Testo della prova d'esame (A) con gli assi, eventuali asintoti, monotonia ed eventuali estremi. Dopo aver verificato che

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Testo della prova d'esame (A) con gli assi, eventuali asintoti, monotonia ed eventuali estremi. Dopo aver verificato che"

Transcript

1 PPELLO ORDINRIO: quesiti n. / / 5 / 6 / 7 / 0 COMPITINO : quesiti n. / / / / 5 COMPITINO B: quesiti n. 6 / 7 / 8 / 9 / 0 / / QUESITO ( /7) Studiare la funzine f Test della prva d'esame () determinand esplicitamente dmini, parità, segn ed eventuali intersezini cn gli assi, eventuali asintti, mntnia ed eventuali estremi. Dp aver verificat che determinare cncavità ed eventuali flessi. Disegnare il grafic della funzine. f ", QUESITO ( /6) La funzine y e e la retta y e si intersecan nell'rigine ed in un altr punt P. Dp aver determinat le crdinate del punt P, scrivere l'equazine della tangente al grafic della funzine nel punt P. QUESITO ( /6) Verificare se la funzine f () sddisfa le iptesi del Terema di Lagrange nell'intervall [0, ] ed individuare, in tale intervall, i punti che sddisfan la relazine da ess espressa. QUESITO ( /6) Determinare le equazini degli asintti della funzine f ln. QUESITO 5 ( /6) Dat il grafic della funzine f in figura, disegnare i grafici delle funzini seguenti, negli spazi a dispsizine in quest fgli. y f y f

2 ln y f y f Individuare le ascisse degli eventuali punti anglsi della funzine y f asintti verticali della funzine y ln f. e le equazini degli eventuali QUESITO 6 ( /) ' 0 Rislvere il prblema di Cauchy: y y y 0 QUESITO 7 ( /) a) La funzine f descrive la superficie S in figura, base di un slid le cui sezini cn piani rtgnali all asse sn quadrati. Determinare il vlume del slid. b) Dimstrare che esistn due numeri reali e B tali che B e studiare la cnvergenza dell'integrale d QUESITO 8 ( /) 0 Dire se la matrice è invertibile e, in cas di rispsta affermativa, determinarne l inversa. QUESITO 9 ( /5) Rislvere la seguente equazine differenziale lineare nn mgenea: y " y ' 8y e. QUESITO 0 ( /) Rislvere i seguenti sistemi lineari: y z 5 a) z y z 7 b) y z 0 5 y z 0 y z 0 QUESITO ( /5) a) Determinare il rang della matrice:

3 b) Calclare il prdtt tra la matrice 0 e la sua traspsta. QUESITO ( /5) Tra le primitive della funzine f e sia F lim quella passante per il punt 0, ; calclare F SOLUZIONI N. La funzine f PRITÀ: f ( ) ( ) ha dmini D : ±. f funzine dispari!! SEGNO: La funzine passa per l rigine. SINTOTI: lim verticale. è asintt verticale per la funzine (e, per simmetria, anche è asintt lim lim lim n asintti rizzntali!! f lim lim lim m + lim f ( ) m lim lim 0 q 0 Quindi la funzine ammette la retta y cme asintt bliqu. CRESCENZ: ( ) ( ) ( ) ( ) f '... Ma:, min:, CONCVITÀ: f " ( ( ) 6 0 ) ( + ) ( + ) ( )... 0 Quindi la funzine data ammette un unic fless di ascissa 0 0, ciè: ( 0,0)

4 N. Intersechiam la curva cn la retta: L equazine rislvente è: ed ammette cme sluzini 0,. Quindi P(, e ). e y e y e e ( e e) 0 Per trvare la tangente in P al grafic della funzine: y ' e e e Equazine della tangente: N. + ( + ) m y ' e y e e y e e La funzine f è cntinua e derivabile nel su dmini:. Pertant è cntinua in [ 0, ] e derivabile in ( 0, ). f sddisfa le iptesi del Terema di Lagrange nell'intervall [0, ]. Essend: risulta Inltre Pertant: La sluzine accettabile è: f ' f f f ' f f f ( 0) e f ( + ) ( + ) + + ( + ) ±

