Cinematica 1-dimensionale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cinematica 1-dimensionale"

Transcript

1 Alfonso Monaco Cinematica 1-dimensionale Fisica Medica - CINEMATICA 1D 1

2 MOTO UNIFORME a = 0, v = cost, x = x0 +vt Posizione iniziale Istante iniziale t 0 = 0 v Istante successivo t v x 0 x Fisica con elementi di matematica - CINEMATICA 1D 2

3 Moto Uniformemente Accelerato Moto Uniformemente Accelerato Istante iniziale t 0 = 0 Istante successivo t a = cost. v = v 0 +at x = x 0 +v 0 t+at 2 /2 x 0 v 0 Velocità iniziale Posizione iniziale x v v 2 - v0 2 = 2a(x-x0) 3

4 Qualche consiglio per evitare problemi Capire che tipo di problema avete davanti: moto rettilineo, circolare, se ci sono forze di attrito, se il moto è accelerato o no questo vi permette di capire quali formule dovete usare ;-) Rispondete alle domande UNA ALLA VOLTA Le risposte vanno date in un ordine preciso Dividete quindi il problema in pezzi in base all ordine delle domande 4

5 Una lista con i dati iniziali Portare le unità di misura nel sistema MKS (se non è espressamente chiesto il contrario) Fare un bel disegno esplicativo (non artistico); indicare punti iniziali e finali (se ci sono), le direzioni e i versi delle velocità, accelerazioni e forze se necessario, fate un nuovo disegno per ogni nuovo pezzo del problema Nel disegno fate attenzione ai versi di velocità, accelerazioni e forze 5

6 Poniamo di dover studiare il moto di un automobile che si muove di moto rettilineo. Cominceremo col definire un verso per il moto (ad esempio da sinistra verso destra). Indicheremo ad esempio il punto iniziale (X 0 ), o magari la velocità iniziale (V 0 ), la velocità finale eccetera eccetera In definitiva, cercheremo di indicare ciò che sappiamo, ciò che accade nel moto e ciò che vogliamo scoprire V 0 X 0 6

7 Se vogliamo aggiungere un accelerazione dovremo capire se è diretta in verso positivo (da sinistra a destra) o negativo (da destra a sinistra) Ciò determina se il segno dell accelerazione nelle equazioni è + o (vedremo degli esempi con l accelerazione di gravità) Lo stesso vale per forze, altre velocità ecc Accelerazione < 0 Accelerazione > 0 V 0 X 0 Fisica con elementi di matematica - CINEMATICA 1D 7

8 n Esercizio (traccia) Un automobile viaggia su una strada piana e rettilinea alla velocità costante di 72 km/h. n Ad un certo istante una seconda auto parte da ferma da un punto a 125 metri dietro la prima auto con un accelerazione costante di 2 m/s L istante e la posizione il cui la seconda auto raggiunge la prima 2. L istante e la posizione il cui le velocità sono le stesse 3. Qual è la velocità della seconda macchina quando raggiunge la prima? 8

9 Esercizio (soluzione) n Facciamo un disegno per chiarirci le idee. Auto 2 Auto 1 v 02 v 01 = cost x 02 = 0 m x 01 = 125 m n Strada piana e rettilinea à moto rettilineo n Dati iniziali: Auto 1: vel. iniz. v 01 =72 km/h costante, pos. iniz. x 01 =125 m Auto 2: vel. iniz. v 02 = 0, pos. iniz. x 02 = 0 acc. a 0 =2 m/s 2 costante 9

10 Esercizio (soluzione) n Facciamo un disegno per chiarirci le idee. Auto 2 Auto 1 v 02 v 01 = cost x 02 = 0 m x 01 = 125 m n Strada piana e rettilinea à moto rettilineo n Dati iniziali: Auto 1: vel. iniz. v 01 =72 km/h = 72/3.6 m/s = 20 m/s, pos. iniz. x 01 =125 m Auto 2: vel. iniz. v 02 =0, pos. iniz. x 02 =0 acc. a 0 =2 m/s 2 costante 10

