorgente molto distante, possiamo più convenientemente usare una sorgente puntiforme nel piano focale di una lente convergente (collimatore) che trasformi un onda piana l onda sferica generata dalla sorgente. Analogamente, invece di osservare la figura di diffrazione su un piano a grande distanza dallo schermo diffrangente, possiamo concentrare la luce diffratta per mezzo di una seconda lente convergente, ed osservare le frange nel piano focale di questa lente. Supponendo che la fenditura sia molto lunga, la diffrazione nella direzione parallela alla fenditura è trascurabile e i raggi diffratti emergono dalla fenditura in direzione perpendicolare ai suoi bordi. La seconda lente fa convergere questi raggi in un punto P 0 simmetrico del sistema. Con semplici considerazioni geometriche sui cammini ottici dei raggi che si propagano oltre la fenditura con angoli di uscita differenti, si trova che l intensità luminosa sullo schermo è nulla per i valori dell angolo δ pari a: senδ=nλ/a, dove a è la lunghezza della fenditura ed n è un intero positivo, negativo o nullo. I massimi secondari compaiono a circa metà strada tra due minimi adiacenti, e l intensità del massimo secondario decresce file:///c /Documenti/MyNewSite/interfer.htm (1 of 6) [17/09/ ]

2 proporzionalmente a 1/n col crescere di n. Nel caso di una sorgente puntiforme, la figura di diffrazione discussa è una linea perpendicolare alla fenditura. Questa linea può essere considerata come un immagine estesa della sorgente puntiforme, l estensione diminuisce con l aumentare dell ampiezza della fenditura. Se invece si usa una sorgente che emette luce bianca, la linea di diffrazione presentano una successione di differenti colori. Si noti che le posizioni dei massimi e minimi di diffrazione sullo schermo, dipendono, escluso il massimo di ordine zero, dalla lunghezza d onda considerata. Doppia fenditura Una doppia fenditura non è altro che uno schermo opaco con due strette fenditure fra loro parallele. Esse hanno una larghezza a e i loro centri sono ad una distanza h. Come nel caso precedente, la sorgente è posta nel piano focale di una lente convergente (collimatore) che fornisce un fascio di raggi paralleli che incidono perpendicolarmente sulla doppia fenditura. Ogni fenditura genera una figura di diffrazione propria, indipendente dalla presenza di una seconda o di altre fenditure. L intensità luminosa rilevata sui punti P dello schermo, è la risultante della sovrapposizione delle due figure di diffrazione, si devono quindi considerare gli effetti di interferenza tra le perturbazioni che arrivano ad un dato punto P del piano di osservazione dalle due fessure. Tenendo conto di questo fatto si ottiene che l intensità luminosa sui punti P del piano segue la legge: I= I(((sen α)^2)/( α )^2)*(cos δ)^2 dove I rappresenta l intensità del massimo centrale di ordine zero, mentre α e δ sono due parametri legati all angolo di uscita φ dalle relazioni: α=(πa(sen φ))/λ e δ=(πh(sen φ))/λ. Nella relazione che regola l intensità luminosa, il termine ((sen α)^2)/α^2, è detto termine di diffrazione, mentre il termine (cos δ)^2, è detto termine di interferenza, ed è uguale al termine che compare nell espressione della distribuzione di intensità risultante dall interferenza di due onde. Se la larghezza a delle fenditure è piccola rispetto alla distanza h tra i loro centri, la larghezza del massimo centrale del termine di diffrazione è grande rispetto alla distanza tra gli zeri successivi del termine di interferenza. In tal caso, per valori sufficientemente piccoli di sen φ, il termine di diffrazione è praticamente costante e la distribuzione di intensità è determinata dal termine di interferenza. Perciò le frange osservate vicino alla frangia centrale ( φ=0) hanno intensità praticamente uguali. I massimi di intensità luminosa compaiono ai seguenti valori dell angolo di uscita: sen φ =Kλ/h, dove K è un intero positivo, negativo o nullo che rappresenta l ordine di interferenza, cioè la differenza di file:///c /Documenti/MyNewSite/interfer.htm (2 of 6) [17/09/ ]