5 N. La funzine è definita per > 0,. lim ln lim lim li + + H ln lim 0 ln lim ln lim asintt verticale: ln lim lim ln + essend lim lim f ( ) ln lim lim lim 0 H f nn ha nemmen asintti bliqui. f nn ha asintti rizzntali. N. 5 y f y f ln y f y f La funzine y f ha un punt angls in 0, ma nn in tangente rizzntale. La funzine y ln f ( ) ammettee asintti verticali 0 e in crrispndenza degli zeri della funzine f ( ). N. 6 Separiam le variabili: y ' y 0 y ' ( y ) dy d y Integrand membr a membr tteniam: ln y + c in quant la a funzine f ha ivi

6 e passand all espnenziale c y e + c y e e da cui si ricava y + k e cn k. Determiniam la funzine che rislve il prblema di Cauchy: y 0 + k k La sluzine cercata è, quindi: N. 7 y e a) L element di vlume è ( ) dv S d f d d. Integrand, tteniam: 8 8 V d u + B b) ffinchè risulti dev essere: B B da cui si ricava il sistema + B 0 B B Quindi: + Per definizine: L integrale cnverge a ln. b b b d lim d lim ln ln b b ln lim ln ln ( ln ln ) b+ b + + N. 8 Calcliam il determinante della matrice, applicand il metd di Sarrus: la matrice è invertibile Per trvare l inversa, calcliam la matrice cfattre: Quindi: cf T 0 ( cf)

7 N. 9 Prima di rislvere l equazine nn mgenea y " y ' 8y e, dbbiam trvare la sluzine generale dell equazine mgenea assciata: y " y ' 8y 0 L equazine caratteristica è: ± Quindi la sluzine generale dell equazine mgenea è: ce + ce Cerchiam ra un integrale particlare dell equazine nn mgenea tra le funzini del tip f ke. Derivand tteniam: Sstituend: La sluzine cercata è, quindi: ke e f " ke f ' ke [ 8] e 8ke e y c e + c e e 8 N. 0 y z 5 a) Rislviam il sistema z applicand il metd di Gauss: y z 7 La sluzine del sistema è k (,, ) y z 0 b) Rislviam il sistema 5 y z 0 applicand il metd di Gauss: y z y 0 Il sistema si è ridtt a ed ammette sluzini, del tip: y + z 0 y, y, y, y N. a) Osserviam che nella matrice la riga è la smma della e della rg ( ) <

8 Calcliam il determinante del minre di rdine M 0 applicand il Terema di Laplace alle riga: det M ( ) ( 5) Quindi rg ( ). b) Cnsideriam 0 e la sua traspsta T. Il lr prdtt scalare righe per clnne è: 0 T N. Integrand per parti: Impnend la cndizine di passaggi per Quindi la primitiva cercata è Calcliam il limite: quindi 0, : e d e e d e e + c F ( 0) c + c 5 5 F e + e 8e lim e lim lim 0 H lim F lim e + +

9 QUESITO ( /7) Test della prva d'esame (B) Studiare la funzine f determinand esplicitamente dmini, parità, segn ed eventuali intersezini cn gli assi, eventuali asintti, mntnia ed eventuali estremi. Dp aver verificat che f " 8, determinare cncavità ed eventuali flessi. Disegnare il grafic della funzine. QUESITO ( /6) La funzine y e e la retta y e si intersecan nell'rigine ed in un altr punt P. Dp aver determinat le crdinate del punt P, scrivere l'equazine della tangente al grafic della funzine nel punt P. QUESITO ( /6) Verificare se la funzine f () sddisfa le iptesi del Terema di Lagrange nell'intervall [, ] ed individuare, in tale intervall, i punti che sddisfan la relazine da ess espressa. QUESITO ( /6) Determinare le equazini degli asintti della funzine f ln. QUESITO 5 ( /6) Dat il grafic della funzine f in figura, disegnare i grafici delle funzini seguenti, negli spazi a dispsizine in quest fgli. y f y f ln y f y f