11 Auto 2 Auto 1 v 02 v 01 = cost x 02 = 0 m x 01 = 125 m n Le velocità e l accelerazione sono nel verso positivo dell asse n Leggi orarie: 1. v 1 =costante, x 1 (t)= x 01 +v 1 *t 2. v 2 (t)= v 02 +a 0 *t = a 0 *t 3. x 2 (t)= x 02 +v 02 *t + a 0 *(t) 2 /2 = a 0 *(t) 2 /2 Fisica con elementi di matematica - CINEMATICA 1D 11

12 Qual è la condizione per cui le macchine si incontrano? Devono stare ad un determinato istante di tempo nella medesima posizione rispetto all origine degli assi: x 1 (t)= x 2 (t) x 01 +v 1 *t = a 0 *(t)2 /2 a 0 *(t) 2 /2 - v 1 *t - x 01 = 0 Risolviamo un equazione di secondo grado in t Avremo 2 soluzioni: t 1 = -5 s t 2 = 25 s La posizione in cui si incontrano sarà: x = x 01 + v 1 *t 2 = *20 = 625 m Fisica con elementi di matematica - CINEMATICA 1D 12

13 xhml Esercizio 800 Ê 600 Ê Ê 400 Auto Ê Ê Ê Ê Ê Ê Ê Ê Auto 2 HsL t 13

14 Esercizio L istante e la posizione il cui le velocità sono le stesse v 1 = v 2 v 01 = a 0 *t t v = 20/2 s = 10 s x 1 (t v ) = x 01 + v 01 * t v = *10 = 325 m x 2 (t v ) = a 0 *(t v )2 /2 = 100 m 14

15 Esercizio HmêsL v Auto Auto 1 Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê HsL t 15

16 Esercizio (soluzione) Qual è la velocità della seconda macchina quando raggiunge la prima? La seconda auto raggiunge la prima dopo t = 25 s. Quindi: v 2 (25) = a 0 *t = 50 m/s Fisica con elementi di matematica - CINEMATICA 1D 16

17 Esercizio (Traccia) Un uomo di 70.0 kg salta da una finestra nella rete dei vigili del fuoco tesa a 11.0 m più in basso. 1. Calcolare la velocità dell uomo quando tocca la rete. 17

18 Esercizio (soluzione) Moto in caduta libera dell uomo per 11.0 m, con velocità iniziale pari a zero; Importante: MOTO IN CADUTA LIBERA SIGNIFICA CHE C E ACCELERAZIONE DI GRAVITA g = 9.8 m/s 2, DIRETTA VERSO IL BASSO. 18

19 SOLUZIONE v 0 = 0 h 0 = 11 m g = 9.8 m/s Caduta libera: Moto rettilineo unif. accelerato h 0 g 0 19

20 SOLUZIONE Caduta libera: Moto rettilineo unif. accelerato y = y 0 + v 0 t + at 2 / 2= h 0 g*t 2 / 2à h 0 g 0 20

21 SOLUZIONE Caduta libera: Moto rettilineo unif. Accelerato Per conoscere la velocità a terra devo conoscere il tempo che il corpo impiega per arrivare nella posizione 0 Condizione: y(t) = 0 h 0 g*t 2 /2 = 0 t = (2*h 0 /g) 1/2 = 1.5 s 21

22 SOLUZIONE v = - gt = - 9,8* 1.5 = m/s g v = -gt = 9,8* 1.5 = m/s v 22

23 Esercizio (traccia) n Un treno transita alle 15,28 nella stazione A alla velocità v A = 60 km/h e deve raggiungere la stazione B distante s = 20 km da A alle 15,43 1. Quale accelerazione deve dare il macchinista per poter raggiungere B in perfetto orario? 2. Con quale velocità v 2 passerà il treno nella stazione B? 3. Se in B il macchinista trova il segnale rosso di arresto, in quanto tempo può far fermare il treno applicando una decelerazione di modulo 3 m/s 2? 23

24 Esercizio (soluzione) n Dati iniziali: Istante iniziale t 1 = 15 h 28 min, istante finale t 2 = 15 h 43 min Δt = 15 min = 900 s velocità. iniz. v A = 60 km/h = 16.7 m/s distanza fra A e B s = 20 km = m a A B v A v B 0 20 km x 24

