Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta"

Transcript

1 Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante da noi, perché conserva la stessa forma. (immagini di Palazzo Carignano di Torino) In geometria il concetto di similitudine è legato al possesso di alcune proprietà: due o più poligoni sono simili se hanno gli angoli a due a due congruenti e se hanno i lati corrispondenti proporzionali. (un poligono può essere considerato come l ingrandimento dell altro) Spesso non è così semplice rilevare la similitudine poiché i lati corrispondenti non sono paralleli. corrispondenza: vertici D e G vertici A e H vertici B e E vertici C e F lati AD e HG lati DC e GF lati BC e EF lati AB e HE 1

2 In alcuni casi è molto semplice e efficace la costruzione per disegnare poligoni simili. Poligoni regolari con ugual numero di lati sono simili 2

3 Esempi molto significativi di rapporto tra le aree corrispondenti Osservando i primi tre esempi (triangolo-rettangolo-rombo) notiamo che raddoppiando o triplicando il lato della figura iniziale, mentre il perimetro raddoppia o triplica, l area si moltiplica rispettivamente per quattro o per nove. Nel quarto esempio mentre i lati del rettangolo sono moltiplicati per 1,5 (anche il perimetro è moltiplicato per 1,5), l area è moltiplicata per 2,25 (cioè 1,5*1,5=1,5 2 ). Ricordiamo ancora che il rapporto tra le aree di poligoni simili è uguale al quadrato del rapporto tra i lati corrispondenti (o tra i perimetri). Teorema di Talete e similitudine nei triangoli Il teorema di Talete è uno dei più applicati della geometria e il suo enunciato è molto noto: Un fascio di rette parallele tagliate da due trasversali genera coppie di segmenti direttamente proporzionali. E stato inserito ora nella lezione perché viene applicato assieme al suo inverso per dimostrare i criteri di similitudine dei triangoli. Per prendere visione delle dimostrazioni rigorose del teorema di Talete, del suo inverso e dei criteri di similitudine dei triangoli vedere apposita lezione, poiché queste pagine sono dedicate ad alunni della scuola secondaria di primo grado e questi argomenti sono solo giustificati. Per giustificare il teorema di Talete si disegnano le rette su carta quadrettata o si utilizza un software di geometria dinamica che ci permette di tracciare una griglia, di misurare i segmenti e di calcolare automaticamente il loro rapporto spostando col puntatore le rette parallele. Vedremo al termine dell argomento alcune applicazioni de teorema di Talete. Similitudine nei triangoli Come tutti i poligoni due triangoli sono simili se hanno gli angoli corrispondenti congruenti e se hanno proporzionali le coppie di lati corrispondenti. 3

4 Criteri di similitudine dei triangoli Sono teoremi che si dimostrano (vedere lezione specifica) grazie al teorema di Talete diretto e inverso e a partire dai criteri di similitudine già dimostrati. Ci permettono di stabilire se due triangoli sono simili conoscendo tre dei sei elementi (lati e/o angoli). Per giustificarli si consiglia di disegnare, per ogni criterio, due triangoli tenendo conto solo degli elementi enunciati in quel criterio e successivamente di verificare che anche gli altri elementi corrispondono a quelli del criterio generale di similitudine (due poligoni sono simili se hanno gli angoli a due a due congruenti e se hanno i lati corrispondenti proporzionali). Primo criterio Due triangoli sono simili se hanno gli angoli corrispondenti congruenti (osserviamo che poiché la somma degli angoli interni di un triangolo è un angolo piatto possiamo non considerare il terzo angolo) Secondo criterio Due triangoli sono simili se hanno congruente un angolo e se hanno proporzionali i lati che lo formano. Terzo criterio Due triangoli sono simili se hanno i lati corrispondenti proporzionali. Applicando il primo criterio di similitudine dei triangoli possiamo dimostrare i due teoremi di Euclide sul triangolo rettangolo. Dobbiamo fare molta attenzione nel rilevare i lati corrispondenti nei triangoli simili. Primo teorema di Euclide sul triangolo rettangolo Un cateto è medio proporzionale tra l ipotenusa e la proiezione del cateto su di essa (oppure: Il quadrato avente per lato un cateto è equivalente al rettangolo avente per lati l ipotenusa e la proiezione del cateto su di essa). 4