10 Individuare le ascisse degli eventuali punti anglsi della funzine y f asintti verticali della funzine y ln f. e le equazini degli eventuali QUESITO 6 ( /) ' 6 0 Rislvere il prblema di Cauchy: y y y 0 QUESITO 7 ( /) a) La funzine f 9 descrive la superficie S in figura, base di un slid le cui sezini cn piani rtgnali all asse sn quadrati. Determinare il vlume del slid. b) Dimstrare che esistn due numeri reali e B tali che B e studiare la cnvergenza dell'integrale d QUESITO 8 ( /) 0 0 Dire se la matrice 0 è invertibile e, in cas di rispsta affermativa, determinarne l inversa. 0 0 QUESITO 9 ( /5) Rislvere la seguente equazine differenziale lineare nn mgenea: y " y ' 8y e. QUESITO 0 ( /) Rislvere i seguenti sistemi lineari: 5 y + z 8 a) y z 5 z b) y z 0 y z 0 y 0 QUESITO ( /5) a) Determinare il rang della matrice: b) Calclare il prdtt tra la matrice QUESITO ( /5) e la sua traspsta. Tra le primitive della funzine f e sia F quella passante per il punt lim F 0, ; calclare

11 SOLUZIONI N. La funzine f PRITÀ: f ( ) ( ) ha dmini D : ±. f funzine dispari!! SEGNO: La funzine passa per l rigine. SINTOTI: lim verticale. lim lim è asintt verticale per la funzine (e, per simmetria, anche f lim lim lim m + lim f m lim lim 0 q 0 Quindi la funzine ammette la retta y cme asintt bliqu. CRESCENZ: ( ) ( ) f '... ( ) ( ) Ma: (, ) min: (, ) CONCVITÀ: f " ( )( ) ( ( ) Quindi la funzine data ammette un unic fless di ascissa 0 0, ciè: ( 0,0) lim n asintti rizzntali!! 0 ) è asintt

12 N. Intersechiam la curva cn la retta: L equazine rislvente è: ed ammette cme sluzini 0,. Quindi P(, e). e e y e y e ( e e) 0 Per trvare la tangente in P al grafic della funzine: y ' e e e Equazine della tangente: N. ( ) m y ' e y + e e + y e + e La funzine f è cntinua e derivabile nel su dmini:. Pertant è cntinua in [,] e derivabile in (,). f sddisfa le iptesi del Terema di Lagrange nell'intervall [,]. Essend: risulta Inltre Pertant: f ' La sluzine accettabile è: N. La funzine è definita per > 0,. f f 0 + H f ' f ( ) e f f + f ( 0) + + ( + ) ( + ) ln lim ln lim lim lim 0 ln lim ln lim asintt verticale: ln lim lim ln + essend lim lim f ln lim lim H lim ( + ) ± f nn ha nemmen asintti bliqui. f nn ha asintti rizzntali.

13 N. 5 y f y f ln y f y f La funzine y f ha un punt angls in, ma nn in in quant la funzine f ha ivi tangente rizzntale. La funzine y ln f ammette asintti verticali e in crrispndenza degli zeri della funzine f ( ). N. 6 Separiam le variabili: y ' ( y 6) y ' y 6 0 Integrand membr a membr tteniam: e passand all espnenziale dy d y 6 ln y 6 + c c y 6 e + c y 6 e e da cui si ricava y 6 + k e cn k. Determiniam la funzine che rislve il prblema di Cauchy: y k k 5 La sluzine cercata è, quindi: N. 7 y 6 5 e a) L element di vlume è ( 9 ) dv S d f d d. Integrand, tteniam:

14 7 7 V 9 d u + B b) ffinchè risulti dev essere: B B da cui si ricava il sistema + B 0 B B Quindi: + Per definizine: b b d lim d lim ln ln b b b ln 5 lim ln ln ( ln ln 5) b+ b L integrale cnverge a ln 5. N. 8 Calcliam il determinante della matrice, applicand il metd di Sarrus: la matrice è invertibile Per trvare l inversa, calcliam la matrice cfattre: Quindi: N cf T 0 0 ( cf) Prima di rislvere l equazine nn mgenea y " y ' 8y e, dbbiam trvare la sluzine generale dell equazine mgenea assciata: y " y ' 8y 0 L equazine caratteristica è: ± Quindi la sluzine generale dell equazine mgenea è: ce + ce Cerchiam ra un integrale particlare dell equazine nn mgenea tra le funzini del tip f ke. Derivand tteniam:

15 Sstituend: La sluzine cercata è, quindi: ke ' e f " ke f ke [ 8] e 8ke e y c e + c e e 8 k 8 N. 0 5 y + z 8 a) Rislviam il sistema y z 5 applicand il metd di Gauss: z La sluzine del sistema è ( 0,,) y z 0 b) Rislviam il sistema y z 0 applicand il metd di Gauss: y y 0 Il sistema si è ridtt a ed ammette sluzini, del tip: y + z 0 y, y, y, y N. a) Osserviam che nella matrice la riga è la smma delle prime due rg ( ) < Calcliam il determinante del minre di rdine 0 0 M applicand il Terema di Laplace alle riga: det M Quindi rg ( ). b) Cnsideriam 0 e la sua traspsta T 0. Il lr prdtt scalare righe per clnne è:

16 N. Integrand per parti: Impnend la cndizine di passaggi per Quindi la primitiva cercata è Calcliam il limite: quindi T 9 0, : e d e e d e e + c F ( 0) c 9 + c F e e 7e lim e lim lim 0 H 9 9 lim F lim e

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 Luci sul palc La ptenza elettrica P assrbita da ciascuna lampada utilizzata per illuminare un palcscenic segue la seguente legge: Pr () V R = R Rr r dve V indica la tensine

Dettagli

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata.

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata. 8.. STRUMENTI MATEMATICI 8. Equazini alle differenze. Sn legami statici che legan i valri attuali (all istante k) e passati (negli istanti k, k, ecc.) dell ingress e k e dell uscita u k : u k = f(e 0,

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 La siepe Sul retr di una villetta deve essere realizzat un piccl giardin rettanglare di m riparat da una siepe psta lung il brd Dat che un lat del giardin è ccupat dalla

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

ISTRUZIONI PER INIZIARE

ISTRUZIONI PER INIZIARE I.C. Scarpa - Scula media Cairli ISTRUZIONI PER INIZIARE Questa è la barra di menu: serve per dare tutte le infrma zini sui file che devi creare, salvare, ecc. Questa icna serve per chiudere a brd pagina

Dettagli

La retta è il luogo geometrico dei punti che soddisfano la seguente relazione

La retta è il luogo geometrico dei punti che soddisfano la seguente relazione RETTE Definizine intuitiva La retta linea retta è un dei tre enti gemetrici fndamentali della gemetria euclidea. Viene definita da Euclide nei sui Elementi cme un cncett primitiv. Un fil di ctne di spag

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

4 C. Prati. Il teorema del campionamento

4 C. Prati. Il teorema del campionamento 4 C. Prati Il terema del campinament Esercizi di verifica degli argmenti svlti nel quart capitl del test Segnali e Sistemi per le Telecmunicazini McGraw-Hill. ESERCIZIO Sia dat il seguente segnale temp

Dettagli

Analisi della sopravvivenza

Analisi della sopravvivenza Analisi della spravvivenza Grazia Vurr Ann Accademic 200-20 Indice Intrduzine 2 Sperimentazine clinica 2 3 Imprtanza di un analisi time-t-event 3 4 Stima della funzine di spravvivenza 6 4. Metd di Kaplan-Meier.....................

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Nelle ipotesi fatte (popolazione di dimensione infinita), il numero di chiamate offerte assume una distribuzione di Poisson.

Nelle ipotesi fatte (popolazione di dimensione infinita), il numero di chiamate offerte assume una distribuzione di Poisson. Esercizi n 1 Una centralina telefnica per piccl uffici (PBX) sddisfa le richieste di chiamata mediante l impieg di circuiti. Si assuma che le richieste di chiamata arrivin da una pplazine di utenti di

Dettagli

3. Quale affermazione è falsa?

3. Quale affermazione è falsa? 1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

Appendice 1 Elementi di elettrotecnica

Appendice 1 Elementi di elettrotecnica Appendice Elementi di elettrtecnica ntrduzine Questa appendice ha l scp di richiamare alcuni cncetti fndamentali di elettrtecnica, necessari per un adeguat sstegn al crs di elettrnica. prerequisiti indispensabili

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

ESERCITAZIONE RETI IDRAULICHE

ESERCITAZIONE RETI IDRAULICHE ESERCITAZIONE RETI IDRAULICHE. Una azienda ha un fabbisgn di acqua per us tecnlgic pari a 300 m 3 /h medi. A tale scp, a seguit di indagini gelgiche decide di ttenere tale prtata dal preliev in falda freatica

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

PROGRAMMAZIONE D AREA DI MATEMATICA_. SECONDO BIENNIO e QUINTO ANNO (Liceo Scientifico/Scienze Applicate) ANNO SCOLASTICO 2015-2016 DOCENTI:

PROGRAMMAZIONE D AREA DI MATEMATICA_. SECONDO BIENNIO e QUINTO ANNO (Liceo Scientifico/Scienze Applicate) ANNO SCOLASTICO 2015-2016 DOCENTI: PROGRAMMAZIONE D AREA DI MATEMATICA_ SECONDO BIENNIO e QUINTO ANNO (Lice Scientific/Scienze Applicate) ANNO SCOLASTICO 2015-2016 DOCENTI: BRAMBILLA RITA CAMPOLONGO FRANCESO COLOMBO GIANMARIO GARDI DANIELA

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Studio grafico analitico delle funzioni reali a variabile reale y = f(x)

Studio grafico analitico delle funzioni reali a variabile reale y = f(x) Studio grafico analitico delle funzioni reali a variabile reale y = f() 1 Ecco i passi utili allo studio di una funzione reale: Determinare il dominio della funzione Ricercare l eventuale intersezione

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti

ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti Scopo del corso: fornire alcuni strumenti di base del calcolo differenziale e

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Piano di lavoro di Matematica

Piano di lavoro di Matematica ISTITUTO DI ISTRUZIONE SUPERIORE Liceo Scientifico ALDO MORO Istituto to Tecnico Via Gallo Pecca n. 4/6-10086 Rivarolo Canavese Tel 0124 454511 - Fax 0124 454545 - Cod. Fiscale 85502120018 E-mail: segreteria@istitutomoro.it

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti. Pagina 1 di 9 DISCIPLINA: MATEMATICA APPLICATA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 4 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 Ripasso Retta e coniche;

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

G6. Studio di funzione

G6. Studio di funzione G6 Studio di funzione G6 Come tracciare il grafico di una funzione data Nei capitoli precedenti si sono svolti tutti gli argomenti necessari per tracciare il grafico di una funzione In questo capitolo

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

3) MECCANISMI DI RILASSAMENTO

3) MECCANISMI DI RILASSAMENTO 3) MECCANSM D RLASSAMENTO nuclei eccitati tendn a cedere l'energia acquisita ed a ritrnare nella "psizine" di equilibri. meccanismi del rilassament sn mlt cmplessi (sprattutt nei slidi) e pssn essere classificati

Dettagli

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO)

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO) Insegnamento Docente Corso di Laurea CFU 8 Lingua di Insegnamento Italiano Semestre di svolgimento Primo Tipologia Fondamentale SSD SECS-S/06 Codice di Ateneo Anno di Corso Primo Matematica Generale (PROGRAMMA

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PROGRAMMA CONSUNTIVO a.s. 2014/2015 MATERIA MATEMATICA CLASSE DOCENTE 5^ SEZIONE D DI LEO CLELIA Liceo Scientifico delle Scienze Applicate ORE DI LEZIONE 4 **************** OBIETTIVI saper definire e classificare

Dettagli

Appunti delle lezioni di Modellistica del moto ondoso PRIMIELEMENTI Eugenio Pugliese Carratelli Fabio Dentale

Appunti delle lezioni di Modellistica del moto ondoso PRIMIELEMENTI Eugenio Pugliese Carratelli Fabio Dentale Mdellistica del mt nds PRIMI ELEMENTI Le parti marcate in blu NON sn cmprese nel prgramma del Master e servn per rassicurare gli studenti più precisi -però male nn fann Le parti in crsiv sn da svlgere

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 8

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 8 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 8 Insegnante MARINO CRISTINA Classe 5AT Materia matematica preventivo consuntivo 99 0 titolo modulo 51 RIPASSO 52 FUNZIONI REALI DI VARIABILE 53 CALCOLO INFINITESIMALE

Dettagli

Studio di una funzione razionale fratta (autore Carlo Elce)

Studio di una funzione razionale fratta (autore Carlo Elce) Stuio i funzioni Carlo Elce 1 Stuio i una funzione razionale fratta (autore Carlo Elce) Per rappresentare graficamente una funzione reale i una variabile reale bisogna seguire i seguenti passi: Passo 1)

Dettagli

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI)

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI) ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI) Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. Problema

Dettagli

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3 Università degli Studi di Napoli Federico II Corso di Laurea in Matematica Analisi Matematica II (Gruppo ), A.A. 22/3 Prova scritta del 28 gennaio 23 Durata della prova: 3h. sercizio (8 punti). Si consideri

Dettagli

1. CORRENTE CONTINUA

1. CORRENTE CONTINUA . ONT ONTNUA.. arica elettrica e crrente elettrica e e e e P N NP e e arica elementare carica dell elettrne,6 0-9 Massa dell elettrne m 9, 0 - Kg L atm è neutr. Le cariche che pssn essere spstate nei slidi

Dettagli

DOCUMENTO di PROGRAMMAZIONE del DIPARTIMENTO di MATEMATICA

DOCUMENTO di PROGRAMMAZIONE del DIPARTIMENTO di MATEMATICA Istitut Tecnic Settre Tecnlgic "GIULIO CESARE FALCO" CAPUA (CE) SEDE ASSOCIATA: GRAZZANISE (CE) Specializzazini: MECCANICA E MECCATRONICA, ELETTRONICA ED ELETTROTECNICA, INFORMATICA E TELECOMUNICAZIONI,

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214]

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214] Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica Calcolo 2 [40214] Attività didattica: Attività didattica [codice] Corso di studio Facoltà Calcolo 2 [40214] Ingegneria delle

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

E.C.M. Educazione Continua in Medicina. Servizi web. Manuale utente

E.C.M. Educazione Continua in Medicina. Servizi web. Manuale utente E.C.M. Educazine Cntinua in Medicina Servizi web Manuale utente Versine 1.0 maggi 2015 E.C.M. Servizi web: invi autmatic Indice 2 eventi e pian frmativ Indice Revisini 3 1. Intrduzine 4 2. 5 2.1 Verifica

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA I.S.I.S.S. ANTONIO SANT'ELIA

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA I.S.I.S.S. ANTONIO SANT'ELIA Psta Elettrnica Certificata isissantnisantelia@pec.cm.it Cdice Meccangrafic: COIS003007 - Cdice Fiscale: 81004210134 Cd. Mecc. COTL00301X COSTRUZIONI, AMBIENTE E TERRITORIO (Ist. Tecnic settre tecnlgic)

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

DOMINIO = R INTERSEZIONI CON ASSI

DOMINIO = R INTERSEZIONI CON ASSI STUDIO DELLA FUNZIONE CUBICA a cura di Maria Teresa Bianchi La funzione è razionale intera ed è espressa in forma normale da: #1: y = a x + b x + c x + d I coefficienti del polinomio di grado a secondo

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

ALTA VELOCITA SIMMETRICA

ALTA VELOCITA SIMMETRICA ALTA VELOCITA SIMMETRICA Il servizi ffre un cllegament a Internet dedicat, flessibile, ad elevate velcità e prestazini. La cnnessine permanente ad Internet è realizzabile su gran parte del territri nazinale

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

La gestione informatizzata del farmaco

La gestione informatizzata del farmaco Azienda Ospedaliera di Verna Dipartiment di Medicina Clinica e Sperimentale Medicina Interna B - Reumatlgia La gestine infrmatizzata del farmac Crdinatre Stefania Discnzi Reggi Emilia 11-12 XII 2008 CRITICITA

Dettagli

MATEMATICA - CLASSE I. Obiettivi minimi di apprendimento matematica I. Competenze

MATEMATICA - CLASSE I. Obiettivi minimi di apprendimento matematica I. Competenze - CLASSE I Cmpetenze MATEMATICA Nucle tematic: il numer Utilizzare le tecniche e le prcedure del calcl aritmetic in N, rappresentandle anche in frma grafica. Rislvere i prblemi facend us delle perazini

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

ISIS: G. Tassinari Pozzuoli

ISIS: G. Tassinari Pozzuoli ISIS: G. Tassinari Pozzuoli Programmazione di Matematica classe 5 a B a.s. 05/06 Docente M.Rosaria Vassallo Modulo : Funzioni e limiti di funzioni Gli obiettivi generali : Iniziare un approccio più rigoroso

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

, ove a è un parametro reale. 1. Dopo aver precisato il campo di esistenza di f si stabilisca per quali valori di a la funzione f è crescente.

, ove a è un parametro reale. 1. Dopo aver precisato il campo di esistenza di f si stabilisca per quali valori di a la funzione f è crescente. Sessione ordinaria 007 in America Latina MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 007 Calendario australe SECONDA PROVA SCRITTA

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 203/ 204 Corsi di Analisi Matematica I (Proff A Villani e F Faraci) Prova d Esame del giorno 6 febbraio 204 Prima prova scritta (compito A) Non sono consentiti formulari, appunti, libri

Dettagli

INTRODUZIONE ALLA TRASFORMATA DISCRETA DI FOURIER (DFT)

INTRODUZIONE ALLA TRASFORMATA DISCRETA DI FOURIER (DFT) ITRODUZIOE ALLA TRASFORMATA DISCRETA DI FOURIER (DFT) Esempi di DFT La trasfrmata discreta di Furier, cmunemente nta in letteratura cn l acrnim DFT (Digital Furier Transfrm) rispnde all esigenza di implementare

Dettagli

A. Relazione illustrativa

A. Relazione illustrativa Cntrattintegrativecnmicperl utilizzazinedelfnddelpersnalenn dirigenzialeann2012sttscrittil24settembre2012.relazineillustrativae tecnicfinanziaria(articl 40, cmma 3 sexies, Decret Legislativ n.165/2001;

Dettagli

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2.

Esercizi su dominio limiti continuità - prof. B.Bacchelli. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.1, 3.2. Esercizi su dominio iti continuità - prof. B.Bacchelli Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2. ESERCIZI * Determinare e disegnare il dominio delle seguenti

Dettagli