25 Quale accelerazione deve dare il macchinista per poter raggiungere B in perfetto orario? Nel moto uniformemente accelerato abbiamo: x (t) = v A *t + a *(t) 2 /2 (la posizione iniziale è la stazione A ed è posta = 0) In questo caso considerando che il treno impiega Δt = 900 s per andare da A a B otteniamo x (Δt) = v A *Δt + a *(Δt) 2 /2 à s = v A *Δt + a *(Δt) 2 /2 a = 2 *(x v A *Δt)/Δt 2 = 2 *( *900)/(900) 2 m/s 2 = m/s 2 25

26 Esercizio (soluzione) Con quale velocità v 2 passerà il treno nella stazione B? Nel moto uniformemente accelerato abbiamo: v B = v A + a*(δt) = m/s A a B v A v B 0 20 km 26

27 n Se in B il macchinista trova il segnale rosso di arresto, in quanto tempo può far fermare il treno applicando una decelerazione in modulo di 3 m/s 2? d = 3 m/s 2 d A B v B C 0 27

28 Siccome sappiamo che alla fine la sua velocità sarà pari a 0 (il treno si ferma!!!) possiamo scrivere 0 = v 2 - d*t t = v 2 /d = 27.77/3 s = 9.26 s d A B v B C 0 28

29 Esercizio (traccia) n Un prestigiatore si esibisce in una stanza il cui soffitto si trova a 2.70 m al di sopra delle sue mani. Egli lancia una palla verticalmente verso l alto in modo che essa raggiunga esattamente il soffitto prima di fermarsi. Calcolare: 1. La velocità iniziale con cui viene lanciata la palla. 2. Il tempo necessario affinché essa raggiunga il soffitto. 29

30 n Dati iniziali: Esercizio (soluzione) Altezza soffitto h = 2.7 m Pongo l origine degli assi (e quindi la quota 0 di y) all altezza delle mani del prestigiatore y h g v0 0 30

31 Esercizio (soluzione) Velocità iniziale con cui viene lanciata la palla? Consideriamo le equazioni del moto rettilineo unif. accelerato applicate al nostro caso: h = v 0 *t g*t 2 /2 0 = v 0 g*t h v0 g 0 Abbiamo 2 equazioni in 2 incognite, risolviamo il sistema: 31

32 Esercizio (soluzione) n Dalla seconda otteniamo t = v 0 /g ; sostituita nella prima otteniamo: h = v 0* (v 0 /g ) - g*(v 0 /g ) 2 /2 = v 02 /g - v 02 /(2g) = v 02 /(2g) e quindi: v 0 2 = 2 g*h = 2 x (9.8) x 2.7 = (m/s) 2 da cui v 0 = 7.27 m/s 32

33 Esercizio (soluzione) Il tempo necessario affinché essa raggiunga il soffitto? Ora possiamo rispondere anche alla seconda domanda riutilizzando la formula trovata prima: n t = v 0 /g = 7.27/9.8 = 0.74 s 33

34 Esercizio (traccia) In una gara di corsa sui 100 m, un atleta taglia il traguardo con un tempo di 10.2 sec. Il corridore raggiunge la sua velocità massima dopo 2 sec, con una accelerazione costante. Una volta raggiunta la velocità massima, la mantiene sino all arrivo. Calcolare: l accelerazione; la velocità massima raggiunta. 34

35 Esercizio (soluzione) n Dati iniziali: Tempo totale T = 10.2 s, L atleta raggiunge v max dopo t 1 = 2 s Spazio totale percorso s = 100 m a 0 m 100 m 35

36 Esercizio (soluzione) a 0 m 100 m Possiamo dividere il problema in due fasi: L atleta raggiunge la velocità massima da fermo (moto uniformemente accelerato per t 1 = 2 s) L atleta continua la corsa con velocità costante (moto rettilineo uniforme per t 2 = = 8.2 s) 36

37 Accelerazione primo tratto? Esercizio (soluzione) Nella prima fase abbiamo x = a*t 2 /2, v = a*t (parte dall origine e da fermo) Dopo t 1 = 2 s (alla fine del tratto rettilineo unif. accelerato) avrà compiuto uno spazio x 1 = 2*a e avrà raggiunto la velocità di v 1 = 2*a Nella seconda fase l atleta si muoverà di moto rettilineo unif. per t 3 = 8.2 s partendo da x 1 e mantenendo costante la velocità v 1 : x = x 1 + v 1 * t 3 Considerando x = 100 m otteniamo: 2*a+ 2*a *(8.2) = 100 m a = 5.44 m/s 2 37