5 Secondo teorema di Euclide sul triangolo rettangolo L altezza relativa all ipotenusa è medio proporzionale tra le proiezioni dei cateti su di essa (oppure: Il quadrato avente per lato l altezza relativa all ipotenusa è equivalente al rettangolo avente per lati le proiezioni dei cateti su di essa). Alcune applicazioni teoriche o pratiche del teorema di Talete e della similitudine 5

6 6

7 Omotetia e similitudine Figure omotetiche sono sempre simili, ma non viceversa. Per il momento affermiamo che le figure omotetiche non sono solo simili, ma anche similmente disposte. Esercitiamoci con le figure precedenti, utilizzando i diagrammi di Euler Venn, nella classificazione. Due poligoni sono omotetici se il rapporto tra le distanze tra due punti corrispondenti e un punto detto centro di omotetia è costante. Il rapporto si dice rapporto di omotetia e si indica con K. Se le due figure sono dalla stessa parte rispetto al centro di omotetia, l omotetia è diretta; se invece le due figure sono da parti opposte rispetto al centro, l omotetia è inversa e il rapporto di omotetia è un numero negativo. In entrambi i tipi di omotetia le figure mantengono lo stesso verso. Se K = -1 l omotetia inversa coincide con la simmetria centrale. Le figure omotetiche sono simili e possiamo scrivere le proporzioni già applicate nella similitudine. Inoltre le figure omotetiche sono similmente disposte: i lati corrispondenti sono a due a due paralleli. Le figure omotetiche possono essere concepite anche nello spazio tridimensionale. 7

8 8

9 Il pantografo: uno strumento per tracciare figure omotetiche i Pitagorici DIDATTICA E DIVULGAZIONE DELLA MATEMATICA E DELLE SCIENZE LEZIONI UNO 9

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

Elementi di Geometria. Lezione 03

Elementi di Geometria. Lezione 03 Elementi di Geometria Lezione 03 I triangoli I triangoli sono i poligoni con tre lati e tre angoli. Nelle rappresentazioni grafiche (Figura 32) i vertici di un triangolo sono normalmente contrassegnati

Dettagli

Anna Montemurro. 2Geometria. e misura

Anna Montemurro. 2Geometria. e misura Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C

Dettagli

I teoremi di Euclide e di Pitagora

I teoremi di Euclide e di Pitagora I teoremi di Euclide e di Pitagora In questa dispensa vengono presentati i due teoremi di Euclide ed il teorema di Pitagora, fondamentali per affrontare diverse questioni sui triangoli rettangoli. I teoremi

Dettagli

FIGURE GEOMETRICHE SIMILI

FIGURE GEOMETRICHE SIMILI FIGUE GEOMETICHE SIMILI Nel linguaggio comune si dice che due oggetti sono simili quando si «assomigliano». Così si dicono simili due cani della stessa razza, i fiori della stessa pianta, gli abiti dello

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri. 6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

PROVA INVALSI Scuola Secondaria di I grado Classe Prima

PROVA INVALSI Scuola Secondaria di I grado Classe Prima SNV 2010-2011; SNV 2011-2012; SNV 2012-2013 SPAZIO E FIGURE SNV 2011 10 quesiti su 29 (12 item di cui 6 a risposta aperta) SNV 2012 11 quesiti su 30 (13 item di cui 2 a risposta aperta) SNV 2013 9 quesiti

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora. TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

La simmetria centrale

La simmetria centrale La simmetria centrale Una simmetria centrale di centro O è una isometria che associa al punto O se stesso e ad ogni altro punto P del piano il punto P in modo che O sia il punto medio del segmento PP.

