Lavoro. In generale il lavoro compiuto dalle forze su un sistema di corpi è: F i dl i = E ci L F =

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lavoro. In generale il lavoro compiuto dalle forze su un sistema di corpi è: F i dl i = E ci L F ="

Transcript

1 Lavoro In generale il lavoro compiuto dalle forze su un sistema di corpi è: L F = F i dl i = E ci i C i Usando il teorema di Koenig sull energia cinetica siamo in grado di esprimere i E c i in termini dell energia cinetica del centro di massa e dell energia cinetica calcolata nel sistema del centro di massa: E ci = 1 2 M totvcm m i (v 2 i) 2 i i 1 / 20 Occorre notare che per forze intendiamo sia forze interne che forze esterne!

2 Lavoro su un corpo rigido Per un corpo rigido poi è possibile esprimere l energia cinetica calcolata nel sistema del centro di massa in termini del momento d inerzia di un corpo e della velocità angolare (se abbiamo un asse fisso di rotazione): E ci = 1 2 M totvcm I asseω 2 i Visto che il corpo è rigido il lavoro compiuto dalle forze interne si annulla (perchè?). Possiamo scrivere quindi per il lavoro compiuto dalle forze esterne al variare della velocità del centro di massa e/o della velocità angolare: L F (E) = 1 2 M tot (v 2 CM) I asse (ω 2 ) = = 1 2 M tot((v F CM) 2 (v I CM) 2 ) I asse(ω 2 F ω 2 I ) 2 / 20

3 Potenza sviluppata su un corpo rigido La media sviluppata dalle forze esterne su un corpo rigido è in un intervallo di tempo è semplicemente: Per la istantanea abbiamo: P F (E)(t) = L F (E) t = Ec t P F (E)(t) = dl F (E) dt Se conosciamo l andamento temporale della velocità del centro di massa e della velocità angolare - abbiamo: 3 / 20 P F (E) = dl F (E) dt dl F (E) dt = 1 2 Mtot d v CM v CM dt = M a CM v CM + Iω dω dt = = F (E) v CM + Iω dω dt I d(ω2 ) dt =

4 Fluido ideale Un fluido può essere modellizzato come un corpo esteso non rigido a cui è possibile applicare alcuni dei concetti visti per il corpo rigido. Le caratteristiche dinamiche di un fluido restano definite dalle equazioni cardinali quando ne conosciamo la densità in ogni punto M(x) ρ(x) = lim e le forze che agiscono tra elementi del V (x) 0 V (x) fluido. Un volumetto V del fluido può essere pensato come un elemento del fluido stesso. In maniera elementare parliamo di fluido ideale nel caso di: 4 / 20 non compressibilità: il volume totale occupato dal fluido non può essere variato, ovvero la forza che il fluido oppone ad una sua variazione di volume è arbitrariamente elevata. viscosità nulla: tra due elementi del fluido non esistono forze tangenziali, l attrito interno è nullo. Come conseguenza, il lavoro compiuto dalle forze interne al variare della forma del fluido è nullo.

5 Equilibrio di un fluido Sugli elementi di un fluido pesante agiscono forze per mantenere l equilibrio. 5 / 20

6 Equilibrio di un fluido Sugli elementi di un fluido pesante agiscono forze per mantenere l equilibrio. F = mg = πr 2 hρ g = = Shρg F S = hρ g 6 / 20

7 Equilibrio di un fluido Sugli elementi di un fluido pesante agiscono forze per mantenere l equilibrio. F = mg = πr 2 hρ g = = Shρg F S = hρ g F S = m S g = S hρ g F S S = hρg = F S 7 / 20

8 Pressione 8 / 20 Risulta conveniente introdurre una nuova grandezza fisica, la pressione. La pressione è una grandezza VETTO- RIALE che si definisce data una forza applicata su un punto di una superficie. La pressione esercitata sulla superficie è P (x) = F (x) n(x) n((x)). S Nel sistema internazionale l unità di misura della pressione è il kg s 2 m 1. Una forza di 1 N che agisce su una superficie di 1 m 2 esercita una pressione di 1 Pa. Un altra unità di misura è la pressione atmosferica standard: 1 atm = Pa. Viene usato normalmente anche il bar (1 bar = 10 5 Pa), per cui approssimativamente 1 bar 1 atm.

9 Pressione in un fluido ideale La forza che un fluido ideale esercita su una superficie è sempre perpendicolare alla superficie stessa - non ci sono forze di attrito: ne deriva che la pressione su una superficie è indipendente dall orientamento della superficie stessa. mg = F 1 + F 2 + F 3 m = V ρ = 1 2 b3 cos(θ) sin(θ)ρ F 1 = p(x) ds = p S = S = p b 2 F 1 = x p b 2 sin(θ) ŷ p b 2 cos(θ) F 2 = x p x b 2 sin(θ) F 3 = ŷ p y b 2 cos(θ) p x = p p y = p b sin(θ)ρg 9 / 20 lim py = lim px = lim p = S 0 S 0 S 0

10 Legge di Stevino Possiamo determinare la pressione in un fluido in funzione della profondità nel fluido. dm g = F + df F = df ρgs dz = S dp dp dz = ρg z2 p(z 2 ) p(z 1 ) = gρ(z) dz z 1 p(z 2 ) p(z 1 ) = ρg(z 2 z 1 ) 10 / 20

11 Vasi comunicanti p(h 1 ) p(h 3 ) = gρ 1 (h 1 h 3 ) p(h 2 ) p(h 3 ) = gρ 2 (h 2 h 3 ) 11 / 20

12 Vasi comunicanti p(h 1 ) p(h 3 ) = gρ 1 (h 1 h 3 ) p(h 2 ) p(h 3 ) = gρ 2 (h 2 h 3 ) 1 atm p(h 3 ) = gρ 1 (h 1 h 3 ) 1 atm p(h 3 ) = gρ 2 (h 2 h 3 ) 12 / 20

13 Vasi comunicanti p(h 1 ) p(h 3 ) = gρ 1 (h 1 h 3 ) p(h 2 ) p(h 3 ) = gρ 2 (h 2 h 3 ) 1 atm p(h 3 ) = gρ 1 (h 1 h 3 ) 1 atm p(h 3 ) = gρ 2 (h 2 h 3 ) ρ 1 (h 1 h 3 ) = ρ 2 (h 2 h 3 ) 13 / 20

14 Vasi comunicanti ρ 1 (h 1 h 3 ) = ρ 2 (h 2 h 3 ) ρ 1 = ρ 2 h 1 = h 2 14 / 20

15 Esempio: diga df = P (z) ds df = Lρg(h z) dz h F = Lρg(h z) dz = 0 = 1 2 Lρgh2 15 / 20

16 Esempio: diga df = P (z) ds df = Lρg(h z) dz h F = Lρg(h z) dz = 0 = 1 2 Lρgh2 dm = P (z)z ds dm = Lρg(h z)z dz h M = Lρg(h z)z dz = 0 = 1 6 Lρgh3 16 / 20

17 Legge di Archimede La legge di Archimede dice che un corpo immerso in un fluido riceve una spinta verso l alto pari al peso del fluido spostato. Semplicemente in assenza del corpo il suo volume è occupato da fluido all equilibrio, sul quale agisce per effetto della pressione circostante una forza tale da equilibrare il suo peso: da cui la legge. Verso l alto significa in direzione opposta alla forza - peso solo nel caso in cui la gravità sia l unica forza che agirebbe sul volume di fluido - che agirebbe sul volume di fluido. 17 / 20

18 Esempio Una spugna di forma sferica, di raggio R e di massa M, viene appoggiata sull acqua e dopo un po, quando l assorbimento di acqua si arresta resta immersa per la metà del suo volume. Determinare la massa M ass dell acqua assorbita dalla spugna (si supponga che l acqua sia distribuita uniformemente all interno della spugna, sia nella parte immersa che nella parte emersa) A questo punto la spugna viene spremuta, sott acqua, in modo da far uscire parte dell aria rimasta intrappolata e consentire, nel successivo rilassamento verso la forma sferica, ulteriore assorbimento d acqua. Quanta deve essere l acqua assorbita perché la spugna resti immersa completamente nell acqua senza affondare? 18 / 20

19 Esempio Una pentola, di forma arbitraria, ma il cui interno è un cilindro del diametro d, e di massa M galleggia sopra il pelo dell acqua in un lavandino a forma di cubo, di lato l. Da un rubinetto viene versata acqua nell interno della pentola, e se ne misura il livello all interno, pari a h 1. Determinare il volume V occupato dalla parte immersa della pentola. A partire da questa situazione viene aggiunta ulteriore acqua nella pentola, fino a quando la pentola non è completamente immersa, con la superficie superiore a pelo dell acqua. Si nota che il livello dell acqua nel lavandino è salito di un altezza h l. Determinare in questa seconda situazione l altezza dell acqua nella pentola h 2. In queste condizioni si nota che la distanza tra il livello del acqua nella pentola e il bordo della pentola è h p. Determinare la densità della pentola. 19 / 20

20 Esempio Una sfera metallica cava di raggio esterno R e raggio interno ignoto R i galleggia, in equilibrio, immersa in acqua distillata esattamente per metà. Attaccando al fondo della sfera un corpo di massa m e volume trascurabile, la sfera e il suo carico stanno in equilibrio completamente immersi. Determinare la massa m dell oggetto aggiunto. Si prova ad ottenere lo stesso effetto di affondamento spingendo giù la sfera tramite un raddoppio p a = 2p a della pressione esterna dell aria. Determinare di quanto si immerge la sfera, motivando la risposta. Sapendo che il materiale di cui è composto la sfera ha densità ρ 20 / 20 determinare il raggio interno R i.

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

STATICA E DINAMICA DEI FLUIDI

STATICA E DINAMICA DEI FLUIDI STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati

Dettagli

Lezione 9. Statica dei fluidi

Lezione 9. Statica dei fluidi Lezione 9 Statica dei fluidi Meccanica dei fluidi Un fluido e un corpo che non ha una forma definita, ma che, se e contenuto da un contenitore solido, tende a occupare (riempire) una parte o tutto il volume

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

Fisica per Medicina. Lezione 7 - Statica e dinamica dei fluidi. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 7 - Statica e dinamica dei fluidi. Dr. Cristiano Fontana Fisica per Medicina Lezione 7 - Statica e dinamica dei fluidi Dr. Cristiano Fontana Dipartimento di Fisica ed stronomia Galileo Galilei Università degli Studi di Padova 3 novembre 2017 Indice Fluidi Statica

Dettagli

Prova parziale di recupero di Fisica Data: 7 Febbraio Fisica. 7 Febbraio Test a risposta singola

Prova parziale di recupero di Fisica Data: 7 Febbraio Fisica. 7 Febbraio Test a risposta singola Fisica 7 Febbraio 2012 Test a risposta singola ˆ Una grandezza fisica vale.2 ara tonn giorno 1. Sapendo che un ara è un quadrato di 10 m di lato, la stessa grandezza in unità del SI vale: 276.5 10 6 m

Dettagli

ESERCIZI FISICA I Lezione

ESERCIZI FISICA I Lezione ESERCIZI FISICA I Lezione 10 2018-06-04 Tutor: Alessandro Ursi alessandro.ursi@iaps.inaf.it ESERCIZIO 1 Due corpi di forme e volumi uguali, ma di sostanze diverse, sono disposti come in figura. La densità

Dettagli

1 La legge di Stevino.

1 La legge di Stevino. 1 La legge di Stevino. Ricordiamo la definizione di pressione come la forza per unita di superficie. P = F A (1) La Figura 1 mostra un contenitore con del liquido dove e segnato un immaginario parallelepipedo

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che il piano esercita sul blocco vale in modulo: F = 9.8 N F = 0.5 N F =

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Solidi, liquidi e gas 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Caratteristiche di un fluido FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene)

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Legge di Stevino La pressione in un liquido a densità costante cresce linearmente con la profondità Il principio di

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

ESERCIZI FISICA I Lezione

ESERCIZI FISICA I Lezione ESERCIZI FISICA I Lezione 12 2017-06-08 Tutor: Alessandro Ursi alessandro.ursi@iaps.inaf.it ESERCIZIO 1 Due corpi di forme e volumi uguali, ma di sostanze diverse, sono disposti come in figura. La densità

Dettagli

MECCANICA DEI FLUIDI

MECCANICA DEI FLUIDI MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte

Dettagli

Meccanica dei Fluidi. Fisica con Elementi di Matematica 1

Meccanica dei Fluidi. Fisica con Elementi di Matematica 1 Meccanica dei Fluidi Fisica con Elementi di Matematica 1 Alcuni concetti di base: Vi sono fenomeni fisici per i quali una descrizione in termini di forza, massa ed accelerazione non è la più adeguata.

Dettagli

STATICA EQUILIBRIO DEI FLUIDI

STATICA EQUILIBRIO DEI FLUIDI CONCETTO DI PRESSIONE CI SONO FENOMENI FISICI PER I QUALI UNA DESCRIZIONE IN TERMINI DI FORZA, MASSA ED ACCELERAZIONE NON È LA PIÙ ADEGUATA. Pensiamo, ad esempio ad una persona che cammina su un terreno

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

Meccanica Dinamica del corpo rigido Elementi di fluidodinamica

Meccanica Dinamica del corpo rigido Elementi di fluidodinamica Meccanica 17-18 Dinamica del corpo rigido Elementi di fluidodinamica x Assi principali d inerzia z ω u L O y OQ 1/ Z Q O I OQ X Y Ellissoide d inerizia L I ω u + I ω u + I ω u x x x y y y z z z e scegliamo

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

Equilibrio dei corpi rigidi e dei fluidi 1

Equilibrio dei corpi rigidi e dei fluidi 1 Equilibrio dei corpi rigidi e dei fluidi 1 2 Modulo 4 Modulo 4 Equilibrio dei corpi rigidi e dei fluidi 4.1. Momento di una forza 4.2. Equilibrio dei corpi rigidi 4.3. La pressione 4.4. Equilibrio dei

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015 Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 3 giugno 015 Problema 1 Si consideri un sistema costituito da un cilindro omogeneo di raggio R 1 = 10 cm e altezza h = 0 cm, inserito all

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Università degli Studi di Udine Corso di Laurea in Ingegneria Gestionale A.A. 05/06 Sessione di Giugno/Luglio 06 Esame di FISICA GENERALE CFU) Primo Appello PROVA SCRITTA 3 Giugno 06 TESTI E SOLUZIONI

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009 1) Meccanica: CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009 Una slitta di massa m=12 Kg si muove lungo un piano inclinato di 30, lungo s =10 metri. Sapendo che il coefficiente

Dettagli

Fisica 21 Gennaio 2013

Fisica 21 Gennaio 2013 Fisica 2 Gennaio 2 ˆ Esame meccanica: problemi, 2 e. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema Su un piano inclinato rispetto all orizzontale di gradi è posto un oggetto puntiforme di massa

Dettagli

V in A? V in B? V in C?

V in A? V in B? V in C? V in A? V in B? V in C? K + U 0 K + U K + U i i f f 1 e se c è attrito? (forze dissipative) L NC K + U F d att K + U F att d N Riassunto Grandezze vettoriali e scalari Le grandezze del moto Le cause del

Dettagli

Stati di aggregazione della materia:

Stati di aggregazione della materia: .d.l. Scienze orestali e Ambientali, A.A. 2012/2013, isica Stati di aggregazione della materia: Stato solido: tendono a conservare la loro forma. luidi non mantengono la loro forma. Liquidi Gas - scorrono

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi Meccanica dei Fluidi F.Fabrizi e P. Pennestrì Liceo Scientifico I. Newton - Roma Classe III D 15 marzo 2013 1 Definizione di Fluido Un fluido è un insieme di particelle che interagiscono tra loro con una

Dettagli

Stati di aggregazione della materia:

Stati di aggregazione della materia: Stati di aggregazione della materia: Stato solido: tendono a conservare la loro forma. Fluidi non mantengono la loro forma. Liquidi Gas - scorrono e prendono la forma del contenitore; - sono incomprimibili.

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola Fisica 15 Dicembre 2011 Test a risposta singola ˆ Una forza si dice conservativa quando: Il lavoro compiuto dalla forza su un qualsiasi cammino chiuso è nullo Il lavoro compiuto dalla forza su un qualsiasi

Dettagli

Corso di Idraulica Agraria ed Impianti Irrigui

Corso di Idraulica Agraria ed Impianti Irrigui Corso di Idraulica Agraria ed Impianti Irrigui Docente: Ing. Demetrio Antonio Zema Lezione n. 3: Idrostatica Anno Accademico 2011-2012 2012 1 Generalità L idrostatica è quella parte dell idraulica che

Dettagli

Fisica 21 Giugno 2012

Fisica 21 Giugno 2012 Esame di Fisica Data: Giugno Fisica Giugno ˆ Esame meccanica: problemi, e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema Un giocatore di baseball colpisce la palla, di massa m = 5 g per realizzare

Dettagli

Meccanica dei Fluidi - Fluidostatica -

Meccanica dei Fluidi - Fluidostatica - Meccanica dei Fluidi - Fluidostatica - STATI DI AGGREGAZIONE DELLA MATERIA Stato Solido: La sostanza ha volume e forma ben definiti. Stato Liquido: La sostanza ha volume ben definito, ma assume la forma

Dettagli

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore Meccanica dei luidi stati di aggregazione della materia: solidi liquidi gas fluidi assumono la forma del contenitore Caratteristiche di un fluido LUIDO sostanza senza forma propria (assume la forma del

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

ELEMENTI DI STATICA DEI FLUIDI

ELEMENTI DI STATICA DEI FLUIDI Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti ELEMENTI DI STATICA DEI FLUIDI 4.1 GENERALITÀ In generale si parla di materia allo stato fluido quando le forze di coesione

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

1) Che cos é la pressione? Qual è la sua unità di misura nel S.I.?

1) Che cos é la pressione? Qual è la sua unità di misura nel S.I.? 1) Che cos é la pressione? Qual è la sua unità di misura nel S.I.? 2) Da che cosa dipende la pressione esercitata da un oggetto di massa m poggiato su di una superficie? 3) Che cos è un fluido? 4) Come

Dettagli

Densità e volume specifico

Densità e volume specifico Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 016 1) Un corpo di massa M= kg si muove lungo una guida AB, liscia ed irregolare, partendo dal punto A a quota H = 9m, fino al

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Un fluido è un insieme di molecole tenute insieme da deboli forze di coesione e da forze esercitate dalla parete del contenitore (possono essere sia

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

Dr. Andrea Malizia Prof. Maria Guerrisi. Corsi di Laurea in Tecnici di Laboratorio Biomedico, Dietistica e Tecnici della Prevenzione.

Dr. Andrea Malizia Prof. Maria Guerrisi. Corsi di Laurea in Tecnici di Laboratorio Biomedico, Dietistica e Tecnici della Prevenzione. Dr. Andrea Malizia Prof. Maria Guerrisi 1 Lezione 4 Viscosità, pressione, vasi comunicanti Barometro di Torricelli Legge di Stevino Principio di Archimede Portata, Flusso, Corrente Equazione di Continuità

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Programma Parte I Meccanica dei Fluidi Proprietà generali dei Fluidi; Il Principio di Pascal; La legge di Stevino per i liquidi pesanti; Il Principio di Archimede; Il moto dei fluidi; Legge di Bernoulli;

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi Si definiscono fluidi I sistemi che si deformano continuamente sotto l'azione di una forza tangenziale, tendente a far scorrere uno strato del sistema sull'altro, indipendentemente

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 II Compitino 21 Giugno 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 II Compitino 21 Giugno 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 II Compitino 21 Giugno 2013 FLUIDI: Un cubo di lato L=0.15 m ha una cavità vuota al proprio interno, pari ad 1/5 del suo volume e la densità del materiale di

Dettagli

Meccanica dei Fluidi 1

Meccanica dei Fluidi 1 Meccanica dei Fluidi 1 Solidi, liquidi e gas In natura le sostanze possono trovarsi in tre stati di aggregazione: Caratteristiche di un fluido fluido: insieme di molecole sistemate casualmente e legate

Dettagli

Corso di Idraulica Agraria ed Impianti Irrigui

Corso di Idraulica Agraria ed Impianti Irrigui Corso di Idraulica Agraria ed Impianti Irrigui Docente: Ing. Demetrio Antonio Zema Lezione n. 3: Idrostatica Anno Accademico 2012-2013 2013 1 Generalità L idrostatica studia le relazioni di equilibrio

Dettagli

Meccanica. 11. Terzo Principio della Dinamica. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 11. Terzo Principio della Dinamica.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 11. Terzo Principio della Dinamica http://campus.cib.unibo.it/2430/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. Terzo Principio della Dinamica 2. Centro di

Dettagli

Statica. corso di Fisica per Farmacia - Anno Accademico

Statica. corso di Fisica per Farmacia - Anno Accademico Statica Studia le condizioni i equilibrio dei corpi Per sistemi puntiformi si ha equilibrio quando la somma delle forze e nulla per sistemi estesi e importante anche dove le forze sono applicate Marcello

Dettagli

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi La lezione di oggi La densità La pressione L equazione di continuità Il teorema di Bernoulli Stenosi e aneurismi ! Densità, pressione! La portata di un condotto! Il teorema di Bernoulli! Applicazioni dell

Dettagli

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti di contatto Le forze di contatto o reazioni vincolari sono forze efficaci che descrivono l interazione tra corpi estesi (dotati di una superficie!) con un modello fenomenologico. La validità della descrizione

Dettagli

Meccanica Dinamica dei fluidi

Meccanica Dinamica dei fluidi Meccanica 6-7 Dinamica dei fluidi Proprietà meccaniche dei fluidi olidi Liquidi Gas orma propria Pressione acqua Assumono la forma dell ambiente che li contiene Volume proprio Incompressibile ρ kg/m 3

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica Lavoro ed energia cinetica Servono a risolvere problemi che con la Fma sarebbero molto più complicati. Quella dell energia è un idea importante, che troverete utilizzata in contesti diversi. Testo di riferimento:

Dettagli

Stampa Preventivo. A.S Pagina 1 di 6

Stampa Preventivo. A.S Pagina 1 di 6 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 6 Insegnante VISINTIN ANTONELLA Classe 4AL Materia fisica preventivo consuntivo 129 0 titolo modulo 4.1 Grandezze fisiche e misure 4.2 Le forze e l'equilibrio

Dettagli

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia 1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia

Dettagli

Momento. Si può definire il momento rispetto ad un punto. in è possibile riassumere questa definizione nella formula

Momento. Si può definire il momento rispetto ad un punto. in è possibile riassumere questa definizione nella formula Momento di una forza rispetto a un punto Si può definire il momento rispetto ad un punto 1 Il suo modulo è il prodotto della forza per la distanza del punto dall asse di applicazione di questa 2 La direzione

Dettagli

La meccanica dei fluidi

La meccanica dei fluidi a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 La meccanica dei fluidi 7/3/2006 Stati della materia Esistono tre stati della materia Il solido ha volume e forma definita La forma

Dettagli

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz:

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz: Esercitazione 6 Esercizio 1 - omento d inerzia del cono Calcolare il momento di inerzia di un cono omogeneo, di altezza H, angolo al vertice α e massa, rispetto al suo asse di simmetria. Calcoliamo il

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

1. Statica dei fluidi

1. Statica dei fluidi Di cosa parleremo Statica dei fluidi In questo capitolo ci occuperemo della statica dei fluidi (idrostatica) e nel capitolo successivo della dinamica dei fluidi (idrodinamica) e tratteremo principalmente

Dettagli

FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: Principio conservazione momento angolare. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: Principio conservazione momento angolare Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica MOMENTO ANGOLARE Fino a questo punto abbiamo esaminato soltanto moti di traslazione.

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Supponiamo di avere un oggetto immerso in un fluido (ad es. acqua) sottoposto alla gravità

Supponiamo di avere un oggetto immerso in un fluido (ad es. acqua) sottoposto alla gravità Supponiamo di avere un oggetto immerso in un fluido (ad es. acqua) sottoposto alla gravità Immaginiamo di sostituire l oggetto immerso nel fluido) con uno stesso volume di acqua. In tal caso le forze di

Dettagli

V(l) Cognome e Nome...

V(l) Cognome e Nome... Cognome e Nome........................................... F.1) Un gas contenuto in un recipiente viene manipolato in modo che la sua pressione vari con legge lineare al variare del volume del gas, da una

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

Sistema di punti materiali sistema esteso.

Sistema di punti materiali sistema esteso. Sistema di punti materiali sistema esteso. P n z P i P 2 O y P 1 x 1 Sistema di punti materiali sistema esteso. z P n z r n P i r i P 2 O r O r 2 y y r 1 P 1 x x 2 Sistema di punti materiali sistema esteso.

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Facoltà di Farmacia - Anno Accademico Giugno 2016 A

Facoltà di Farmacia - Anno Accademico Giugno 2016 A Facoltà di Farmacia - Anno Accademico 2015-2016 20 Giugno 2016 A Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio i risultati trovati per ciascun

Dettagli

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica 1 La lezione di oggi I fluidi reali La viscosità Flussi laminare e turbolento La resistenza idrodinamica 2 La lezione di oggi Forze di trascinamento nei fluidi La legge di Stokes La centrifuga 3 ! Viscosità!

Dettagli

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: 0000695216 Cognome e nome: (dati nascosti per tutela privacy) 1. Di quanto ruota in un giorno sidereo il piano di oscillazione del pendolo di

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

ANNO SCOLASTICO CLASSE II E DISCIPLINA: FISICA DOCENTE: Romio Silvana A. PROGRAMMA

ANNO SCOLASTICO CLASSE II E DISCIPLINA: FISICA DOCENTE: Romio Silvana A. PROGRAMMA ANNO SCOLASTICO 2014-2015 CLASSE II E DISCIPLINA: FISICA DOCENTE: Romio Silvana A. PROGRAMMA LE FORZE: Ripasso degli argomenti della classe I: Grandezze scalari e vettoriali, concetto di forza, peso e

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1 Dinamica del fluidi A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi A. Stefanel - Fluidodinamica 1 Per descrivere il moto di un fluido ci sono due formalismi equivalenti: Lagrange: si descrive il moto

Dettagli

F > mg Il cubo galleggia

F > mg Il cubo galleggia LA LEGGE DI ARCHIMEDE Un corpo immerso in un liquido riceve una spinta dal basso verso l'alto pari al peso del liquido spostato Cubo di legno di pioppo V = 1 dm³ mg = 5N (forza peso) Legge di Archimede:

Dettagli