38 Esercizio (soluzione) Velocità massima =? v 1 = a*t 1 = 5.44 * 2 m/s = m/s 38

39 Esercizio (traccia) Un aereo atterra ad una velocità v 0 = 100 m/s e per per fermarsi può decelerare al massimo di 5 m/s 2 in modulo. 1. Dall istante in cui l aereo tocca terra qual è l intervallo minimo necessario per fermarsi? 2. L aereo può atterrare su una pista di 800 m? 39

40 Soluzione Dati: v 0 = 100 m/s a = 5 m/s 2 Considero come origine il punto in cui l aero atterra v 0 a 0 40

41 Soluzione Tempo necessario affinché l aero si fermi? Moto rettilineo unif. accelerato Condizione affinché l aero si fermi è che la velocità finale sia zero v = v 0 a*t = 0 t = 100/5 = 20 s v 0 a 0 41

42 Soluzione L aereo può atterrare su una pista di 800 m? Per sapere se l aero atterra in 800 m calcoliamo lo spazio necessario all aero per fermarsi e lo confrontiamo con 800 m Il moto come sappiamo e rettilineo unif. accelerato uso la formula: v f 2 v 0 2 = 2*a*(x f x 0 ) Chiamando (x f x 0 ) = Δx Otteniamo: Δx = 1000 m > 800 m Quindi l aero non riuscirà ad atterrare su una pista di 800 m 42

Esercizi di Cinematica Unidimensionale. Fisica con Elementi di Matematica 1

Esercizi di Cinematica Unidimensionale. Fisica con Elementi di Matematica 1 Esercizi di Cinematica Unidimensionale 1 MOTO UNIFORME a = 0, v = cost,, x = x1 x +vt 2 Moto Uniformemente Moto Uniformemente Accelerato Accelerato a = cost. v = v 0 +at x = x 0 +v 0 t+at 2 /2 v 2 - v0

Dettagli

Problema 1. D= 1 2 at2 1 v f = at 1

Problema 1. D= 1 2 at2 1 v f = at 1 1 Problema 1 Una vettura di Formula 1 parte da fermo, con accelerazione costante a per un tratto D=400 m in cui raggiunge la velocitá massima v f. Al tempo T = 16.5 s ha percorso L=1 km (tutto in rettilineo).

Dettagli

Monaco Alfonso. Cinematica 2d

Monaco Alfonso. Cinematica 2d Monaco Alfonso Cinematica 2d 1 Moto parabolico n n n Il moto nelle direzioni e possono essere separati Nella direzione il moto è rettilineo uniforme Nella direzione il moto è uniformemente accelerato (per

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

FISICA. Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione;

FISICA. Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione; FISICA Serie 6: Cinematica del punto materiale V I liceo Esercizio 1 Alcuni esempi Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione; b)...un corpo

Dettagli

Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Moto rettilineo uniforme

Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Moto rettilineo uniforme Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Problema 1. Moto rettilineo uniforme Una fanciulla A si muove da casa in bicicletta alla velocità costante di 36 km/h;

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia

Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia Ninfa Radicella ninfa.radicella@sa.infn.it Università degli Studi del Sannio 30 Marzo 2016 Testi utilizzabili Principi di Fisica, Vol

Dettagli

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie Problema n. 1: Un velocista corre i 100 m piani in 10 s. Si approssimi il suo moto ipotizzando che egli abbia un accelerazione costante nei primi 16 m e poi un velocità costante nei rimanenti 84 m. Si

Dettagli

Modulo di Fisica (F-N) A.A MECCANICA

Modulo di Fisica (F-N) A.A MECCANICA Modulo di Fisica (F-N) A.A. 2016-2017 MECCANICA COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA

Dettagli

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006 CORSO A 13 OTTOBRE 2006 Esercizio 1 - Ad una valigia di massa 6 Kg appoggiata su un piano xy privo di attrito vengono applicate contemporaneamente due forze costanti parallele al piano. La prima ha modulo

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

Cinematica. A.Solano - Fisica - CTF

Cinematica. A.Solano - Fisica - CTF Cinematica Posizione, spostamento, traiettoria Velocità media e istantanea Accelerazione media e istantanea Moto rettilineo uniforme Moto rettilineo uniformemente accelerato Oggetti in caduta libera Moto

Dettagli

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza?

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza? ESERCIZI SUL MOTO Un'automobile compie un viaggio di 100 km in tre tappe: 20 km a 60 km/h, 40 km a 80 km/h e 40 km a 30 km/h. Calcolare il tempo impiegato nel viaggio e la velocità media dell'automobile.

Dettagli

MECCANICA. Si occupa dei fenomeni connessi al MOVIMENTO dei corpi. CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA

MECCANICA. Si occupa dei fenomeni connessi al MOVIMENTO dei corpi. CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA MECCANICA Si occupa dei fenomeni connessi al MOVIMENTO dei corpi CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA DINAMICA: causa del movimento = Forza F STATICA: fenomeni di non alterazione

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione di gravità Moto di un proiettile

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione di gravità Moto di un proiettile Corsi di Laurea in Scienze motorie - Classe L- (D.M. 70/04) Prof. Maria Giovanna Guerrisi Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione

Dettagli

Cinematica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Cinematica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Cinematica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Si consideri un automobilista che, dopo aver percorso una strada rettilinea per 8.

Dettagli

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3 Serway, Jewett Principi di Fisica IV Ed. Capitolo 3 Moti in due dimensioni Caso bidimensionale: tutte le grandezze viste fino ad ora (posizione, velocità, accelerazione devono essere trattate come vettori).

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA Sommario INTRODUZIONE ALLA CINEMATICA... 3 MOTO RETTILINEO UNIFORMEMENTE ACCELERATO...

Dettagli

Domande ed esercizi sul moto rettilineo uniformemente accelerato

Domande ed esercizi sul moto rettilineo uniformemente accelerato 1. Come si definisce la grandezza fisica accelerazione e qual è l unità di misura nel SI? 2. Come si definisce l accelerazione istantanea? 3. Come si definisce il moto rettilineo uniformemente accelerato?

Dettagli

Cinematica nello Spazio

Cinematica nello Spazio Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu

Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu Animalium, forse il primo trattato di Biomeccanica. Questo

Dettagli

Nozioni di meccanica classica

Nozioni di meccanica classica Nozioni di meccanica classica CORSO DI LAUREA IN TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA - Prof. Marco Maggiora Jacopo Pellegrino - jacopo.pellegrino@infn.it Introduzione Introduzione

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

Esercizi svolti di dinamica

Esercizi svolti di dinamica Esercizi svolti di dinamica Problema Una cassa si trova in cima ad un piano inclinato di 30, ad un altezza di 5 m dal suolo Sul piano inclinato è presente attrito dinamico di coefficiente µ = 0, La cassa

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Moto Rettilineo Uniformemente accelerato

Moto Rettilineo Uniformemente accelerato 1. Nel grafico seguente, che cosa è rappresentato? 32 2. Spiega come, in generale, si possono ricavare dal grafico della legge della velocità lo spazio percorso da un oggetto in movimento e la legge oraria.

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Lezione 2 Sistemi di riferimento

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

MOTO E LEGGI ORARIE. Due oggetti si muovono secondo le seguenti leggi orarie:

MOTO E LEGGI ORARIE. Due oggetti si muovono secondo le seguenti leggi orarie: ESERCIZIO N 1 MOTO E LEGGI ORARIE Due oggetti si muovono secondo le seguenti leggi orarie: y 5t x 6t 4t 1 Di ognuno di essi si dica: a) tipo di moto e di traiettoria b) posizione iniziale c) velocità iniziale

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi seconde - Fisica CONTENUTI SECONDO ANNO MODULO LE FORZE E IL MOTO Conoscenze Significato e unità di misura della velocità Legge

Dettagli

Il movimento dei corpi

Il movimento dei corpi 1 Per stabilire se un corpo si muove oppure no è necessario riferirsi a qualcosa che sicuramente è fermo. È necessario scegliere un sistema di riferimento. 1. Un passeggero di un treno in moto appare fermo

Dettagli

CINEMATICA: MRU e MRUA. November 15, moto rettilineo uniforme. moto rettilineo. uniformemente accelerato. moto rettilineo.