Dettagli

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE Anno Scolastico 20010/2011 Classe 1^C dell Istituto comprensivo G. Parini plesso Ghittoni di San Giorgio- Piacenza Docente della Classe : Paola Farroni

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova)

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova) LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA Dario Palladino (Università di Genova) Seconda parte Momenti della storia dei tentativi di dimostrazione del V postulato di Euclide

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

1 L omotetia. i punti O, A e A siano allineati

1 L omotetia. i punti O, A e A siano allineati 1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che

Dettagli

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,

Dettagli

Giuseppe Ruffo. Fisica: lezioni e

Giuseppe Ruffo. Fisica: lezioni e Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre

Dettagli

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri COMPETENZA CHIAVE MATEMATICA Fonte di legittimazione Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE L alunno utilizza il calcolo scritto e mentale con i numeri

Dettagli

Anno 4 I Triangoli qualsiasi

Anno 4 I Triangoli qualsiasi Anno 4 I Triangoli qualsiasi 1 Introduzione In questa lezione descriveremo i triangoli qualunque. Enunceremo i teoremi su questi triangoli e illustreremo le loro applicazioni. Al termine della lezione

Dettagli

/H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL

/H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL /H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL Il confronto della lunghezza tra due segmenti è un problema molto semplice. Infatti tutti

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi

Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi Scuola Pitagoric a Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi della geometria; in seguito si reca a

Dettagli

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Mete e coerenze formative Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Area disciplinare: Area Matematica Finalità Educativa Acquisire gli alfabeti di base della cultura Disciplina

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

ABCD è un parallelogrammo 90. Dimostrazione

ABCD è un parallelogrammo 90. Dimostrazione EQUISCOMPONIBILITÀ Problema G2.360.1 È dato il parallelogrammo ABCD: dai vertici A e B si conducano le perpendicolari alla retta del lato CD e siano rispettivamente E e F i piedi di tali perpendicolari

Dettagli

CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi

CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi FINE CLASSE TERZA SCUOLA PRIMARIA FINE SCUOLA PRIMARIA COMPETENZE SPECIFICHE ABILITÀ CONOSCENZE ABILITÀ CONOSCENZE Utilizzare

Dettagli

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Liceo Scientifico Statale P. Paleocapa, Rovigo XX Settimana della Cultura Scientifica e Tecnologica 19 marzo 2010 Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Prof.

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

Costruzioni sulla carta a

Costruzioni sulla carta a Avviso Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 7 aprile 2009 La prima prova intermedia si svolgerà: martedì 20 aprile 2009, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula U6-06

Dettagli

Ancora sugli insiemi. Simbologia

Ancora sugli insiemi. Simbologia ncora sugli insiemi Un insieme può essere specificato in vari modi; il più semplice è fare un elenco dei suoi elementi. d esempio l insieme delle nostre lauree triennali è { EOOM, EON, EOMM, EOMK EOTU}

Dettagli

Pitagora preso in giro (tondo).

Pitagora preso in giro (tondo). Pitagora preso in giro (tondo). Silvano Rossetto Centro Ricerche Didattiche Ugo Morin Se si chiede di completare la frase il teorema di, sicuramente Pitagora ottiene una percentuale bulgara: il suo è quindi

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

Laboratorio Da Euclide ai pannelli solari piegando la carta

Laboratorio Da Euclide ai pannelli solari piegando la carta Summer School La matematica incontra le altre Scienze San Pellegrino Terme 8 9-10 Settembre 2014 Laboratorio Da Euclide ai pannelli solari piegando la carta I Parte : Relazioni tra tetraedro regolare e

Dettagli

LA CONOSCENZA DEL MONDO SCUOLA DELL INFANZIA. OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni

LA CONOSCENZA DEL MONDO SCUOLA DELL INFANZIA. OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni SCUOLA DELL INFANZIA INDICATORI LA CONOSCENZA DEL MONDO OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni Riconoscere la quantità. Ordinare piccole quantità. Riconoscere la quantità. Operare e ordinare piccole

Dettagli

CURRICULUM SCUOLA PRIMARIA MATEMATICA

CURRICULUM SCUOLA PRIMARIA MATEMATICA Ministero dell istruzione, dell università e della ricerca Istituto Comprensivo Giulio Bevilacqua Via Cardinale Giulio Bevilacqua n 8 25046 Cazzago San Martino (Bs) telefono 030 / 72.50.53 - fax 030 /