3 commino ottico dei due raggi che arrivano in P dai centri delle fenditure. Si noti che il massimo centrale di ordine zero compare nella stessa posizione per tutte le lunghezze d onda. La posizione dei massimi successivi dipende, tuttavia, dalla lunghezza d onda della luce considerata. Procedura sperimentale: Per l esperienza si ha a disposizione un banco ottico di sul quale è disposta la sorgente luminosa (LASER), la lente convergente, i diaframmi con le fenditure e lo schermo di osservazione per rilevare la distribuzione dell intensità luminosa delle frange di diffrazione è posto sulla parete oltre il diaframma. Per prima cosa si determina la lunghezza d onda λ della sorgente mediante un reticolo a passo noto effettuando la misura dell angolo φ per diversi massimi principali. La misura dell angolo si ottiene misurando la distanza D del reticolo dal piano di osservazione e la distanza L intercorrente tra i due massimi principali di ordine n. Mediante la relazione: tg φ =L/(2D) e la relazione: λ =β(sen φ)/n,dove β indica il passo del reticolo, si ricava il valore della lunghezza d onda λ della sorgente. Si procede quindi alla misura delle figure di diffrazione e di interferenza con la singola e la doppia fenditura. La misura dei massimi e dei minimi consentono di determinare mediante le relazioni sopra citate, i valori h e a delle fenditure. Valutazione degli errori: Le fonti d errore che hanno maggiormente influito sull andamento della prova in questione sono quelle dovute alle misure dei parametri D ed L. Per la misura del primo si aveva a disposizione un semplice metro a nastro. L errore derivante dall uso di tale metro è la possibilità che al momento della misura il nastro, a causa del suo peso non sia perfettamente in tensione. Questo induce una sovrastima del parametro cercato, e nel caso specifico un errata valutazione della distanza tra lo schermo di osservazione e il reticolo. Altra fonte di errore è la valutazione della distanza L che intercorre tra i due massimi principali simmetrici adiacenti di ordine k-esimo. Infatti, la luce del LASER è una sorgente estesa, quindi, le figure di diffrazione non sono punti o righe ma bensì macchie o frange con un certo spessore. La difficoltà della ricerca del centro di tali figure di diffrazione rende la misura imprecisa; ed è per questo motivo che si è misurata la distanza tra i massimi simmetrici anziché la distanza tra il massimo di ordine K ed il massimo centrale (K=0) in quanto, così facendo, si riduce l errore sulla misura. A questi va sicuramente aggiunto l errore sulla lunghezza d onda della sorgente monocromatica, questo è stato valutato sperimentalmente durante la prima parte della prova e corrisponde a circa 20 angstrom. Inoltre esiste un possibile errore sistematico che ha inciso su tutte e tre le parti dell esperienza, dovuto alla non perfetta perpendicolarità tra l asse del banco ottico e lo schermo di osservazione. Questo possibile difetto arreca una non perfetta simmetria del sistema. Per quanto ci è stato possibile abbiamo tentato di ridurlo al minimo. Per la valutazione quantitativa degli errori relativi ai dati sperimentali è stata utilizzata la tecnica statistica della "media pesata", stimando per ogni grandezza il relativo errore mediante l equazione della propagazione degli errori, in questo modo si è così raffinata la stima della grandezza cercata e del suo relativo errore. file:///c /Documenti/MyNewSite/interfer.htm (3 of 6) [17/09/ ]

4 RISULTATI DELLE MISURE A. Lunghezza d onda della luce LASER Per questa parte della prova si sono effettuate due rilevazioni con due differenti valori di D. Alle due lunghezze d onda così ottenute si è applicata la statistica delle "medie pesate" per ottenere un unica stima della lunghezza d onda e il suo relativo errore. K Dist.Max Dist.banco Ang.Max Lung.d onda Errore (cm) (cm) (rad) (m) (m) E E E E E E E E E E E E-09 Usando la "media pesata" si ottiene una lunghezza d onda pesata pari a E-07 m con un errore pesato di 2.658E- 09 m. K Dist.Max Dist.banco Ang.Max Lung.d onda Errore (cm) (cm) (rad) (m) (m) E E E E-09 file:///c /Documenti/MyNewSite/interfer.htm (4 of 6) [17/09/ ]

5 E E E E E E-09 Usando la "media pesata" si ottiene una lunghezza d onda pari a E-07 m con un errore pesato di 2.596E-09 m. N.B:Per il calcolo degli errori relativi alle singole lunghezze d onda si è dato a D un errore pari a 1 cm, mentre per L si è stimato un errore di 0.5 cm. Ora, facendo la media pesata tra le due lunghezze d onda ottenute dalle due singole prove, si è stimata una lunghezza d onda λ= e-07 m con un errore pesato σ=1.857e-09 m. B.Passo e apertura di una doppia fenditura rettilinea Passo del reticolo K Max Dist.Max Dist.banco Angolo Max Passo retic. Errore (m) (m) (rad) (m) (m) Usando la media pesata si ottiene un passo del reticolo di m con un errore pesato σ=4.2e-05 m Apertura della singola fenditura K Min Dist.Min Dist.banco AngoloMin Apertura fend. Errore (m) (m) (rad) (m) (m) E E E E E E E E-06 file:///c /Documenti/MyNewSite/interfer.htm (5 of 6) [17/09/ ]

6 Usando la media pesata si ottiene un apertura di fenditura di 9.267E-05 m con un errore pesato σ=3.25e-06 m. C Determinazione dell apertura di una singola fenditura rettilinea I risultati sperimentali sono: K Min Dist.Min Dist.banco Angolo Min Apertura fend. Errore (m) (m) (rad) (m) (m) E E E E E E-06 Usando la media pesata si ottiene un apertura di fenditura rettilinea di m con un errore pesato σ=2.6e-06 m. file:///c /Documenti/MyNewSite/interfer.htm (6 of 6) [17/09/ ]

SPETTROSCOPIO A RETICOLO

SPETTROSCOPIO A RETICOLO SPETTROSCOPIO A RETICOLO Scopo dell esperienza: determinazione passo del reticolo separazione tra le due righe del doppietto della luce gialla del sodio determinazione della lunghezza d onda di un fascio

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Quarta lezione Applicazione di tecniche di diffrazione (Laboratorio II) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico di

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

Esperimento di Ottica

Esperimento di Ottica Esperimento di Ottica studio dei fenomeni di interferenza e diffrazione Capitolo 24 del Giancoli (Fisica con Fisica Moderna) Onde cresta valle x = lunghezza d onda A = ampiezza Onde elettromagnetiche la

Dettagli

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente OTTICA FISICA Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente gli effetti sperimentali non sono spiegabili

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

ESPERIMENTO DI YOUNG DOPPIA FENDITURA

ESPERIMENTO DI YOUNG DOPPIA FENDITURA ESPERIMENTO DI YOUNG DOPPIA FENDITURA Larghezza fenditure a > d (L = distanza fenditure - schermo; d = distanza tra le fenditure) Evidenza della natura ondulatoria della luce Luce monocromatica

Dettagli

Principio di Huygens principio di Huygens

Principio di Huygens principio di Huygens Principio di Huygens La propagazione dei fronti d onda (superfici a fase costante) può essere ottenuta supponendo ad ogni istante un fronte d onda come la sorgente dei fronti d onda a istanti successivi

Dettagli

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione L'identificazione della luce come fenomeno ondulatorio è dovuta principalmente a Fresnel e Huyghens ed è basata

Dettagli

Diffrazione della luce

Diffrazione della luce 1 Introduzione 1 Diffrazione della luce Attenzione! Nel corso della presente esperienza è previsto l utilizzo di laser di classe II: laser che emettono radiazione visibile nell intervallo di lunghezze

Dettagli

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO 1 INTERFERENZA Massimi di luminosità Onda incidente L onda prodotta alla fenditura S0, che funge da sorgente, genera due onde alle fenditure

Dettagli

La luce. Quale modello: raggi, onde, corpuscoli (fotoni)

La luce. Quale modello: raggi, onde, corpuscoli (fotoni) La luce Quale modello: raggi, onde, corpuscoli (fotoni) Le onde luminose onde elettromagnetiche con frequenza compresa tra 4. 10 14 e 8. 10 la lunghezza d onda e compresa fra 400nm e 750nm 10 14 Hz 14

Dettagli

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore Capitolo 15 L interferenza e la natura ondulatoria della luce 15.2 Il principio di sovrapposizione e l interferenza della luce Quando due onde luminose passano per uno stesso punto, i loro effetti si sommano

Dettagli

4.5 Polarizzazione Capitolo 4 Ottica

4.5 Polarizzazione Capitolo 4 Ottica 4.5 Polarizzazione Esercizio 98 Un reticolo con N fenditure orizzontali, larghe a e con passo p, è posto perpendicolarmente a superficie di un liquido con n =.0. Il reticolo è colpito normalmente alla

Dettagli

Ottica fisica - Interferenza

Ottica fisica - Interferenza Ottica fisica - Interferenza 1. Principi di sovrapposizione e di Huygens 2. Interferenza 3. Riflessione e trasmissione della luce VIII - 0 Principio di sovrapposizione In un sistema meccanico in cui si

Dettagli

DIMOSTRAZIONE DELLA NATURA ONDULATORIA DELLA LUCE E DETERMINAZIONE DELLA LUNGHEZZA D ONDA.

DIMOSTRAZIONE DELLA NATURA ONDULATORIA DELLA LUCE E DETERMINAZIONE DELLA LUNGHEZZA D ONDA. Ottica Ottica ondulatoria Diffrazione da fenditure multiple e reticoli DIMOSTRAZIONE DEA NATURA ONDUATORIA DEA UCE E DETERMINAZIONE DEA UNGHEZZA D ONDA. Analisi della diffrazione da doppie fenditure con

Dettagli

Interferenza e diffrazione

Interferenza e diffrazione Ruggero Caravita, Giacomo Guarnieri, Roberta Lanfranco Gruppo Me7 1 Relazione sperimentale Lo scopo dell esperienza è quello di indagare i fenomeni di interferenza e diffrazione di un raggio di luce monocromatico

Dettagli

Diffrazione. configurazione che fornisce uno sfasamento di nel passaggio. dal bordo della fenditura al centro. = λ per il primo minimo.

Diffrazione. configurazione che fornisce uno sfasamento di nel passaggio. dal bordo della fenditura al centro. = λ per il primo minimo. Diffrazione Mentre l interferenza può essere analizzata con i principi dell ottica geometrica, la diffrazione può essere spiegata solo con l ipotesi ondulatoria della luce. Ipotesi corpuscolare Corpuscoli

Dettagli

Ottica fisica - Diffrazione

Ottica fisica - Diffrazione Ottica fisica - Diffrazione 1. Diffrazione di Fraunhofer 2. Risoluzione di una lente 3. Reticoli di diffrazione IX - 0 Diffrazione Interferenza di un onda con se stessa, in presenza di aperture od ostacoli

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Terza lezione Dai raggi di luce al modello a onde (Introduzione alla spettroscopia) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico

Dettagli

La diffrazione della luce CNR-INOA

La diffrazione della luce CNR-INOA La diffrazione della luce La luce: onde o particelle? C.Huygens (169-1695) Costruisce il più potente telescopio dell epoca Scopre l anello di Saturno Sostiene la natura ondulatoria della luce Basi sperimentali:

Dettagli

nasce la spettroscopia come tecnica di analisi chimica

nasce la spettroscopia come tecnica di analisi chimica sviluppo storico della spettroscopia: il reticolo di diffrazione *1810 Fraunhofer sviluppa il diffrattometro a reticolo e misura ben 700 righe, fra righe chiare (di emissione) e righe scure (di assorbimento);

Dettagli

MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE

MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE Il reticolo di diffrazione può essere utilizzato per determinare la lunghezza d onda di una radiazione monocromatica. Detto d

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

ONDE ELETTROMAGNETICE OTTICA LEZIONE 33

ONDE ELETTROMAGNETICE OTTICA LEZIONE 33 ONDE ELETTROMAGNETICE OTTICA LEZIONE 33 L'Ottica Geometrica è la più antica branca dell'ottica: essa studia i fenomeni ottici assumendo che la luce si propaghi mediante raggi rettilinei. Dal punto di vista

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

DIFFRAZIONE ED INTERFERENZA

DIFFRAZIONE ED INTERFERENZA DIFFRAZIONE ED INTERFERENZA Sommario Ottica ondulatoria... 2 Interferenza... 2 Diffrazione... 5 Fenditura circolare... 13 Fenditura rettangolare... 15 Distribuzione di energia... 15 Diffrazione ed interferenza

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica ondulatoria

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica ondulatoria 4 giugno 2013 Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica ondulatoria 1. Un reticolo di diffrazione quadrato, con lato L = 2 cm e 1000 fenditure, è illuminato da una

Dettagli

ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE

ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE Università degli Studi di Padova Facoltà di Scienze MM.FF.NN Corso di Laurea in Ottica e Optometria TESI DI LAUREA ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE Monochromatic aberrations and tear

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

produrrebbe separatamente in per quel punto. Si dice che i fasci emessi in queste condizioni da S

produrrebbe separatamente in per quel punto. Si dice che i fasci emessi in queste condizioni da S NRFRNZA. Da un punto di vista generale, con il nome di interferenza andrebbero indicati tutti quei fenomeni che derivano dalla sovrapposizione di onde luose diverse in una certa regione: in realtà ci si

Dettagli

FISICA GENERALE Cap. 5: Ottica fisica

FISICA GENERALE Cap. 5: Ottica fisica 5 OTTICA FISICA Introduzione La natura della luce, o meglio delle onde elettromagnetiche, porta facilmente ad osservare fenomeni ondulatori che se indesiderati in ottica geometrica, sono invece di grande

Dettagli

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione Interferenza Coerenza Diffrazione Polarizzazione Fenomeni interferenziali Interferenza: combinazione di onde identiche provenienti da diverse sorgenti che si sovrappongono in un punto dello spazio costruttiva

Dettagli

FAM. 2. Calcola l intensità media Ī nel caso di un onda piana (longitudinale) e nel caso di un onda sferica ad una distanza di 100m dalla sorgente.

FAM. 2. Calcola l intensità media Ī nel caso di un onda piana (longitudinale) e nel caso di un onda sferica ad una distanza di 100m dalla sorgente. FAM Serie 5: Fenomeni ondulatori V C. Ferrari Esercizio Intensità Considera un onda armonica in aria in condizioni normali ( C, atm). Sapendo che la sua frequenza è di 8Hz e la sua ampiezza di spostamento

Dettagli

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo; Prova scritta di Elettromagnetismo e Ottica (CCS Fisica), 21 gennaio 2013 Nel piano x = 0 giace una lastra conduttrice collegata a terra. Nei punti di coordinate (a, a, 0) e (a, a, 0) si trovano due cariche,

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 3

FISICA APPLICATA 2 FENOMENI ONDULATORI - 3 FISICA APPLICATA 2 FENOMENI ONDULATORI - 3 DOWNLOAD Il pdf di questa lezione (onde3.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 16/10/2017 PRINCIPIO DI HUYGENS La descrizione della

Dettagli

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione.

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione. FAM Serie 6: Fenomeni ondulatori VI C. Ferrari Esercizio 1 Equazione dell iperbole ed interferenza Considera due sorgenti S 1 e S 2 poste sull asse Ox in x = d 2 e x = d 2. 1. Nel piano Oxy determina le

Dettagli

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013 OTTICA Ottica geometrica Ottica fisica Ignora il carattere ondulatorio della luce e parla di raggi luminosi che si propagano in linea retta. Fenomeni descritti dall ottica geometrica: riflessione e rifrazione

Dettagli

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE Scopo dell esperimento: studiare l ottica geometrica e i fenomeni di diffrazione MATERIALE A DISPOSIZIONE: 1 banco ottico 1 blocco di plexiglass 2 lenti con

Dettagli

Animazioni e Simulazioni in rete su: Interferenza e Diffrazione della luce tramite l esperimento di Young

Animazioni e Simulazioni in rete su: Interferenza e Diffrazione della luce tramite l esperimento di Young Università Degli Studi di Catania Scuola Interuniversitaria Siciliana di Specializzazione per l Insegnamento Secondario Corso di Software Didattici per la Fisica Prof.ssa C.Petta Animazioni e Simulazioni

Dettagli

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date ESPERIMENTO SULL OTTICA Introduzione L ottica geometrica può essere considerata un metodo per la costruzione di immagini date da sistemi ottici quali lenti e specchi. Essa costituisce una teoria approssimata,

Dettagli

I raggi luminosi. Per secoli si sono contrapposti due modelli della luce. il modello ondulatorio (Christiaan Huygens)

I raggi luminosi. Per secoli si sono contrapposti due modelli della luce. il modello ondulatorio (Christiaan Huygens) I raggi luminosi Per secoli si sono contrapposti due modelli della luce il modello corpuscolare (Newton) * la luce è un flusso di particelle microscopiche il modello ondulatorio (Christiaan Huygens) *

Dettagli

4.4 Reticoli Capitolo 4 Ottica

4.4 Reticoli Capitolo 4 Ottica 4.4 Reticoli Esercizio 92 Un fascio piano di onde e.m. con frequenza ν = 10 11 Hz incide su uno schermo conduttore piano su cui sono praticate 5 fenditure parallele e lunghe, di larghezza a = 6 mm e passo

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche SQ Campo determinato da cariche in moto Campo elettrico E dato da una carica puntiforme collocata in E {x 0, y 0, z 0 } E(x, y, z) = q r 4πɛ 0 r 2 con r = {x x 0, y y 0, z z 0 }

Dettagli

caratteristiche della onde:, T, y = f(x,t) onda unidimensionale

caratteristiche della onde:, T, y = f(x,t) onda unidimensionale caratteristiche della onde:, T, = f(x,t) onda unidimensionale : la minima distanza tra punti che oscillano concordemente rispetto alla posizione di equilibrio T: il tempo minimo necessario perché la perturbazione

Dettagli

Intensità figura di diffrazione da una fenditura

Intensità figura di diffrazione da una fenditura Intensità figura di diffrazione da una fenditura φ=0 Si suppone di avere la fenditura divisa in un gran numero di piccole strisce di larghezza y. Ogni striscia si comporta Come una sorgente di radiazione

Dettagli

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Ottica 1. Un fascio di luce di lunghezza λ passa attraverso una fenditura rettangolare di larghezza a. La sua immagine viene

Dettagli

1 p q 1. = 1 f

1 p q 1. = 1 f P PROBLEMA n. Una lente allo specchio Quesito n.. Applicando l equazione dei punti coniugati p + q = f q = f p p f = 5.0cm Poiché nel sistema di riferimento scelto x L = 32.9cm, la posizione di questa

Dettagli

Principio di Huygens (1678)

Principio di Huygens (1678) Principio di Huygens (1678) Tutti i punti di un fronte d onda possono essere considerati come sorgenti secondarie di onde sferiche; in un generico punto P l onda risultante si può ottenere come sovrapposizione

Dettagli

Master Class di Ottica. Interferenza

Master Class di Ottica. Interferenza Master Class di Ottica 6 marzo 2012 Interferenza Dr. Eleonora Nagali La luce 1/2 Sir Isaac Newton 1642-1727 Augustin-Jean Fresnel Christiaan Huygens 1629-1695 1788-1827 Christiaan Huygens: in analogia

Dettagli

ONDE ELETTROMAGNETICE NATURA DELLA LUCE LEZIONE 29

ONDE ELETTROMAGNETICE NATURA DELLA LUCE LEZIONE 29 ONDE ELETTROMAGNETICE NATURA DELLA LUCE LEZIONE 29 NATURA DELLA LUCE SULLA NATURA DELLA LUCE ESISTE UNA DOPPIA TEORIA: ONDULATORIA CORPUSCOLARE Teoria corpuscolare (Newton 1643-1727) La luce è costituita

Dettagli

Laboratorio di Fisica. RICHIAMI DI OTTICA ONDE o CORPUSCOLI? - (wikipedia)

Laboratorio di Fisica. RICHIAMI DI OTTICA ONDE o CORPUSCOLI? - (wikipedia) RICHIAMI DI OTTICA ONDE o CORPUSCOLI? - (wikipedia) Formulata da Isaac Newton nel XVII secolo. La luce veniva vista come composta da piccole particelle di materia (corpuscoli) emesse in tutte le direzioni.

Dettagli

Cosa si intende per onda?

Cosa si intende per onda? Fenomeni Ondulatori Cosa si intende per onda? si definisce onda una perturbazione che si propaga non si ha propagazione di materia ma solo di energia onde meccaniche (mezzo) onde elettromagnetiche (vuoto,

Dettagli

Diffrazione a doppia fenditura

Diffrazione a doppia fenditura Diffrazione a doppia fenditura Cusinato Spirito Tirelli Tonnini Marco Mario Michelangelo Michele Data: 31 Maggio 2017 1 1 Preambolo Lo scopo di questa esperienza consiste nel verificare la legge di diffrazione

Dettagli

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in 1) Un onda monocromatica polarizzata, con componenti del campo elettrico uguali a: E x = (1/2) 1/2 cos(kz - t) E y = (1/2) 1/2 sen(kz - t + /4), passa attraverso polarizzatori ideali, il primo orientato

Dettagli

INTERFEROMETRO DI MICHELSON

INTERFEROMETRO DI MICHELSON INTERFEROMETRO DI MICHELSON Scopo dell esperienza: determinare mediante un interferometro le seguenti quantità: lunghezza d onda di un fascio di luce monocromatica lunghezza dei pacchetti d onda di una

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Ottica fisica La natura ondulatoria della luce è stata evidenziata da Young ai primi dell 800 usando l interferenza e confutando l idea corpuscolare di Newton Le onde elettromagnetiche sono state previste

Dettagli

L'interferenza. Lezioni d'autore

L'interferenza. Lezioni d'autore L'interferenza Lezioni d'autore L'esperimento di Young (I) VIDEO L'esperimento di Young (II) Una luce monocromatica illumina due piccole aperture su una lastra opaca. La stessa onda quindi è suddivisa

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio 1 Calcolare la larghezza della frangia centrale della figura di interferenza

Dettagli

MICHELSON. Interferometro. A.Guarrera, Liceo Galilei CT

MICHELSON. Interferometro. A.Guarrera, Liceo Galilei CT L INTERFEROMETRO DI MICHELSON 1 A.Guarrera, Liceo Galilei CT L interferometria è un metodo di misura molto preciso e molto sensibile che permette di determinare, ad esempio, variazioni di lunghezza, densità

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2016

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2016 Preparazione alle gare di II livello delle Olimpiadi della Fisica 2016 Incontro su temi di ottica 1/2/2016 Riccardo Urigu Liceo Scientifico Copernico di Torino Sommario dei quesiti e problemi discussi

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 13/6/2011 - NOME 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina termica

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 16 luglio 2001 Teoria 1. La posizione del centro di massa di un sistema di N particelle puntiformi è data da Ni r i m i

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa.

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa. SPECCHI SPECCHI PIANI Per specchio si intende un dispositivo la cui superficie è in grado di riflettere immagini di oggetti posti davanti a essa. Uno specchio è piano se la superficie riflettente è piana.

Dettagli

specchio concavo Immagine diffusa da una sorgente S

specchio concavo Immagine diffusa da una sorgente S specchio concavo 1 Immagine diffusa da una sorgente S S C I specchio concavo 2 immagine I della sorgente S S C I propagazione delle onde 3 principio di Huygens S 4 interferenza sovrapposizione di onde

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

Ottica Geometrica. (λà 0 trascuriamo i fenomeni di diffrazione )

Ottica Geometrica. (λà 0 trascuriamo i fenomeni di diffrazione ) Ottica Geometrica Ottica Geometrica Metodo approssimato che permette di studiare il comportamento della luce quando incontra discontinuità nello spazio in cui si propaga, nei casi in cui la lunghezza d

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE B B o E o E v z y x B E o B o E T λ t x E = E(x,t) v = B = B(x,t) λ T = λf VELOCITA DELLA LUCE NEL VUOTO nel vuoto (unità S.I.) v c c = 3 10 8 m s 1 velocità

Dettagli

Reticolo di diffrazione

Reticolo di diffrazione Partendo dalla interferenza di fenditure: Reticolo di diffrazione II(PP) = 4 II 0 cccccc δδ = 4 II 0 cccccc ( ππ λλ dd ssssss θθ) δδ = kk (xx xx 1 ) = ππ λλ dd ssssss θθ Essendo: d= la distanza tra le

Dettagli

Un percorso di ottica parte III. Ottica ondulatoria

Un percorso di ottica parte III. Ottica ondulatoria Un percorso di ottica parte III Ottica ondulatoria Isabella Soletta Liceo Fermi Alghero Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali

Dettagli

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE Errore di misura è la differenza fra l indicazione fornita dallo strumento e la dimensione vera della grandezza. Supponendo che la grandezza vera

Dettagli

Interferenza Interferenza.

Interferenza Interferenza. Interferenza 01 - Interferenza. Attorno all'anno 1800, l'eclettico medico inglese Thomas Young compì un esperimento che mise in crisi il modello corpuscolare della luce, modello fino ad allora considerato

Dettagli

Interazione dei raggi X con la materia

Interazione dei raggi X con la materia Interazione dei raggi X con la materia Emissione di fotoelettroni Fascio incidente (I 0 ) di raggi X Fluorescenza Scattering coerente e incoerente Assorbimento (I) calore Lo scattering coerente dei raggi

Dettagli

CLT di TECNICHE DI LABORATORIO BIOMEDICO. C.I. di Fisiologia Umana Modulo di Fisica Strumentale

CLT di TECNICHE DI LABORATORIO BIOMEDICO. C.I. di Fisiologia Umana Modulo di Fisica Strumentale CLT di TECNICHE DI LABORATORIO BIOMEDICO C.I. di Fisiologia Umana Modulo di Fisica Strumentale P. Calvini Potere risolutivo di uno strumento ottico Con potere risolutivo di uno strumento ottico s intende

Dettagli

Fisica Generale B. 3. Esercizi di Ottica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) ! 1. = v = c 2.

Fisica Generale B. 3. Esercizi di Ottica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II)  ! 1. = v = c 2. Fisica Generale B 3. Esercizi di Ottica http://campus.cib.unibo.it/490/ May 7, 0 Esercizio La fiamma di un fornello, continuamente e regolarmente rifornita di sale da cucina, costituisce una sorgente estesa

Dettagli

8 Attachments, 190 KB. Egregi studenti, trovate in allegato risposte ai quesiti in oggetto. Saluti, Prof. Domenico GALLI

8 Attachments, 190 KB. Egregi studenti, trovate in allegato risposte ai quesiti in oggetto. Saluti, Prof. Domenico GALLI Domenico Galli Quesiti B: o_ap_23 o_ap_24 o_ap_26 o_og_06 June 20, 2010 19:40:17 GMT+02:00 Domenico Galli 8 Attachments, 190 KB Egregi

Dettagli

GIOCARE CON LA LUCE DIFFRAZIONE E INTERFERENZA DELLA LUCE. Tutor: Sarah Bollanti, Daniele Murra

GIOCARE CON LA LUCE DIFFRAZIONE E INTERFERENZA DELLA LUCE. Tutor: Sarah Bollanti, Daniele Murra GIOCARE CON LA LUCE DIFFRAZIONE E INTERFERENZA DELLA LUCE Tutor: Sarah Bollanti, Daniele Murra E-mail: sarah.bollanti@enea.it, daniele.murra@enea.it Introduzione all argomento Diffrazione ed interferenza

Dettagli

Spettrometro a reticolo e a prisma

Spettrometro a reticolo e a prisma Spettrometro a reticolo e a prisma Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) 1 Introduzione 1.1 Introduzione ai feomeni in esame Quando la luce viene fatta incidere normalmente alla superficie

Dettagli

Quesiti dell Indirizzo Tecnologico

Quesiti dell Indirizzo Tecnologico Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

LENTI SOTTILI. Le lenti sottili sono gli strumenti ottici più importanti tra quelli più semplici.

LENTI SOTTILI. Le lenti sottili sono gli strumenti ottici più importanti tra quelli più semplici. LENTI SOTTILI Chiamiamo lente un qualsiasi corpo trasparente limitato da due superfici curve o da una superficie piana ed una curva, in grado di trasmettere un fascio di luce focalizzandolo in modo da

Dettagli

Interferenza della luce

Interferenza della luce 1 Introduzione 1 Interferenza della luce Attenzione! Nel corso della presente esperienza è previsto l utilizzo di laser di classe II: laser che emettono radiazione visibile nell intervallo di lunghezze

Dettagli

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 6 dicembre 008 Fila A Cognome ome Matricola Completare le seguenti equivalenze: (a) 0, g = mg (b) 4,5 0 7 nm = mm

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Interferenza da doppia fenditura

Interferenza da doppia fenditura Corso di Fisica per Scienze Biologiche A.A. 2016-17 Esperienza di laboratorio: OTTICA - ESPERIMENTO DI YOUNG Interferenza da doppia fenditura Nomi degli studenti:......... Data:... Introduzione L'obiettivo

Dettagli

Esercizi di Fisica Generale

Esercizi di Fisica Generale Esercizi di Fisica Generale 4. ttica prof. Domenico Galli, dott. Daniele Gregori, dott. lessandro Tronconi 27 marzo 202 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 3

Dettagli

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE La distanza focale f di una lente convergente sottile è data dalla formula: da cui 1 f = 1 p + 1 q f = pq p + q dove p e q sono, rispettivamente, le

Dettagli

RIFLESSIONE. Riflessione - 1/17

RIFLESSIONE. Riflessione - 1/17 RIFLESSIONE Sommario Leggi della riflessione... 2 Specchi piani... 3 Specchi sferici... 6 Lunghezza focale di specchi sferici... 9 Immagine generata da specchi sferici... 11 Ingrandimento generato da specchi

Dettagli

Un onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento di materia

Un onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento di materia ONDE ELASTICHE Un onda elastica è una perturbazione che si propaga in un mezzo elastico senza movimento di materia Ogni punto del corpo elastico oscilla intorno alla sua posizione di equilibrio con moto

Dettagli

Le derivate seconde compaiono alla prima potenza per cui è un'equazione lineare! Se y 1. sono soluzioni anche una qualsiasi loro combinazione lineare

Le derivate seconde compaiono alla prima potenza per cui è un'equazione lineare! Se y 1. sono soluzioni anche una qualsiasi loro combinazione lineare SOVRAPPOSIZIONE DI ONDE EQUAZIONE DELLE ONDE Le derivate seconde compaiono alla prima potenza per cui è un'equazione lineare! Se y 1 e y 2 sono soluzioni anche una qualsiasi loro combinazione lineare con

Dettagli

Le onde. Definizione e classificazione

Le onde. Definizione e classificazione Le onde Definizione e classificazione Onda: perturbazione che si propaga nello spazio, trasportando energia e quantità di moto, ma senza trasporto di materia Onde trasversali La vibrazione avviene perpendicolarmente

Dettagli