CINEMATICA: MRU e MRUA. November 15, moto rettilineo uniforme. moto rettilineo. uniformemente accelerato. moto rettilineo. CINEMATICA: moto rettilineo uniforme moto rettilineo uniformemente accelerato moto parabolico moto armonico 1 2 3 4 1 moto rettilineo uniforme v = costante si percorrono spazi uguali in tempi uguali (accelerazione

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizi i Cinematica 9 settembre 009 Capitolo 1 Moti in una imensione 1.1 Problemi svolti 1. velocità meia Un automobile viaggia per un certo tempo T alla velocità i 40 km/h e poi per lo stesso tempo

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Movimento dei corpi 1

Movimento dei corpi 1 Movimento dei corpi 1 1. Corpo in quiete e corpo in moto Un corpo rispetto a un sistema di riferimento si dice in moto se cambia la sua posizione nel tempo; si dice in quiete se non cambia la sua posizione

Dettagli

I tre record di Felix Baumgartner

I tre record di Felix Baumgartner I tre record di Felix Baumgartner Il 14 ottobre 01, Felix Baumgartner ha realizzato un lancio storico ottenendo tre record mondiali, quello della maggiore altezza raggiunta da un uomo in una ascesa con

Dettagli

I concetti fondamentali

I concetti fondamentali I concetti fondamentali La luce 1 Un raggio luminoso è un di luce molto, che rappresentiamo con una I raggi luminosi si propagano in 2 Leggi della riflessione. Prima legge: il raggio incidente, il raggio

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA

Dettagli

Esercizi Moto in una dimensione

Esercizi Moto in una dimensione Esercizi Moto in una dimensione 1. Considerando il seguente grafico che rappresenta la posizione rispetto al tempo, nell intervallo tra il punto A e il punto B, dire quale delle seguenti affermazioni elencate

Dettagli

La Cinematica. Problemi di Fisica. Moti unidimensionali

La Cinematica. Problemi di Fisica. Moti unidimensionali Problemi di Fisica Moti unidimensionali Sei in un automobile che sta andando in autostrada. Quale sarà la tua traiettoria rispetto al sistema di riferimento automobile che sta sorpassando? Il moto è un

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Cinematica del punto. Moto rettilineo. Dott.ssa Elisabetta Bissaldi

Cinematica del punto. Moto rettilineo. Dott.ssa Elisabetta Bissaldi Cinematica del punto Moto rettilineo Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 La meccanica Studia il MOTO DEI CORPI Spiega la relazione tra le CAUSE che generano

Dettagli

SOLUZIONI ESONERO DEL 1 APRILE 2015 Fisica per Ingegneria Gestionale A- L

SOLUZIONI ESONERO DEL 1 APRILE 2015 Fisica per Ingegneria Gestionale A- L SOLUZIONI ESONERO DEL 1 APRILE 2015 Fisica per Ingegneria Gestionale A- L I valori numerici inseriti nei diversi compiti sono identificati dal pianeta denominato pianeta A nell esercizio 4. 1) Un aereo

Dettagli

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi CINEMATICA Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi Definiamo: spostamento la velocità media la velocità istantanea MOTO RETTILINEO UNIFORME Nel moto re4lineo uniforme:

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò 1 ESERCIZI CINEMATICA UNIDIMENSIONALE Dott.ssa Silvia Rainò CALCOLO DIMENSIONALE 2 Una grandezza G in fisica dimensionalmente si scrive [G] = [M a L b T g K d ] Ove a,b,g,d sono opportuni esponenti. Ad

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Fisica Medica Esercizi

Fisica Medica Esercizi Fisica Medica Esercizi Roberto Guerra roberto.guerra@unimi.it Dipartimento di Fisica Università degli studi di Milano (1) Data la seguente equazione: L = 2P V /x t a) ricavare x in funzione delle altre

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

Compiti per le vacanze di FISICA. Indicazioni per il recupero e per il consolidamento di MATEMATICA

Compiti per le vacanze di FISICA. Indicazioni per il recupero e per il consolidamento di MATEMATICA ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011 Via G. Carducci 4 21052 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli

2) Calcolare il peso di un corpo di m = 700 Kg e di un camion di 3 tonnellate?

2) Calcolare il peso di un corpo di m = 700 Kg e di un camion di 3 tonnellate? ESERCIZI Dinamica 1) Si consideri un corpo di massa m = 5 Kg fermo soggetto a F = 5 N costante lungo l orizzontale. Ricavare le equazioni del moto e trovare lo spostamento dopo 5 sec. Se la forza ha direzione

Dettagli

CINEMATICA BIDIMENSIONALE

CINEMATICA BIDIMENSIONALE CINEMATICA BIDIMENSIONALE CdL Farmacia Corso (A - E) A.A. 2015/16 1 Dott. Silvia Rainò Università di Bari Email: silvia.raino@ba.infn.it silvia.raino@uniba.it Pagine web: www.ba.infn.it/sraino Ufficio:

Dettagli

Problemi di dinamica

Problemi di dinamica Problemi di dinamica Cosa vogliamo scoprire? Come si muove un corpo Cosa sappiamo? Quali forze agiscono sul corpo Com'è fatto l'ambiente in cui si muove il corpo Che velocità e che posizione occupava il

Dettagli

ESERCITAZIONE 27 MARZO 2017 GEOLOGIA CINEMATICA

ESERCITAZIONE 27 MARZO 2017 GEOLOGIA CINEMATICA ESERCITAZIONE 27 MARZO 2017 GEOLOGIA CINEMATICA ESERCIZIO 1 Un auto che si muove con velocità iniziale pari a 36 Km/h aumenta la velocità con accelerazione costante pari a 2 m/s2, il moto è rettilineo.

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

l'attrito dinamico di ciascuno dei tre blocchi sia pari a.

l'attrito dinamico di ciascuno dei tre blocchi sia pari a. Esercizio 1 Tre blocchi di massa rispettivamente Kg, Kg e Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura). Sul blocco agisce una forza orizzontale pari a N. Si determini l'accelerazione

Dettagli

Piano cartesiano. O asse delle ascisse

Piano cartesiano. O asse delle ascisse Piano cartesiano E costituito da due rette orientate e perpendicolari tra di loro chiamate assi di riferimento. Il loro punto di intersezione O si chiama origine del riferimento. L asse orizzontale è detto

Dettagli

FISICA. Questi problemi si risolvono utilizzando la seconda legge di Newton F = m a che può scriversi, utilizzando le intensità. F = ma.

FISICA. Questi problemi si risolvono utilizzando la seconda legge di Newton F = m a che può scriversi, utilizzando le intensità. F = ma. Serie 9: Soluzioni FISICA I liceo Esercizio 1 Seconda legge di Newton Questi problemi si risolvono utilizzando la seconda legge di Newton F = m a che può scriversi, utilizzando le intensità Ricorda che

Dettagli

L accelerazione. Quando la velocità cambia.

L accelerazione. Quando la velocità cambia. L accelerazione Quando la velocità cambia. Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento

Dettagli

Esercizi in preparazione all esonero

Esercizi in preparazione all esonero Esercizi in preparazione all esonero Andrea Susa Esercizio Un sasso viene lanciato verso l'alto a partire dall'altezza h = 50 rispetto al suolo con una velocità iniziale di modulo = 8,5/. Supponendo il

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

CINEMATICA

CINEMATICA CINEMATICA CINEMATICA CINEMATICA CINEMATICA CINEMATICA CINEMATICA CINEMATICA NOZIONI INTRODUTTIVE NOZIONI INTRODUTTIVE! " NOZIONI INTRODUTTIVE! " NOZIONI INTRODUTTIVE! " NOZIONI INTRODUTTIVE NOZIONI INTRODUTTIVE

Dettagli

c) il tempo che la palla impiega per raggiungere il suolo; d) la velocità con cui giunge a terra.

c) il tempo che la palla impiega per raggiungere il suolo; d) la velocità con cui giunge a terra. Alle Olimpiadi di Torino 2006, la pista di slittino era lunga 1435 m. Nella prima discesa, il tedesco M. Hackl ha realizzato un tempo di 44,55 s. Calcola la sua velocità media in m/s e in km/h. Durante

Dettagli

Test. 2 Nel rettilineo finale di una corsa campestre si registrano i tempi di passaggio per quattro postazioni: 5 min 59 s

Test. 2 Nel rettilineo finale di una corsa campestre si registrano i tempi di passaggio per quattro postazioni: 5 min 59 s Test 1 Un corpo in moto può essere considerato un punto materiale quando: A le sue dimensioni sono molto più piccole della distanza che percorre. B è sferico. C è molto leggero. D è più piccolo di una

Dettagli

Esercitazione 1. Soluzione

Esercitazione 1. Soluzione Esercitazione 1 Esercizio 1 - Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza

Dettagli

Oggetti puntiformi. Può essere puntiforme un ippopotamo? È importante la sua rotazione? Sono importanti le sue dimensioni? Urta altri ippopotami?

Oggetti puntiformi. Può essere puntiforme un ippopotamo? È importante la sua rotazione? Sono importanti le sue dimensioni? Urta altri ippopotami? Oggetti puntiformi Può essere puntiforme un ippopotamo? È importante la sua rotazione? Sono importanti le sue dimensioni? Urta altri ippopotami? Sistemi di riferimento Fisso un'origine per i miei assi

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

Fisica 1 Anno Accademico 2011/2011

Fisica 1 Anno Accademico 2011/2011 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 011/011 (1 Marzo - 17 Marzo 01) Sintesi Abbiamo introdotto lo studio del moto di un punto materiale partendo da un approccio cinematico.

Dettagli

Fisica applicata Lezione 5

Fisica applicata Lezione 5 Fisica applicata Lezione 5 Maurizio Tomasi maurizio.tomasi@unimi.it Dipartimento di Fisica Università degli studi di Milano 8 Novembre 2016 Parte I Lavoro ed energia Definizione di lavoro Il lavoro L compiuto

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Esercitazioni di fisica

Esercitazioni di fisica Esercitazioni di fisica Alessandro Berra 4 marzo 2014 1 Cinematica 1 Un corpo puntiforme, partendo da fermo, si muove per un tempo t 1 = 10 s con accelerazione costante a 1 = g/3, prosegue per t 2 = 15

Dettagli

a) il tempo impiegato prima che il proiettile cada al suolo. b) il tempo per raggiungere la quota massima e la quota massima raggiunta;

a) il tempo impiegato prima che il proiettile cada al suolo. b) il tempo per raggiungere la quota massima e la quota massima raggiunta; Traccia A 1. Un proiettile viene sparato da una torre alta h = 30 m con una angolazione di α=30 rispetto all orizzontale. Se la velocità iniziale è di 2m/s,. Calcolare: a) il tempo impiegato prima che

Dettagli

FISICA. La Dinamica: le forze e il moto. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. La Dinamica: le forze e il moto. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA La Dinamica: le forze e il moto Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA FORZA PESO Come anticipato nella Cinematica, in assenza di attrito con l aria, un oggetto in caduta

Dettagli

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 1 Unità di misura Cinematica Posizione e sistema di riferimento....... 3 La velocità e il moto rettilineo uniforme..... 4 La velocità istantanea... 5 L accelerazione 6 Grafici temporali.

Dettagli

CINEMATICA. Prof Giovanni Ianne

CINEMATICA. Prof Giovanni Ianne CINEMATICA Il moto e la velocità L accelerazione Moto rettilineo uniforme Moto rettilineo uniformemente accelerato Moti periodici e composti il moto e la velocità Un corpo è in moto quando la sua posizione

Dettagli

Calcoliamo il tempo in cui la freccia arriva al punto C (punto di salvezza).

Calcoliamo il tempo in cui la freccia arriva al punto C (punto di salvezza). Problema 1 In un cortometraggio il topo armato di arco e freccia minaccia il gatto che fugge. Quando il gatto ha solo 10 metri davanti a sé per raggiungere la salvezza, il topo si ferma a 40 m dal gatto,

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Cap 1 - Cinematica (Mazzoldi)

Cap 1 - Cinematica (Mazzoldi) 1 DEFINIZIONI COMUNI NELLA MECCANICA Cap 1 - Cinematica (Mazzoldi) Cap 1 - Cinematica (Mazzoldi) La meccanica è la parte della fisica che studia il moto dei corpi e le cause del loro moto. Per trovare

Dettagli

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo;

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo; 1 Esercizio Un sasso di massa m.5 Kg viene lanciato dalla cima di una torre alta h 2 m con velocità iniziale di modulo v 12 m/s, ad un angolo ϕ 6 o rispetto all orizzontale. La torre si trova in prossimità

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? Soluzione. Dalla relazione = +

Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? Soluzione. Dalla relazione = + MOTO RETTILINEO UNIFORMEMENTE ACCELERATO Esercizi Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? = + si ottiene 240=0+ 12 ; 12=240 ; =20. Pertanto

Dettagli