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Anno 4 Applicazioni dei teoremi di trigonometria

Anno 4 Applicazioni dei teoremi di trigonometria Anno 4 Applicazioni dei teoremi di trigonometria 1 Introduzione In questa lezione descriveremo le applicazioni dei teoremi di trigonometria. Inizieremo, illustrando alcune formule di trigonometria, utili

Dettagli

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21 7 Introduzione Questo volume si propone di riorganizzare i percorsi di aritmetica e di geometria del corso principale adattandoli a studenti con esigenze specifiche. Il progetto grafico originale del corso

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per il Lazio Istiituto Comprensiivo Don Lorenzo Miillanii Scuola dell Infanzia Primaria Secondaria di I grado anche

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA.

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA. Rita e Marco DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA Rita e Marco 3 DISLESSIA difficoltà Studio della teoria sul libro. Comprensione

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Istituto comprensivo Arbe Zara

Istituto comprensivo Arbe Zara Istituto comprensivo Arbe Zara Viale Zara,96 Milano Tel. 02/6080097 Scuola Secondaria di primo grado Falcone Borsellino Viale Sarca, 24 Milano Tel- 02/88448270 A.s 2015 /2016 Progettazione didattica della

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA ANNO SCOLASTICO 2013/2014 INSEGNANTI Gabellone, Silvagni,Damiano TRAGUARDI DELLE COMPETENZE AL TERMINE della CLASSE QUARTA Sviluppa

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Anche se spesso si afferma che il sistema binario, o in base 2, fu inventato in

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

Soluzioni del Certamen Mathematicum

Soluzioni del Certamen Mathematicum Soluzioni del Certamen Mathematicum dicembre 2004 1. Notiamo che un qualsiasi quadrato modulo 4 è sempre congruo o a 0 o a 1. Infatti, se tale numero è pari possiamo scriverlo come 2k, seè dispari invece

Dettagli

Alla ricerca del rettangolo più bello

Alla ricerca del rettangolo più bello Alla ricerca del rettangolo più bello Livello scolare: biennio Abilità interessate Individuare nel mondo reale situazioni riconducibili alla similitudine e descrivere le figure con la terminologia specifica.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia L'educazione matematica ha il compito di avviare l'alunno verso una maggiore consapevolezza e padronanza del pensiero

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 017 da parte degli studenti

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

GIOCHI A SQUADRE. 30 marzo 2012

GIOCHI A SQUADRE. 30 marzo 2012 Centro Pristem Università Bocconi GIOCHI A SQUADRE 30 marzo 2012 1. La campestre Carla, Milena, Anna, Fausta e Debora hanno partecipato alla corsa campestre della loro classe. Carla e Anna non hanno vinto.

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA ISTITUTO COMPRENSIVO STATALE di Scuola dell Infanzia, Scuola Primaria e Scuola Secondaria di 1 grado San Giovanni Teatino (CH) CURRICOLO A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA OBIETTIVI DI Sviluppa

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno...

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno... VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA Scuola..........................................................................................................................................

Dettagli

DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI

DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI 1. GIOCO DI CUBI L altezza della piramide di Luca è 95 cm. = (14 + 13 + 12 + + 7 + 6 + 5) 2. LA PARTENZA Anna saluterà le amiche nel seguente ordine: S-I-G-C

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

Appunti di Geometria

Appunti di Geometria ISTITUTO COMPRENSIVO N.7 - VIA VIVALDI - IMOLA Via Vivaldi, 76-40026 Imola (BOLOGNA) Centro Territoriale Permanente: Istruzione Degli Adulti - IDA Appunti di Geometria Scuola Secondaria di I Grado - Ex

Dettagli

Fascicolo 1. Matematica - Scuola primaria Classe quinta Anno scolastico 2013 2014

Fascicolo 1. Matematica - Scuola primaria Classe quinta Anno scolastico 2013 2014 Griglia di correzione DOMANDE APERTE Fascicolo 1 Matematica - Scuola primaria Classe quinta Anno scolastico 2013 2014 Si ricorda che i dati di tutte le classi (campione e non campione) devono essere trasmessi

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli