Chimica Fisica. I principi della termodinamica AA Antonino Polimeno. Dipartimento di Scienze Chimiche. Università degli Studi di Padova

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Chimica Fisica. I principi della termodinamica AA 2013-14. Antonino Polimeno. Dipartimento di Scienze Chimiche. Università degli Studi di Padova"

Transcript

1 Chimica Fisica I principi della termodinamica AA Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova

2 1 Prefazione La ricerca scientifica ha come scopo la descrizione dei fenomeni della natura per mezzo di leggi matematiche. Nel corso dei secoli, a partire da Ruggero Bacone e Galileo Galilei, il metodo sperimentale ha acquisito una fisionomia definita, che si organizza secondo lo schema 1. la descrizione e l osservazione sperimentale quantitativa del fenomeno naturale 2. la formulazione di un ipotesi interpretativa 3. l effettuazione di un esperimento che verifichi o smentisca l ipotesi 4. la definizione di una legge matematica che descrive l ipotesi interpretativa del fenomeno Ma il metodo sperimentale non è neutrale: il ricercatore opera scelte personali ad ogni passaggio, in base a considerazioni in ultima analisi opportunistiche, non-scientifiche e fortemente influenzate dal suo carattere, dalla sua mentalità e soprattutto dal momento storico in cui vive. Cosí lo sviluppo delle applicazioni della termodinamica prima e della meccanica quantistica poi alle discipline chimiche sono storicamentecollocabili inunperiodochevadallafinedelxviiiallaprimapartedelxxsecolopermolte ragioni: la nascita dell industria moderna, la disponibilità di nuovi strumenti mentali resi disponibili dall Illuminismo ed anche di nuovi strumenti tecnologici - per esempio nuovi metodi sofisticati di misura della temperatura e della pressione. La termodinamica chimica in particolare si sviluppa seguendo coordinate ben precise anche da un punto di vista geografico, in Europa, perlopiú in Inghilterra, Francia e Germania, paesi impegnati in quel periodo in una fase di notevole espansione economica, ed in una situazione di forte competizione culturale e bellica. Quindi la ricerca si concentra sui fenomeni naturali di maggiore interesse per le società dell epoca: la resa di una macchina a vapore, il calore necessario a fondere un cannone, la relazione tra energia spesa e lavoro ottenuto (il primo ed il secondo principio della termodinamica sono di natura eminentemente economica, come vedremo piú avanti), le condizioni per massimizzare la resa dei processi chimici industriali e così via.

3 2

4 Capitolo 1 Funzioni di stato e proprietà volumetriche Come ogni disciplina scientifica, la termodinamica dispone di un suo linguaggio specifico, che contiene termini tecnici esattamente definiti. È utile dare una serie di definizioni introduttive, necessariamente non rigorose ma almeno intuitivamente corrette 1. La termodinamica si occupa dello stato interno di un sistema fisico, definito come una porzione limitata di materia, mediante la definizione e lo studio delle sue proprietà macroscopiche o coordinate termodinamiche. Gli scopi della termodinamica sono 1. l individuazione dei principi generali che regolano lo stato dei sistemi 2. l individuazione delle coordinate termodinamiche dei sistemi 3. l individuazione delle relazioni generali che esistono tra le coordinate termodinamiche in accordo con i principi generali In questa prima parte del Corso, ci occuperemo principalmente della definizione dei principi o leggi della termodinamica, iniziando nel Capitolo 1 a definire di concetti di funzioni di stato per descrivere proprietà termodinamiche, di temperatura ed equilibrio termico, facendo riferimento principalmente alle proprietà dei sistemi gassosi. Nel Capitolo 2 descriveremo il principio dell equivalenza tra energia termica e lavoro, che costituisce il I principio della termodinamica. Il Capitolo 3 è infine dedicato alla definizione dell entropia ed all introduzione del II principio della termodinamica. I sistemi termodinamici si possono classificare in accordo con le loro modalità di interazione con il resto dell universo (ambiente) i sistemi isolati non sono influenzati in alcun modo dall ambiente i sistemi chiusi possono scambiare energia, ma non materia con l ambiente i sistemi aperti possono scambiare energia e materia con l ambiente 1 Come succede spesso, termini del linguaggio corrente assumono un significato diverso nel dialetto di una scienza. Fate attenzione a non confondere il significato comune di un termine con il suo significato tecnico-scientifico. 3

5 4 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE La descrizione termodinamica di un sistema non considera i dettagli microscopici (molecolari). Piuttosto, vengono individuate alcune variabili macroscopiche che definiscono lo stato di un sistema. Le variabili termodinamiche o funzioni di stato o coordinate termodinamiche possono essere interpretate, naturalmente, come la media di grandezze microscopiche - ed è questo uno degli obiettivi principali della meccanica statistica - ma in generale la descrizione termodinamica prescinde da qualunque interpretazione molecolare. Qua e là useremo comunque concetti di natura molecolare, come per esempio la definizione della massa di un sistema in termini di moli, o faremo cenno all interpretazione microscopica di principi termodinamici, come la relazione tra disordine molecolare ed entropia residua 2. Evidentemente, la descrizione termodinamica dello stato di un sistema, basata cioè su un numero limitato di funzioni di stato, costituisce un idealizzazione (o meglio, un modello) di un sistema fisico reale. Una porzione di sistema aventi tutte le coordinate termodinamiche costanti (o variabili in modo continuo nello spazio) si dice fase. Per la precisione, il termine funzione di stato sarà riservato a quelle proprietà termodinamiche aventi la seguente importante caratteristica: essere una quantità che dipende solo dallo stato presente del sistema, e non dalle modalità secondo le quali lo stato stesso del sistema è stato prodotto. Per quanto ovvia, questa proprietà formale ha grandissime conseguenze formali e pratiche. Da un punto di vista matematico, data una funzione di stato X potremo scrivere dx = 0 (1.1) dove indica un integrale di linea su un percorso chiuso, vale a dire una successione di stati di equilibrio del sistema con lo stato iniziale e finali coincidenti; affermare che la funzione X è una funzione di stato coincide con la dimostrazione della (1.1). Possiamo classificare le proprietà termodinamiche di un sistema secondo lo schema seguente proprietà estensive come il volume: dipendono in modo lineare dalla massa del sistema proprietà intensive come la pressione: non dipendono dalla quantità di materia che costituisce il sistema Tra le coordinate termodinamiche di un sistema rientrano a pieno titolo le coordinate di composizione: un sistema può essere costituito da molteplici componenti chimici e varie fasi. Infine è importante introdurre, almeno qualitativamente, il concetto di equilibrio: un sistema in equilibrio non presenta variazioni nel tempo delle sue proprietà termodinamiche, se le condizioni esterne non cambiano 3. Nel seguito ci occuperemo esclusivamente di sistemi in equilibrio, e di trasformazioni tra sistemi in equilibrio; nella prima parte del Corso inoltre limiteremo la nostra indagine a sistemi monofasici (e monocomponenti, od almeno a composizione costante). Consideriamo dunque un sistema chiuso, monofasico, a composizione costante. Quante sono le coordinate termodinamiche indipendenti, rispetto alle quali possiamo cioè esprimere tutte le proprietà termodinamiche del sistema? Si può notare che in generale la termodinamica non fornisce alcun criterio per stabilire il numero minimo di coordinate termodinamiche necessarie per descrivere un sistema, 2 Sitratteràsempreperòdiaffermazioni nonstrettamentenecessarie allosviluppologico delladescrizione termodinamica, che è di per sè chiusa, non necessita cioè di interpretazioni o definizioni atomistiche per la sua coerenza interna 3 Si tratta di una definizione poco soddisfacente, che cercheremo di migliorare in seguito

6 5 in assenza di informazioni specifiche. Vedremo però in uno dei Capitoli successivi come sia possibile stabilire delle relazioni tra il numero di variabili indipendenti, il numero dei componenti chimici ed il numero di fasi di un sistema. Un sistema chiuso, monofasico, a composizione costante è descrivibile da tre funzioni di stato, una estensiva (per esempio la sua massa M) e due intensive, X, Y. Ogni altra proprietà intensiva del sistema sarà definita come una funzione delle due proprietà intensive di partenza, mentre ogni altra proprietà estensiva sarà una funzione (lineare) della massa e delle due proprietà intensive I i = f Ii (X,Y) (1.2) E i = M f Ei (X,Y) (1.3) dove f Ii e f Ei sono funzioni caratteristiche delle proprietà I i e E i. Un buon esempio è costituito da una certa quantità di gas racchiuso in un volume definito - una miscela di aria e carburante nella camera di combustione di un pistone in un motore a scoppio, prima dello scoppio, od una porzione di elio racchiusa in un pallone trattenuto all altezza di un paio di metri dal livello del mare in un pomeriggio primaverile in un parco pubblico di una città europea 4. Le proprietà estensive primarie che definiscono lo stato di un sistema monofasico a composizione costante sono la sua massa, definibile anche in termini di numero di moli totali, n adimensionale, ed il suo volume V (m 3 ). Esiste inoltre un importante proprietà intensiva che caratterizza l interazione meccanica di un sistema con l ambiente, la pressione: definiamo come pressione p una forza per unità di superficie, e ricordiamo che nel sistema internazionale l unità di misura della pressione è il pascal (Pa) pari ad 1 N m 2. Una pressione di 10 5 Pa = 1 bar, indicata Nome Simbolo Valore pascal Pa 1 N m 2 = 1 kg m 1 s 2 bar bar 10 5 Pa atmosfera atm Pa torr Torr 1/760 atm = Pa millimetro di Hg mmhg 1 Torr = Pa Tabella 1.1: Unità di misura della pressione anche con p, è detta pressione standard. È circa, ma non esattamente, uguale ad un atmosfera, ovvero alla pressione esercitata da una colonna alta 760 millimetri di mercurio sulla superficie della sua base (come nel famoso esperimento di E. Torricelli del 1642, che per primo misura in questo modo, pare su suggerimento di Galileo, la pressione esercitata dall atmosfera). Consideriamo due sistemi monofasici 1 e 2, chiusi (la quantità di massa relativa a ciascun sistema è dunque costante): per esempio due sistemi gassosi racchiusi in due contenitori rigidi, isolati dall ambiente, ma separati da una parete mobile. I due sistemi saranno in condizioni di equilibrio meccanico quando la pressione esercitata dai due sistemi sulla parete sarà uguale L equilibrio meccanico è quello stato caratterizzato dai valori delle coordinate termodinamiche che due sistemi raggiungono quando vengono messi in contatto tramite una parete rigida mobile. 4 Una lunga perifrasi per indicare condizioni di temperatura e pressione di 25 C ed 1 atmosfera

7 6 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE Figura 1.1: Misura della pressione atmosferica nell esperimento di Torricelli (1642)

8 1.1. TEMPERATURA ED EQUILIBRIO TERMODINAMICO 7 Figura 1.2: Equilibrio termico e principio zero. Evidentemente, dati piú di due sistemi a contatto fra loro, le condizioni di equilibrio meccanico si estendono automaticamente: se due sistemi sono in equilibrio meccanico con un terzo sistema (cioè esercitano la stessa pressione sul terzo sistema), saranno in equilibrio fra loro, come semplice consequenza della natura meccanica dell equilibrio (uguaglianza di forze). 1.1 Temperatura ed equilibrio termodinamico La verifica sperimentale ci insegna che la pressione ed il volume non sono sufficienti a definire lo stato di un sistema. Esiste un altra proprietà (intensiva) non meccanica che è legata alla quantità di energia del sistema, di cui però ci manca ancora una definizione appropriata. Consideriamo ancora due sistemi monofasici 1 e 2, chiusi (la quantità di massa relativa a ciascun sistema è dunque costante): per esempio due sistemi gassosi racchiusi in due contenitori rigidi, isolati dall ambiente, ma separati da una parete comune. Sappiamo (dall esperienza, come abbiamo discusso brevemente nella sezione precedente) che sono necessarie due coordinate termodinamiche per definire completamente lo stato di ciascun sistema. Se la parete tra i due sistemi non permette lo scambio di energia viene detta parete adiabatica e, ancora dall esperienza, si può affermare che i valori delle coppie di coordinate (X 1,Y 1 ) e (X 2,Y 2 ) sono totalmente indipendenti. Se però la parete è resa diatermica o conduttrice di energia, allora le coppie di coordinate termodinamiche (X 1,Y 1 ) e (X 2,Y 2 ) non sono indipendenti: partendo da uno stato iniziale arbitrario, cambieranno sino a raggiungere dei valori di equilibrio. Parliamo in effetti di equilibrio termico L equilibrio termico è quello stato caratterizzato dai valori delle coordinate termodinamiche che due sistemi raggiungono quando vengono messi in contatto tramite una parete conduttrice. Anche per l equilibrio termico possiamo definire una proprietà transitiva, che però, da un certo punto di vista è meno intuitiva del caso dell equilibrio meccanico. Si tratta del cosiddetto principio zero della termodinamica Due sistemi in equilibrio termico con un terzo sistema sono in equilibrio termico fra loro.

9 8 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE Riassumendo, abbiamo definito l esistenza di condizioni di equilibrio meccanico e termico tra sistemi (almeno nel caso di sistemi a composizione costante). In seguito parleremo di sistemi in equilibrio termodinamico per indicare le condizioni di equilibrio sia meccanico che termico. A questo punto è Termometro Gas Resistore Termocoppia Sale paramagnetico Proprietà termometrica Pressione Resistenza elettrica Forza elettromotrice termica Suscettività magnetica Tabella 1.2: Termometri e proprietà termometriche chiaro che abbiamo bisogno di una nuova coordinata termodinamica intensiva, analoga alla pressione, che ci permetta di definire il contenuto energetico di un sistema e di definire in modo quantitativo la condizione di equilibrio termico. Definiamo questa grandezza temperatura; il principio zero ci assicura che esiste una funzione di stato che stabilisce le condizioni di equilibrio termico tra un numero arbitrario di sistemi termodinamici. Dal principio zero è facilmente dimostrabile l esistenza di una funzione con queste proprietà per un sistema monofasico, vedi la sottosezione (1.6.1). La temperatura si può definire operativamente misurando una qualche proprietà X di un sistema prescelto, cioè di un termometro, e definendo una funzione (lineare, per semplicità) θ(x) = costx. Diremo che un determinato sistema ha una temperatura θ(x) se, posto il sistema a contatto diatermico con il termometro, la proprietà termometrica di quest ultimo raggiunge il valore X all equilibrio termico. Avendo adottato una relazione lineare di temperatura, possiamo definire facilmente una procedura operativa che definisce una scala di temperatura. Consideriamo per esempio due stati facilmente riproducibili a e b di un sistema campione. Un termometro a contatto con i due stati del sistema campione fornisce le temperature θ(x a ) = costx a e θ(x b ) = costx b. In uno stato arbitrario vale invece che θ(x) = costx; ponendo insieme queste tre relazioni lineari θ(x) = θ(x a) θ(x b ) X X a X b (1.4) definendo perciò i valori θ(x a ) e θ(x b ) possiamo definire una funzione temperatura data la misura della proprietà termometrica X; per esempio se definiamo come 0 la temperatura dell acqua satura d aria alla pressione di 1 atm in equilibrio con ghiaccio e con 100 la temperatura dell acqua in equilibrio con vapore acqueo ad 1 atm, abbiamo la scala Celsius di temperatura ( C). Altre scale di temperatura note sono la scala Fahrenheit ( F), che considera i valori dei due medesimi punti fissi, per lo stesso sistema campione, rispettivamente 32 e 212 invece di 0 e 100, e soprattutto la scala Kelvin ( K), che definisce arbitrariamente la temperatura del punto triplo dell acqua, cioè di quello stato (unico) di coesistenza di acqua pura solida, liquida e gassosa come K. Qualunque temperatura è perciò definita semplicemente come θ(x) = X X p.t. La temperatura è dunque definita come una grandezza misurabile, intensiva, ma il cui valore dipende in ultima analisi dal sistema usato come termometro. Tra i vari termometri possibili, ha un particolare (1.5)

10 1.1. TEMPERATURA ED EQUILIBRIO TERMODINAMICO 9 Figura 1.3: Scale di temperatura. significato, sia applicativo che teorico, il termometro a gas perfetto, che è costituito sostanzialmente da un apparato che usa come proprietà termometrica la pressione di un gas. Il termometro a gas opera in modo tale da ripetere la misurazione a pressioni sempre piú basse, che corrispondono a condizioni in cui qualunque gas si comporta in maniera identica - parliamo in questo caso di gas perfetto (vedi Sez. (1.2)). Una breve descrizione del funzionamento del termometro a gas è data nella sottosezione di approfondimento (1.6.2). Come vedremo in seguito, la temperatura è in realtà una grandezza universale che può essere ridefinita prescindendo dal sistema di misura; in questo caso parleremo di scala termodinamica della temperatura e verificheremo che la temperatura con un scala Kelvin misurata da un termometro a gas perfetto coincide con la temperatura termodinamica; parleremo perciò nel seguito di temperatura assoluta T o termodinamica, di cui indicheremo l unità di misura con K (senza il simbolo di grado ). Nel seguito useremo sempre il simbolo T per la temperatura, intendendo la temperatura assoluta Fahrenheit Celsius Kelvin Fahrenheit \\ θ F = 9 5 θ C +32 θ F = 9 5 T Celsius θ C = 5 9 (θ F 32) \\ θ C = T Kelvin T = 5 9 (θ F ) T = θ C \\ Tabella 1.3: Relazioni tra scale di temperature o termodinamica, salvo quando discuteremo, nel corso dell esposizione del secondo principio della termodinamica, il fondamento della definizione stessa di temperatura; per indicare la funzione temperatura secondo una qualche scala e misura arbitrarie useremo in questo caso il simbolo θ.

11 10 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE Il funzionamento del termometro a gas è conseguenza diretta delle proprietà dei gas perfetti. Lo studio delle caratteristiche fisiche dei sistemi gassosi si rivela perciò ancora una volta non solo un interessante prototipo per la definizione di relazioni operative di interesse applicativo, ma anche di interesse specifico per la comprensione dei principi fondamentali della termodinamica. Le sezioni successive sono dedicate perciò alla discussione delle proprietà dei sistemi gassosi. 1.2 Equazione di stato dei gas perfetti A partire dalla seconda metà del XVII secolo, fin quasi alla fine del secolo XIX, una serie di accurate osservazioni sperimentali permisero di razionalizzare il comportamento dei sistemi gassosi, almeno entro limtati intervalli di pressione e temperatura. Lo sviluppo delle leggi dei gas si rivela in seguito uno dei fondamenti principali della chimica fisica moderna, e contribuisce alla definizione di numerosi concenti fondamentali, che oggi consideriamo scontati come la temperatura assoluta, la mole etc. Le leggi dei gas, e l equazione di base che le riassume, costituiscono naturalmente una descrizione approssimata dei comportamenti dei sistemi gassosi reali, che però tendono al comportamento ideale a basse pressioni e temperature sufficientemente elevate (in pratica in condizioni standard, a 25 C l aria si comporta come una miscela di gas perfetti, con modeste deviazioni). Vedremo in seguito come questo modo di procedere - definizione di un sistema ideale come modello per il comportamento del sistema reale - sia tipico dello studio della termodinamica. Tra le prime ricerche è senz altro da porsi lo studio di Robert Boyle, che nel 1662 raggiunge le seguenti conclusioni: Legge di Boyle: a temperatura costante, il prodotto della pressione esercitata da un volume dato di gas di massa fissata, è costante pv = cost (1.6) È interessante notare che le misure di Boyle furono possibili anche alla sua collaborazione con Robert Hooke, che gli permise di costruire una delle prime pompe ad aria. Il passo successivo è dovuto a Guillame Amontons, che sviluppa un primo rudimentale termometro a gas (l aria). In pratica Amontons fu il primo a porre in relazione una variazione di temperatura con una variazione di volume (e pressione). Si devono però attendere gli studi di Jacques Charles, che nel 1787 esprime quantitativamente al relazione travolume e temperaturadi ungas a pressionecostante. Charles nonpubblicòmai i suoi risultati, che in parte riproducevano le conclusioni, vecchie quasi un secolo, di Amontons. Fu invece Joseph Gay-Lussac a presentare risultati accurati alla comunità scientifica nel Legge di Charles/Gay-Lussac: a pressione costante, il volume di un gas di massa fissata, è lineare con la temperatura V = cost(θ C ) (1.7) Fu infine Carlo Avogadro, conte di Quaregna e di Cerreto a suggerire nel 1811 una relazione quantitativa tra il volume totale di un gas (a pressione e temperatura costanti) e la quantità di massa presente. Le conclusioni di Avogadro, che furono alla base della moderna teoria atomica sono esprimibili nel

12 1.2. EQUAZIONE DI STATO DEI GAS PERFETTI 11 Figura 1.4: Apparato sperimentale dell esperimento di Boyle (schema).

13 12 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE Figura 1.5: Dati originali dell esperimento di Boyle.

14 1.3. FATTORE DI COMPRESSIBILITÀ ED ESPANSIONE DEL VIRIALE 13 Principio di Avogadro: volumi uguali di gas, a pressione e temperatura costanti, contengono ugual numero di molecole; il volume di un gas a temperatura e pressione costanti è proporzionale al numero di moli. V = cost n (1.8) Le leggi dei gas possono essere unificate in un unica equazione, che costitusce l equazione di stato dei gas perfetti per un sistema gassoso ad un componente pv = nrt (1.9) R è la costante dei gas, il cui valore numerico dipende naturalmente dalle unità di misura impiegate per descrivere il sistema Un equazione di stato lega fra loro le coordinate termodinamiche estensive (n, V) Valore numerico di R unità di misura J K 1 mol L atm K 1 mol L bar K 1 mol Pa m 3 K 1 mol L Torr K 1 mol cal K 1 mol 1 Tabella 1.4: Costante dei gas ed intensive (p, T) del sistema. Nel 1801, John Dalton determina la relazione esistente tra la pressione totale esercitata da una miscela di gas (ideali) e le pressioni parziali esercitate da ciascun componente Legge di Dalton: la pressione totale di una miscela di gas è data dalla somma delle pressioni parziali dei singoli componenti p = i p i (1.10) Le pressioni parziali sono determinabili dalla legge dei gas, in base al numero di moli di ciascun componente p i = n irt V (1.11) In Fig. (1.6) sono illustrati gli stati possibili di un gas perfetto, sotto forma della superficie che rappresenta il valore di p in funzione del volume per mole V m e della temperatura T. A temperatura costante, le curve che uniscono i possibili valori di (p,v m ) secondo la legge di Boyle sono le isoterme; a volume costante le curve (in questo caso, delle rette) (p,t) sono le isocore.

15 14 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE Figura 1.6: Rappresentazione grafica dell equazione di stato dei gas perfetti (p contro V m, T). Figura 1.7: Rappresentazione schematica di alcune isoterme dell anidride carbonica gassosa.

16 1.3. FATTORE DI COMPRESSIBILITÀ ED ESPANSIONE DEL VIRIALE Fattore di compressibilità ed espansione del viriale Le isoterme di un gas reale, come l anidride carbonica, presentano un andamento esemplificato in Fig. (1.7). È evidente la deviazione dal comportamento ideale, e la presenza di un isoterma critica corrispondente ad un temperatura critica T c (per la CO 2, T c 31 C) al di sopra della quale il gas esiste a qualunque pressione (cioè non si può liquefare). Per un isoterma al disotto della temperatura critica il sistema esiste come gas (per volumi molari a destra del punto A), come sistema misto liquido-vapore (tra A e B) e come liquido (a sinistra di B). Deviazioni dall idealità sono comunque già presenti sopra la temperatura critica. Questi argomenti verranno ripresi in seguito con la discussione di diagrammi di stato delle sostanze pure e delle soluzioni, cioè delle rappresentazioni grafiche dei possibili stati di esistenza delle varie fasi di un sistema. Per ora ci basta notare i) l esistenza delle grandezze critiche, la temperatura critica T c e i corrispondenti volume molare critico V c e pressione critica p c che identificano il punto di flesso dell isoterma critica; ii) la caratteristica elevata pendenza del ramo liquido delle isoterme sotto l isoterme critica, tipica di una fase condensata (non facilmente comprimibile ); iii) il significato fisico del valore di pressione costante che si osserva tra i punti A e B, che è la pressione di vapore esercitata dal gas in equilibrio con il liquido (tensione di vapore). Con una procedura tipica della chimica fisica, una scienza che si occupa di sistemi complessi, possiamo introdurre una descrizione dei gas reali partendo dalla descrizione dei gas perfetti, considerata come una teoria semplificata a cui aggiungere termini di approssimazione successiva. La grandezza che meglio si presta a misurare il discostamento di un gas reale dal comportamento ideale è il fattore di compressibilità, definito come il rapporto tra il prodotto della pressione e del volume molare V m = V/n e di RT Z = pv m RT (1.12) Si noti che data una grandezza estensiva(per esempio il volume), possiamo sempre definire una grandezza intensiva collegata, definita come la grandezza estensiva stessa divisa per il numero di moli di sostanza: parliamo in questo caso di grandezza molare. Il fattore di compressibilità di un gas perfetto vale 1, per la legge dei gas perfetti. Ne consegue che il fattore di compressibilità è anche definibile come il rapporto fra il volume molare ed il volume molare ideale RT/p di un gas. Il grado di deviazione dell idealità dipende dalle condizioni di pressione e temperatura e dalle caratteristiche chimiche del gas considerato, cfr. Figg. (1.8) e (1.9). Un equazione di stato generale, valida per un qualunque gas reale, può essere scritta in termini di espansione in serie di Taylor rispetto alla pressione od alternativamente all inverso del volume molare. L equazione di stato del viriale che si ottiene Z = 1+A 2 p+a 3 p = n=1a n p n 1 viriale-pressione (1.13) Z = 1+ B 2 + B 3 V m Vm = B n n=1 Vm n 1 viriale-volume molare (1.14) dipende da una successione di coefficienti A 2, A 3,... o B 2, B 3,... che sono caratteristici del gas considerato e dipendono dalla temperatura e dal volume molare (coefficienti A n ) o dalla temperatura e dalla pressione (coefficienti B n ); A 1 = B 1 = 1 corrispondono al primo coefficiente del viriale, cioè al comportamento ideale, ottenuto nei limiti p 0 o V m. L espansione rispetto al volume molare

17 16 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE Figura 1.8: Andamenti del fattore di compressibilità contro pressione, a varie temperature.

18 1.3. FATTORE DI COMPRESSIBILITÀ ED ESPANSIONE DEL VIRIALE 17 Figura 1.9: Andamenti del fattore di compressibilità per vari gas, a temperatura fissata.

19 18 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE è la piú conveniente ed usata. Le correzioni all idealità sono dovute soprattutto al secondo termine (B 2 V m B 3 ). Relazioni sistematiche tra i coefficienti A n e B n si possono ottenere confrontando le serie (1.13) e (1.14). 1.4 Equazione di stato di van der Waals e stati corrispondenti L esempio può semplice e famoso di equazione di stato per gas reali è dato dall equazione di van der Waals (vdw) p = RT V m b a V 2 m (1.15) a e b sono costanti tipiche del gas considerato. La forma dell equazione di stato vdw è basata su considerazioni extra-termodinamiche (molecolari). Il comportamento di gas reali si avvicina entro il 5 %, in media, alle condizioni di idealità, in condizioni standard. Le deviazioni osservate sono dovute alle forme di interazione complessa tra le molecole costituenti il gas. Nel 1873 Johannes van der Waals postula due motivi principali per le deviazioni dall idealità: 1. la presenza di un volume proprio occupato dalle molecole del gas, che rende il volume molare effettivo disponibile alla loro diffusione piú piccolo, con una correzione b rispetto al valore V m, soprattutto ad alte pressioni. La prima correzione alla legge dei gas perfetti è perciò V m V m b (1.16) 2. la presenza di forze di attrazione molecolari, che rendono la pressione (forza esercitata per unità di superficie dalle molecole del gas) piú piccola, in modo inversamente proporzionale al volume molare: p p a V 2 m (1.17) Gas a (L 2 atm mol 2 ) b (L mol 1 ) He Ne H Ar O N CO CH CO NH Tabella 1.5: Coefficienti di van der Waals

20 1.4. EQUAZIONE DI STATO DI VAN DER WAALS E STATI CORRISPONDENTI 19 Figura 1.10: Rappresentazione grafica dell equazione di stato vdw per la CO 2 (p contro V m, T). In Fig. (1.10) sono rappresentati gli stati previsti dall equazione vdw per l anidride carbonica, con la presenza dei tipici avvallamenti corrispondenti, in un diagramma di stato reale alle transizioni di fase. Esistono altre forme piú o meno fenomenologiche di funzioni di stato, accurate ma di difficile interpretazione, tanto che si possono considerare essenzialmente equazioni empiriche, vedi sottosezione (1.6.3). In generale le isoterme calcolate dall equazione vdw hanno l andamento visualizzato in Fig. (1.11). La tipica zona di un isoterma reale a pressione costante che corrisponde al processo di liquefazione corrisponde alla curva sigmoide di un isoterma vdw, sotto la temperatura critica che si può calcolare dalla sua definizione matematica (flesso con tangente orizzontale dell isoterma). In effetti possiamo facilmente dimostrare che un gas che segue l equazione vdw ha le seguenti variabili critiche 8a T c = 27bR a p c = 27b 2 (1.18) V c = 3b L importanza delle costanti critiche in un gas reale T c, p c e V c sono dovute al fatto, osservato originariamente da van der Waals, che il comportamento di gas diversi diventa molto simile se rappresentato usando le cosiddette variabili ridotte, T r = T/T c, p r = p/p c e V r = V m /V c (principio degli stati corrispondenti): in altri termini, gas diversi con lo stesso volume ridotto, alla stessa temperatura ridotta, esercitano una pressione ridotta molto simile. La maggior parte delle funzioni di stato adottate per i gas, se riscritte in termini di grandezze ridotte, assumono infatti una forma universale ; per esempio

21 20 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE Figura 1.11: Rappresentazione schematica delle isoterme di un sistema vdw (p contro V m per la CO 2 ). l equazione vdw è espressa come p r = 8T r 3V r 1 3 V 2 r (1.19) 1.5 Coefficienti di compressibilità e di espansione termica Un gas è un sistema estremamente sensibile a variazioni di pressione e temperatura. La variazione cioè del volume molare di un sistema gassoso in seguito a variazioni di pressione o temperatura sono ordini di grandezza piú elevate delle corrispondenti variazioni subite dal volume molare di un sistema liquido o solido. Tuttavia, tali variazioni esistono, e sono molto importanti soprattutto per le applicazioni tecnologiche. Definiamo dunque, anche per discussioni future, il coefficiente di compressibilità di un sistema (monofasico, monocomponente) come κ = 1 V m V m p ed il fattore di espansione termica α = 1 V m V m T p T (1.20) (1.21) Si può dimostrare che κ è una grandezza sempre positiva (ogni materiale, sottoposto ad un aumento di pressione, si comprime). Il fattore di espansione termica può invece essere anche negativo: diminuendo

22 1.6. APPROFONDIMENTI 21 la temperatura, a pressione costante, un determinato sistema può espandersi, come per esempio l acqua tra 0 e 4 C. Altre grandezze analoghe, come per esempio il coefficiente di variazione della pressione sono determinabili in funzione di α e κ, come dimostreremo nei Capitoli successivi 1 p p T Vm = α pκ (1.22) I valori di grandezze di questo tipo, che esprimono la comprimibilità di un materiale, sono veramente molto piccoli per i solidi e i liquidi. Per esempio, per il mercurio liquido α = K 1 e κ = atm Approfondimenti Esistenza della temperatura Dati tre sistemi 1,2,3 in equilibrio termico fra loro, consideriamo prima di tutto le condizioni di equilibrio tra 1 e 2 e tra 2 e 3 f 12 (X 1,Y 1,X 2,Y 2 ) = 0 (1.23) f 23 (X 2,Y 2,X 3,Y 3 ) = 0 (1.24) Se supponiamo che le funzioni che esprimono le condizioni di equilibrio siano abbastanza regolari, possiamo supporre di ricavare Y 2 Y 2 = g 12 (X 1,Y 1,X 2 ) = g 23 (X 2,X 3,Y 3 ) (1.25) Per il principio zero deve valere che f 13 (X 1,Y 1,X 3,Y 3 ) = 0 (1.26) le due precedenti equazioni esprimono in realtà la stessa osservazione: il sistema 1 è in equilibrio con il sistema 3; però la (1.26) non dipende da X 2, quindi g 12 e g 13 devono dipendere da X 2 in modo tale da poter eliminare X 2 ; l equazione (1.25) deve perciò essere scritta, perché il principio zero sia vero, nella forma h 1 (X 1,Y 1 ) = h 3 (X 3,Y 3 ) (1.27) applicando il medesimo ragionamento partendo dalle condizioni di equilibrio di 1 con 3 e di 2 con con 3 si arriva a concludere che esiste anche una funzione h 2 (X 2,Y 2 ) tale che h 1 (X 1,Y 1 ) = h 2 (X 2,Y 3 ) = h 3 (X 3,Y 3 ) (1.28) Possiamo definire come temperatura il valore comune delle funzioni h i, dipendenti ciascuna dalle coordinate termodinamiche di ciascun sistema, separatamente.

23 22 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE Figura 1.12: Rappresentazione schematica di un termometro a gas a volume costante.

24 1.6. APPROFONDIMENTI Il termometro a gas In Fig. (1.12) è rappresentato un termometro a gas a volume costante. Il gas è contenuto nel bulbo, immerso nel sistema di cui si deve misurare la temperatura (per esempio acqua la punto triplo), in comunicazione con la colonna di mercurio di sinistra tramite un capillare. Il volume del gas viene mantenuto costante variando l altezza della colonna di mercurio di sinistra (il che si ottiene alzando od abbassando il serbatoio di mercurio) fino a che la superficie del mercurio tocchi la punta di un indice posto nello spazio sopra la colonna. La differenza in altezza tra le colonne di mercurio a destra e a sinistra permette di misurare la pressione esercitata dal gas, che è la proprietà termometrica. Un termometro a gas perfetto non è altro che un termometro a gas che viene impiegato in una serie di misure ripetute a pressione sempre piú bassa, in maniera tale da avvicinare il sistema all idealità. La misura di temperatura è un estrapolazione a pressione nulla, ed è indipendente dalla natura del gas (dato che tutti i gas reali, a pressione sufficientemente bassa si comportano idealmente). In pratica si procede misurando la pressione del gas in contatto con il sistema e con acqua al punto triplo sottraendo ad ogni nuova misura una certa quantità di gas, e mantenendo il volume sempre costante. La temperatura del termometro a gas perfetto, che come abbiamo già accennato coincide a tutti gli effetti con la temperatura universale Kelvin si definisce quindi come ( ) p T = lim p 3 0 p Altre equazioni di stato V (1.29) Le equazioni di stato, valide in un range piú ampio di pressioni e temperature, sono molteplici, ed usate soprattutto in ambito ingegneristico. Possiamo ricordare le equazioni di Berthelot p = RT V m b a TV 2 m e di Dieterici p = RTe a/rtv 2 m V m b (1.30) (1.31) Un esempio con un numero maggiore di parametri liberi è dato dall equazione di Soave-Redlich-KWong (SRK) p = RT V m b αa V m (V m +b) (1.32) abbastanza simile all equazione di Van der Waals, dove le costanti a, b, α sono espresse in funzione delle grandezze critiche e di un parametro molecolare ω, a = R 2 T 2 c/p c, b = RT c /p c, α = [1+m(1 T/T c )] 2, m = ω ω 2. Un altro esempio è dato dall equazione di Benedict-Webb-Rubin (BWR) che ha la forma di una pseudo-equazione del viriale rispetto al volume molare arrestata al quinto termine ( Z = 1+ B 0 A 0 RT C ) ( 0 1 RT 3 + b a ) ( ) V m RT + ce γ/v 2 m 1 cγe γ/vm 2 1 RT 3 Vm 2 + RT 3 Vm 4 + αa RT 1 V 5 m (1.33) L equazione BWR è molto accurata, ma dipende da ben 8 coefficienti che devono essere determinati ad hoc per il gas in esame.

25 24 CAPITOLO 1. FUNZIONI DI STATO E PROPRIETÀ VOLUMETRICHE

26 Capitolo 2 I Principio della termodinamica In questo Capitolo ci occuperemo dei seguenti problemi: come si misura il contenuto energetico di un sistema termodinamico? Come si traduce il principio fondamentale della conservazione dell energia in un linguaggio termodinamico? Come si applica il principio di conservazione dell energia ai sistemi termodinamici in generale, ed in particolare ai sistemi termochimici? Strada facendo, dovremo necessariamente discutere alcuni concetti fondamentali come la definizione di lavoro, calore, energia interna di un sistema e l idea stessa di trasformazione di un sistema. 2.1 Energia e trasformazioni Un sistema compie un lavoro quando provoca un cambiamento nell ambiente, contro una forza esterna. In generale la termodinamica si occupa solo del lavoro che un sistema compie sull ambiente, o che l ambiente compie sul sistema, e non considera problemi relativi al lavoro interno, cioè compiuti da un parte del sistema rispetto ad un altra: anzi il concetto stesso di parte di un sistema è ridondante, ed è preferibile parlare di più sistemi (chiusi o aperti) che interagiscono. La capacità di compiere un lavoro è invece l energia di un sistema: quando si compie un lavoro su un sistema si modifica l energia del sistema. Definiamo d ora in avanti il contenuto energetico totale di un sistema come la sua energia interna U. Da un punto di vista microscopico, possiamo identificare l energia interna di un sistema come la somma dell energia cinetica e potenziale di tutte le molecole componenti il sistema 1. Da un punto di vista puramente termodinamico (macroscopico) affermiamo semplicemente che L energia interna U di un sistema è una funzione di stato che misura il suo contenuto energetico complessivo Si noti che nella definizione precedente è fondamentale l affermazione che l energia interna è una funzione di stato. Evidentemente U è una funzione estensiva; l unità di misura SI è il joule (J), pari ad 1 kg m 2 s 2. Come vedremo meglio piú avanti, un cambiamento di energia di un sistema, tuttavia, può anche avvenire senza che del lavoro sia fatto sul o compiuto dal sistema: in questo caso parliamo di scambio 1 meno l energia cinetica traslazionale del baricentro del sistema e l energia cinetica rotazionale rispetto al agli assi principali 25

27 26 CAPITOLO 2. I PRINCIPIO DELLA TERMODINAMICA di calore, un nuovo concetto non-meccanico, cioè non riconducibile come il lavoro al risultato di uno spostamento meccanico o di un suo equivalente e di una forza meccanica o di un suo equivalente. È intuitivo a questo punto utilizzare la precedente definizione di parete diatermica (cfr. Cap. 1): diremo che un sistema racchiuso da un confine diatermico può modificare il suo contenuto energetico scambiando calore con il resto dell ambiente, mentre un sistema racchiuso da un confine adiabatico può modificare il suo contenuto energetico solo compiendo o subendo un lavoro. Consideriamo un sistema in equilibrio termodinamico, descritto da un insieme di coordinate termodinamiche o funzioni di stato. Il passaggio del sistema da uno stato termodinamico iniziale i, cioè da un insieme di valori delle sue coordinate termodinamiche, ad un altro stato finale f è una trasformazione. Di solito, il passaggio del sistema daiad f avviene insieme o come conseguenza di unamodifica dell ambiente circostante (che definiremo nel seguito semplicemente universo). Possiamo immediatamente distinguere due tipi di trasformazioni trasformazioni reversibili: parliamo di una trasformazione reversibile da uno stato i ad uno stato f se sia il sistema che l universo possono essere riportati al loro stato iniziale; se cioè è possibile invertire la trasformazione riportando sia il sistema che l universo al loro stato di partenza, senza modifiche rispetto allo stato iniziale trasformazioni irreversibili: parliamo di una trasformazione irreversibile da uno stato i ad uno stato f se sia il sistema che l universo non possono essere riportati al loro stato iniziale; se cioè non è possibile invertire la trasformazione riportando sia il sistema che l universo al loro stato di partenza, senza introdurre modifiche rispetto allo stato iniziale. Le trasformazioni che avvengono in natura, come vedremo in seguito, possono essere solo irreversibili. Tuttavia il concetto ideale di trasformazione reversibile ci sarà molto utile per la definizione di una serie di grandezze fondamentali e delle loro proprietà. Si deve notare come le coordinate termodinamiche di un sistema siano definite solo quando il sistema è in uno stato di equilibrio. In seguito all applicazione di forze esterne non equilibrate dal sistema stesso, il sistema esce dall equilibrio e subisce una trasformazione. Se si volesse descrivere il sistema con delle funzioni di stato durante una trasformazione, la trasformazione dovrebbe avvenire sotto l influenza di forze esterne equilibrate esattamente da forze interne, cioè non dovrebbe avvenire una trasformazione! Si tratta evidentemente di una contraddizione che può essere superata pensando alla presenza di forze esterne infinitesime, che provocano cambiamenti infinitesimi. Questa trasformazione ideale, risultato di una successione di cambiamenti infinitesimi, si dice trasformazione quasistatica trasformazione quasistatica una trasformazione quasistatica è una trasformazione che avviene sotto l influenza di forze esterne infinitesime, in maniera tale che il sistema passa dallo stato i allo stato f per una successione di stati di equilibrio In pratica, durante una trasformazione quasistatica, si assume che il sistema sia in ogni istante infinitamente prossimo ad uno stato di equilibrio termodinamico.

28 2.2. LAVORO Lavoro In generale, definiamo il lavoro come il prodotto di uno spostamento generalizzato per una forza generalizzata. L esempio piú utile e semplice che possiamo immaginare è quello di una gas, racchiuso in una camera con un pistone mobile su cui sia applicata dalla esterno una pressione p ex. Immaginiamo di compiere una trasformazione in cui il sistema passa da un volume V i ad un volume V f. Il lavoro meccanico compiuto dal sistema è definito allora come w = Vf V i p ex dv Se il sistema si espande liberamente in assenza di una pressione esterna, p ex = 0 ed il lavoro è di conseguenza nullo; se la pressione esterna è costante, il lavoro è evidentemente w = p ex (V f V i ). Se infine l espansione è quasistatica, la pressione esterna è in ogni istante uguale alla pressione del sistema da cui segue che w = Vf V i pdv Tuttavia, oltre al lavoro meccanico, possiamo definire altri tipi di lavoro, che coinvolgono spostamenti e forze non riconducibili a variazioni nella forma o nel volume del sistema. Nella Tabella sono riportati alcuni esempi in cui un lavoro infinitesimale viene espresso in termini di una forza e di un differenziale di spostamento generalizzati Sistema Forza Spostamento Lavoro infinitesimo Sistema idrostatico pressione p (atm) volume V (m 3 ) pdv Filo forza F (N) lunghezza L (m) FdL Pellicola tensione superficiale S (N/m) area A (m 2 ) SdA Cella reversibile forza elettromotrice E (V) carica Q (C) EdQ Solido magnetico intensità magnetica H (A/m) momento magnetico M (Am 2 ) HdM Tabella 2.1: Esempi di lavoro (2.1) (2.2) 2.3 Calore e I principio L osservazione sperimentale ci informa che è possibile modificare il contenuto energetico di un sistema senza compiere un lavoro sul sistema stesso. Definiamo con il termine di calore Q la variazione di energia interna di un sistema che avvenga senza che una lavoro sia fatto sul o eseguito dal sistema stesso. Una trasformazione in cui il sistema perde calore si dice esotermica, mentre se il sistema acquista calore parliamo di trasformazione endotermica. In un bilancio del contenuto energetico di un sistema si devono quindi tener conto delle perdite e degli acquisti che avvengono mediante assorbimento o dispersione di calore oppure mediante un lavoro fatto od subito dal sistema. È intuitivo assumere, ed è perciò stabilito come assioma fondante nella nostra descrizione della realtà, che la variazione dell energia interna di un sistema sia nulla in assenza di calore o lavoro scambiati. Siamo perciò giunti ad affermare il principio di conservazione dell energia, o primo principio della termodinamica

29 28 CAPITOLO 2. I PRINCIPIO DELLA TERMODINAMICA La variazione di energia interna di un sistema è pari alla somma del lavoro ed del calore scambiati dal sistema U = U f U i = q +w (2.3) Si noti che: una quantità di calore positiva significa calore assorbito dal sistema (il sistema acquista energia, trasformazione endotermica); una quantità di calore negativa significa calore ceduto dal sistema (il sistema perde energia, trasformazione esotermica); una quantità di lavoro positiva significa lavoro fatto sul sistema (il sistema acquista energia); una quantità di lavoro negativa significa lavoro fatto dal sistema (il sistema perde energia). Il primo principio descritto dall equazione (2.3) è dato in forma integrale. Si noti che a primo membro compare la differenza di valori di una funzione di stato, l energia interna interna U, mentre a secondo membro compaiono due quantità (calore e lavoro) che non sono funzioni di stato: in altri termini è possibile passare dallo iniziale allo stato finale in un numero infinito di modi, corrispondenti a tutte le possibili coppie (q, w). Per una trasformazione infinitesima possiamo scrivere du = dq +dw (2.4) e ancora una volta il significato matematico del primo e del secondo membro è diverso: du è un differenziale esatto esprimibile cioè come il differenziale di una funzione U; dq e dw sono forme differenziali, che devono essere specificate conoscendo la variazione di calore e lavoro imposte al sistema. A volte è utile distinguere il lavoro meccanico, o di espansione - nullo a volume costante, poiché nel seguito faremo riferimento ad un sistema idrostatico, descritto cioè da una coordinata estensiva di volume - dal lavoro non meccanico; si scrive perciò du = dq +dw exp +dw e (2.5) dove con dw e indichiamo il lavoro infinitesimo non di volume. 2.4 Fenomeni dissipativi Un osservazione ovvia che si può fare a proposito delle trasformazioni che coinvolgono i sistemi termodinamici è che in molti casi comportano un cambiamento dell energia interna mediante conversione di lavoro (meccanico e non). Queste trasformazioni possono per esempio avvenire mediante 1. il moto turbolento di agitazione di un liquido 2. il passaggio di elettricità attraverso un resistore 3. l isteresi magnetica di un materiale I fenomeni quali la viscosità, gli attriti, la resistenza elettrica, l isteresi magnetica in cui del lavoro (cioè una forma di energia ordinata che può essere descritta in termini di uno spostamento macroscopico) viene dissipato si dicono fenomeni dissipativi. La loro esistenza è caratteristica dei sistemi reali ed è in ultima analisi giustificabile o descrivibile ricorrendo a descrizioni statistiche e microscopiche. In ambito termodinamico però la loro descrizione è assunta a priori ed i loro effetti sono comunque misurabili.

30 2.5. CALORIMETRIA A VOLUME COSTANTE 29 Figura 2.1: Schema dell esperimento di Joule In effetti, proprio ricorrendo alla presenza dell effetto dissipativo che si crea quando un moto meccanico turbolento viene provocato in un fluido viscoso, Joule nel 1849 fu in grado di dimostrare che il calore ed il lavoro sono forme di energia, evidenziando come l aumento di temperatura di un sistema adiabaticamente isolato sia sempre proporzionale alla quantità di lavoro effettuata su di esso. Evidentemente l esperimento di Joule è oggigiorno perfettamente comprensibile dal punto di vista del primo principio. Poiché il sistema è adiabaticamente isolato, la sua variazione di energia interna infinitesima è dovuta solo al lavoro effettuato du = dw ad (2.6) Il lavoro adiabatico w ad o lavoro compiuto in condizioni adiabatiche, è dunque lo stesso per una data coppia di stati iniziale e finale, poiché è uguale alla variazione di una funzione di stato, l energia interna. 2.5 Calorimetria a volume costante Un sistema idrostatico in cui il lavoro sia nullo deve corrispondere ad un sistema che non subisce variazioni di volume, e che non sia soggetto a lavoro non di volume. Vale perciò che du = (dq) V cost dw e = 0 (2.7) o in forma integrale U = q V. Per un sistema monofasico chiuso l energia interna può essere espressa come una funzione delle coordinate termodinamiche indipendenti T e V del sistema; la variazione di U con la temperatura a volume costante, detta capacità termica a volume costante è perciò definita come C V = U (2.8) T V Vedremo meglio le relazioni differenziali tra grandezze termodinamiche nei Capitoli successivi. Condizioni di questo tipo si verificano in un calorimetro adiabatico in cui il sistema sia mantenuto a volume

31 30 CAPITOLO 2. I PRINCIPIO DELLA TERMODINAMICA Figura 2.2: Apparecchiatura usata da Joule nel 1849

32 2.6. ENTALPIA E CALORIMETRIA A PRESSIONE COSTANTE 31 costante (bomba calorimetrica). Un calorimetro è sostanzialmente un contenitore termicamente isolato, al cui interno è posto un fluido (per esempio acqua) oltre ad un termometro, un agitatore (per mantenere omogeneo il fluido) e la bomba calorimetrica che contiene il campione di cui si devono misurare le proprietà termiche. Se il campione subisce una variazione di calore (per esempio una reazione chimica esotermica od endotermica), il fluido subisce a sua volta una variazione di energia interna che dipende dalla capacità termica del sistema complessivo, parametri meccanici etc. In generale si parla di costante calorimetrica che correla il calore scambiato dalla bomba con la variazione di temperatura misurata q = C T. In Fig. (2.3) è riportato un semplice schema di calorimetro, usato in esperienze di termochimica (misura del calore sviluppato nel corso di reazioni chimiche, vedi oltre). In Fig. (2.4) è rappresentato uno dei primi calorimetri, impiegato da Lavoisier e Laplace, basato sulla misura della quantità di ghiaccio disciolto in seguito all assorbimento di una determinata quantità di calore. 2.6 Entalpia e calorimetria a pressione costante Per una sistema idrostatico definiamo l entalpia come primo esempio di funzione di stato derivata dall energia interna mediante l espressione H = U +pv (2.9) Il significato dell entalpia, che è una funzione estensiva, naturalmente con le dimensioni di un energia, è dovuto al suo comportamento a pressione costante, che è analogo a quello dell energia interna a volume costante. Una variazione infinitesima dell entalpia è infatti riconducibile al calore scambiato dh = dq pcost dw e = 0 (2.10) Infatti per una variazione infinitesima di entalpia abbiamo in generale dh = du +d(pv) = du +pdv +Vdp = dq +dw exp +dw e +pdv +Vdp (2.11) Considerando una trasformazione quasistatica possiamo scrivere dw exp = pdv e assumendo l assenza di lavoro di volume dw e = 0; quindi dh = dq +Vdp (2.12) se la pressione si mantiene costante, dp = 0, si ottiene la (2.10). Possiamo ora definire la capacità termica a pressione costante, con l analoga della (2.8). Per un sistema monofasico chiuso C p = H T p (2.13) Le capacità termiche C V e C p sono grandezze estensive; possiamo definiredelle corrispondenti grandezze intensive, le capacità termiche molari C V,m = C V /n e C p,m = C p /n dividendole per il numero di moli di sostanza che compongono il sistema. L unità di misura è naturalmente J K 1 mol 1. Per inciso, data una grandezza estensiva X misurata per n moli di una sostanza avente massa molecolare M

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

L E L E G G I D E I G A S P A R T E I

L E L E G G I D E I G A S P A R T E I L E L E G G I D E I G A S P A R T E I Variabili di stato Equazioni di stato Legge di Boyle Pressione, temperatura, scale termometriche Leggi di Charles/Gay-Lussac Dispense di Chimica Fisica per Biotecnologie

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Solvente (componente presente in maggior quantità) SOLUZIONE Soluti

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole

Dettagli

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma

Dettagli

Ripasso sulla temperatura, i gas perfetti e il calore

Ripasso sulla temperatura, i gas perfetti e il calore Ripasso sulla temperatura, i gas perfetti e il calore Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia La temperatura Fenomeni non interpretabili con le leggi della meccanica Dilatazione

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013 Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti Energia nelle reazioni chimiche Lezioni d'autore di Giorgio Benedetti VIDEO Introduzione (I) L energia chimica è dovuta al particolare arrangiamento degli atomi nei composti chimici e le varie forme di

Dettagli

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale

Dettagli

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO Lo Stato Gassoso Gas Vapore Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente MACROSCOPICO microscopico bassa densità molto comprimibile distribuzione

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

Gas perfetti e sue variabili

Gas perfetti e sue variabili Gas perfetti e sue variabili Un gas è detto perfetto quando: 1. è lontano dal punto di condensazione, e quindi è molto rarefatto 2. su di esso non agiscono forze esterne 3. gli urti tra le molecole del

Dettagli

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1

Dettagli

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA Poiché è impossibile contare o pesare gli atomi o le molecole che formano una qualsiasi sostanza chimica, si ricorre alla grandezza detta quantità

Dettagli

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V 1 Esercizio (tratto dal Problema 13.4 del Mazzoldi 2) Un gas ideale compie un espansione adiabatica contro la pressione atmosferica, dallo stato A di coordinate, T A, p A (tutte note, con p A > ) allo

Dettagli

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione REAZIONI ORGANICHE Variazioni di energia e velocità di reazione Abbiamo visto che i composti organici e le loro reazioni possono essere suddivisi in categorie omogenee. Per ottenere la massima razionalizzazione

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà 2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Stati di aggregazione della materia unità 2, modulo A del libro

Stati di aggregazione della materia unità 2, modulo A del libro Stati di aggregazione della materia unità 2, modulo A del libro Gli stati di aggregazione della materia sono tre: solido, liquido e gassoso, e sono caratterizzati dalle seguenti grandezze: Quantità --->

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

CHIMICA GENERALE MODULO

CHIMICA GENERALE MODULO Corso di Scienze Naturali CHIMICA GENERALE MODULO 6 Termodinamica Entalpia Entropia Energia libera - Spontaneità Relatore: Prof. Finelli Mario Scienza che studia i flussi energetici tra un sistema e l

Dettagli

Sperimentalmente si verifica che per una massa di gas segue alcune leggi valide per tutti i tipi di gas generalmente indicate come:

Sperimentalmente si verifica che per una massa di gas segue alcune leggi valide per tutti i tipi di gas generalmente indicate come: Gas perfetti Fisica Tecnica G. Grazzini Sperimentalmente si erifica che per una massa di gas segue alcune leggi alide per tutti i tipi di gas generalmente indicate come: Legge di Boyle V = cost. Legge

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

TEORIA CINETICA DEI GAS

TEORIA CINETICA DEI GAS TEORIA CINETICA DEI GAS La teoria cinetica dei gas è corrispondente con, e infatti prevede, le proprietà dei gas. Nella materia gassosa, gli atomi o le molecole sono separati da grandi distanze e sono

Dettagli

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni).

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Gas, liquidi, solidi Tutti i gas raffreddati liquefano Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Sostanza T L ( C) T E ( C) He - -269 H 2-263

Dettagli

I GAS POSSONO ESSERE COMPRESSI.

I GAS POSSONO ESSERE COMPRESSI. I GAS Tutti i gas sono accomunati dalle seguenti proprietà: I GAS POSSONO ESSERE COMPRESSI. L aria compressa occupa un volume minore rispetto a quello occupato dall aria non compressa (Es. gomme dell auto

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

13 La temperatura - 8. Il gas perfetto

13 La temperatura - 8. Il gas perfetto La mole e l equazione del gas perfetto Tutto ciò che vediamo intorno a noi è composto di piccolissimi grani, che chiamiamo «molecole». Per esempio, il ghiaccio, l acqua liquida e il vapore acqueo sono

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1 LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

CALCOLO DELL'ENERGIA INTERNA

CALCOLO DELL'ENERGIA INTERNA CALCOLO DELL'ENERGIA INTERNA Enrico Valenti Matricola 145442 29 novembre ore 10,30-12,30 ( trasformazione a temperatura costante ) U 0 = 0 J energia ( J ) p 0 = 1 bar pressione ( Pa ) T 0 = 273 K temperatura

Dettagli

Proprieta meccaniche dei fluidi

Proprieta meccaniche dei fluidi Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.

Dettagli

Il lavoro nelle macchine

Il lavoro nelle macchine Il lavoro nelle macchine Corso di Impiego industriale dell energia Ing. Gabriele Comodi I sistemi termodinamici CHIUSO: se attraverso il contorno non c è flusso di materia in entrata ed in uscita APERTO:

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV.

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV. Problemi Una mole di molecole di gas ideale a 292 K e 3 atm si espandono da 8 a 20 L e a una pressione finale di 1,20 atm seguendo 2 percorsi differenti. Il percorso A è un espansione isotermica e reversibile;

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Esercitazione X - Legge dei gas perfetti e trasformazioni

Esercitazione X - Legge dei gas perfetti e trasformazioni Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

FACOLTÀ DI INGEGNERIA. 2. Exergia. Roberto Lensi

FACOLTÀ DI INGEGNERIA. 2. Exergia. Roberto Lensi Roberto Lensi 2. Exergia Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 2. Exergia Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2002-03 Roberto Lensi 2. Exergia Pag. 2 REVERSIBILITÀ

Dettagli

LA MACCHINA FRIGORIFERA E LA POMPA DI

LA MACCHINA FRIGORIFERA E LA POMPA DI asdf LA MACCHINA FRIGORIFERA E LA POMPA DI CALORE 12 March 2012 Il ciclo di Carnot... "al contrario" Nell'articolo dedicato alla macchina termica, avevamo visto nel finale la macchina di Carnot e il ciclo

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

DIPARTIMENTO DI SCIENZE INTEGRATE CHIMICA FISICA SCIENZE DELLA TERRA - BIOLOGIA

DIPARTIMENTO DI SCIENZE INTEGRATE CHIMICA FISICA SCIENZE DELLA TERRA - BIOLOGIA IISS A. De Pace Lecce A.S. 2012-2013 DIPARTIMENTO DI SCIENZE INTEGRATE FISICA SCIENZE DELLA TERRA - BIOLOGIA PIANI DI STUDIO DELLE DISCIPLINE SECONDO ANNO Piano di studi della disciplina DESCRIZIONE Lo

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

I.T.C.G.T T. Acerbo - Pescara LABORATORIO DI FISICA A. S. 2009/10

I.T.C.G.T T. Acerbo - Pescara LABORATORIO DI FISICA A. S. 2009/10 I.T.C.G.T T. Acerbo - Pescara LABORATORIO DI FISICA A. S. 2009/10 Cognome: D Ovidio Nome: Stefania Classe: 2 B Geometri Data: 04/12/2009 Gruppo: F. Illiceto; V. Ivanochko; M.C. Scopino; M.Terenzi N. pagine:

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da entità o grandezze misurabili.

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Si classifica come una grandezza intensiva

Si classifica come una grandezza intensiva CAP 13: MISURE DI TEMPERATURA La temperatura È osservata attraverso gli effetti che provoca nelle sostanze e negli oggetti Si classifica come una grandezza intensiva Può essere considerata una stima del

Dettagli

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult SISTEM INRIO DI DUE IQUIDI OTII MENTE MISCIII che seguono Raoult Consideriamo due liquidi e totalmente miscibili di composizione χ e χ presenti in un contenitore ad una certa temperatura T=T 1. o strato

Dettagli

Capitolo 10 Il primo principio 113

Capitolo 10 Il primo principio 113 Capitolo 10 Il primo principio 113 QUESITI E PROBLEMI 1 Tenuto conto che, quando il volume di un gas reale subisce l incremento dv, il lavoro compiuto dalle forze intermolecolari di coesione è L = n 2

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia Secondo principio della termodinamica Macchine termiche Rendimento Secondo principio della ermodinamica Macchina di arnot Entropia Introduzione al secondo principio della termodinamica Da quanto studiato

Dettagli

3. Le Trasformazioni Termodinamiche

3. Le Trasformazioni Termodinamiche 3. Le Trasformazioni Termodinamiche Lo stato termodinamico di un gas (perfetto) è determinato dalle sue variabili di stato: ressione, olume, Temperatura, n moli ffinché esse siano determinate è necessario

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

EQUAZIONE DI STATO e LEGGI DEI GAS esercizi risolti Classi quarte L.S.

EQUAZIONE DI STATO e LEGGI DEI GAS esercizi risolti Classi quarte L.S. EQUAZIONE DI STATO e LEGGI DEI GAS esercizi risolti Classi quarte L.S. In questa dispensa verrà riportato lo svolgimento di alcuni esercizi inerenti l'equazione di stato dei gas perfetti e le principali

Dettagli

RICHIAMI DI TERMOCHIMICA

RICHIAMI DI TERMOCHIMICA CAPITOLO 5 RICHIAMI DI TERMOCHIMICA ARIA TEORICA DI COMBUSTIONE Una reazione di combustione risulta completa se il combustibile ha ossigeno sufficiente per ossidarsi completamente. Si ha combustione completa

Dettagli

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 2 LO STATO GASSOSO

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 2 LO STATO GASSOSO Università degli studi di MILANO Facoltà di AGRARIA El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA Lezione 2 Anno Accademico 2010-2011 Docente: Dimitrios Fessas LO STATO GASSOSO Prof. Dimitrios

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

Cenni di Teoria Cinetica dei Gas

Cenni di Teoria Cinetica dei Gas Cenni di Teoria Cinetica dei Gas Introduzione La termodinamica descrive i sistemi termodinamici tramite i parametri di stato (p, T,...) Sufficiente per le applicazioni: impostazione e progettazione di

Dettagli

L'ENTROPIA. Lezioni d'autore

L'ENTROPIA. Lezioni d'autore L'ENTROPIA Lezioni d'autore Un video : Clic Un altro video : Clic La funzione di distribuzione delle velocità (I) Nel grafico accanto sono riportati i numeri delle molecole di un gas, suddivise a seconda

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

Rapporto dal Questionari Insegnanti

Rapporto dal Questionari Insegnanti Rapporto dal Questionari Insegnanti SCUOLA CHIC81400N N. Docenti che hanno compilato il questionario: 60 Anno Scolastico 2014/15 Le Aree Indagate Il Questionario Insegnanti ha l obiettivo di rilevare la

Dettagli

SENSORI E TRASDUTTORI

SENSORI E TRASDUTTORI SENSORI E TRASDUTTORI Il controllo di processo moderno utilizza tecnologie sempre più sofisticate, per minimizzare i costi e contenere le dimensioni dei dispositivi utilizzati. Qualsiasi controllo di processo

Dettagli

IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A.

IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. IMPIANTI DI TERRA Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d Ingegneria dell Università degli Studi di Cagliari

Dettagli

Esercizi di Fisica Generale

Esercizi di Fisica Generale Esercizi di Fisica Generale 2. Temodinamica prof. Domenico Galli, dott. Daniele Gregori, prof. Umberto Marconi dott. Alessandro Tronconi 27 marzo 2012 I compiti scritti di esame del prof. D. Galli propongono

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

1. LE GRANDEZZE FISICHE

1. LE GRANDEZZE FISICHE 1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere

Dettagli

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA LE MACCHINE TERMICHE Sono sistemi termodinamici che trasformano il calore in lavoro. Operano ciclicamente, cioè

Dettagli

Amplificatori Audio di Potenza

Amplificatori Audio di Potenza Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

5. FLUIDI TERMODINAMICI

5. FLUIDI TERMODINAMICI 5. FLUIDI TERMODINAMICI 5.1 Introduzione Un sistema termodinamico è in genere rappresentato da una quantità di una determinata materia della quale siano definibili le proprietà termodinamiche. Se tali

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J. Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,

Dettagli

Seconda legge della termodinamica

Seconda legge della termodinamica Seconda legge della termodinamica In natura tutti i processi devono soddisfare il principio di conservazione dell energia (e quindi anche la a legge della termodinamica) ma non tutti i processi che conservano

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

Lezione 7 I e II Prinicipio

Lezione 7 I e II Prinicipio Lezione 7 I e II Prinicipio Lavoro: W = pdv Serway, 17 ap. se la pressione é costante: Unitá di misura: 7.1 lavoro ed energia termica 7.1.1 XVII. 18 W = p V 1litro = 10 3 m 3 1atm 1.01310 5 P a = 1.01310

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore La materia è un sistema fisico a molti corpi Gran numero di molecole (N A =6,02 10 23 ) interagenti tra loro Descrizione mediante grandezze macroscopiche (valori medi su un gran numero

Dettagli