Lecture 15 Equilibrio radiale Text:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lecture 15 Equilibrio radiale Text:"

Transcript

1 Lecture 15 Text: Motori Aeronautici Mar. 26, 2015 Mauro Valorani Univeristà La Sapienza

2 Agenda

3 Quando le pale presentano un forte sviluppo, si deve studiare il flusso non solo nel piano interpalare ma anche quello in direzione normale a questo piano. Lo studio non interessa la componente della velocità (V ), bensì le variazioni lungo il raggio di V a e V θ : { V a = V z() V θ = V θ () da cui, inoltre: p = p() ; h 0 = h 0 () ; = () ;... Per farlo si utilizzano: eq.ne del moto in direzione in coordinate cilindriche eq.ne di Gibbs Come si vedrà, affinche sussista una condizione di equilibrio in direzione, le distribuzioni di V a e V θ non potranno essere arbitrarie

4 Equazione del moto in coordinate cilindriche in direzione equazione della quantità di moto in coordinate cilindriche nel caso di flusso non viscoso: che in coordinate cilindriche si scrive: ρ D V Dt = p V = V i + V θ iθ + V a ia ( ) = ( ) i + 1 ( ) iθ + ( ) ia θ z La proiezione in direzione dell equazione del moto { i ρ D } V = p Dt fornisce: V t V + V + V θ V θ V 2 θ + V Va z = 1 p ρ

5 Nell ipotesi di: flusso stazionario: V t = 0 gradienti spaziali (radiali e assiali) di V trascurabili rispetto alla forza centrifuga: V V + V θ V θ + V Va z << V θ 2 In tal caso, il gradiente di pressione viene bilanciato dalla sola forza centrifuga: d p() d = ρ V θ() 2 d p ρ = V 2 θ d L integrazione di tale equazione per un assegnata distribuzione di V θ (), fornisce la distribuzione di pressione statica p() che soddisfa la condizione di equilibrio Le distribuzioni di pressione statica e di energia cinetica associata alla velocità circonferenziale inducono una distribuzione di energia totale della particella fluida valutabile (nel caso di flusso incompressibile) dalla: p 0 () ρ := p() ρ + V θ()

6 Esempio: Il flusso a vortice libero è definito come una particolare distribuzione di tipo irrotazionale: ovvero V θ = ω f 2 = C V θ () = C ω f () = C 2 La distribuzione di pressione statica che soddisfa la Figure: Velocità e pressione per un condizione di equilibrio si ricava da: vortice libero dp ρ = Vθ () 2 C 2 d = d 3 da cui (per flussi incomprimibili: ρ = cost), la pressione ha un espressione del tipo: p() ρ = 1 C cost = V θ() 2 + cost dalla quale si deduce che l energia totale della particella è la stessa su tutto il vortice: p 0 () ρ = p() ρ V θ() 2 = cost e quindi non si verifica scambio di lavoro durante spostamenti radiali di una particella

7 Esempio: Nel flusso a vortice forzato, la distribuzione di velocità è la stessa che caratterizza il moto rigido di rotazione attorno ad un asse; il campo di flusso risultante è rotazionale: V θ = ω f = cost ovvero V θ () = ω f ω f () = cost Figure: Velocità e pressione per un vortice forzato La distribuzione di pressione statica che soddisfa la condizione di equilibrio si ricava da: dp ρ = Vθ () 2 d = ω f d da cui (per ρ = cost), la pressione ha un espressione del tipo: p () = ω 2 2 f ρ 2 + cost = 1 2 V 2 θ + cost dalla quale si deduce che l energia totale della particella varia radialmente attraverso il vortice: p 0 () = p ρ ρ V 2 θ = V 2 θ + cost = ω2 f 2 + cost e quindi si verifica scambio di lavoro durante spostamenti radiali di una particella: W = p ( ) 0 ρ = ω2 f

8 Si vuole ottenere una relazione fra le componenti di velocità circonferenziali ed assiali nell ipotesi di esistenza di equilibrio e per una assegnata distribuzione di velocità circonferenziale. Si procede proiettando il primo principio nella direzione : ( i T s = h p ) ρ da cui si ricava: T ds d = dh d 1 ρ dp d L entalpia di ristagno per un moto vorticoso si può scrivere: h 0 = h V 2 h ( ) Vθ 2 + V a 2 dal momento che V 2 << V 2 θ + V 2 a

9 Differenziando h 0 e sostituendo dh/d nel primo principio, in cui si pone dp/d = ρvθ 2 / in virtù dell ipotesi di equilibrio si ha: dh 0 d T ds d = 1 2 d d ( ) Vθ 2 + V a 2 + V θ 2 Nell ipotesi che non vi siano perdite lungo il raggio (s() = cost), si ha: 1 d 2 d V a 2 = dh 0 d V θ d d (V θ) che lega la variazione della componente assiale a quella della componente tangenziale nel flusso vorticoso in esame. Il termine dh 0 /d rappresenta la variazione del carico. Se la paletta è disegnata in modo tale da fornire lo stesso lavoro ad ogni raggio, allora dh 0 /d = 0, ma in generale non è così

10 Se la distribuzione di velocità tangenziale desiderata a valle del rotore è V θ2 = costante V θ2 = C ne segue che: dall equazione di Eulero, se il flusso a monte del rotore è uniforme: h 0 = ω[(v θ ) 2 (V θ ) 1 ] = cost h 0 = cost dh 0 dr il design a vortice libero corrisponde ad un palettaggio a carico costante lungo il raggio dall equazione di equilibrio con dh 0 /d = 0 : V a()= costante = 0 la deflessione è molto accentuata all hub e poco accentuata al tip (paletta molto svergolata) andamento del grado di reazione lungo il raggio: = 1 V θ1 + V θ2 2ω = 1 C/ ω/ adimensionalizzando rispetto al raggio medio m: = 1 (C/m)/(ω/m) 2(/ m) 2 = 1 1 m (/ m)

11 Figure: Andamento del grado di reazione lungo il raggio adimensionale all hub si rischia di avere molto bassi al tip si rischia di avere troppo alti (eccessiva diffusione)

12 Se la distribuzione di velocità tangenziale desiderata a valle del rotore è V θ2 = ω f ne segue che: La distribuzione del carico di lavoro lungo il raggio non è costante, bensì (se flusso a monte uniforme): W () = ω[(v θ ) 2 (V θ ) 1 ] = ωω f 2 cioè la paletta lavora più al tip che all hub il grado di reazione è costante lungo il raggio: = 1 V θ1 + V θ2 2ω La distribuzione della V a è: = 1 ω f 2ω = cost 1 d 2 d V a 2 = 2ωω f 2ωf 2 nel caso in cui ω f = ω si ha distribuzione assiale uniforme e grado di reazione = 0.5 Distribuzioni ottime sono combinazioni di vortice libero e forzato: V θ2 = C + B

Lecture 14 L equazione di Eulero Text:

Lecture 14 L equazione di Eulero Text: Lecture 14 Text: Motori Aeronautici Mar. 6, 015 Mauro Valorani Univeristà La Sapienza 14.58 Agenda 1 3 14.59 Bilancio microscopico Momento Polare Il momento polare d L, valutato in un punto P del campo

Dettagli

Lecture 13. Text: Motori Aeronautici Mar. 26, Mauro Valorani Univeristà La Sapienza. Introduzione alle turbomacchine.

Lecture 13. Text: Motori Aeronautici Mar. 26, Mauro Valorani Univeristà La Sapienza. Introduzione alle turbomacchine. Lecture 13 Text: Motori Aeronautici Mar. 26, 2015 Mauro Valorani Univeristà La Sapienza 13.237 Agenda 1 2 13.238 01 01 0 1 00 11 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111

Dettagli

Design di schiere nel piano interpalare

Design di schiere nel piano interpalare Lecture 15 nel Text: Motori Aeronautici Mar. 6, 015 nel Triangoli di Disegno di di Mauro Valorani Univeristà La Sapienza 15.79 Agenda nel 1 Triangoli di Triangoli di 3 Disegno di di Disegno di di 15.80

Dettagli

Lecture 4. Text: Motori Aeronautici Mar. 6, Mauro Valorani Univeristà La Sapienza. Equazioni del moto dei fluidi

Lecture 4. Text: Motori Aeronautici Mar. 6, Mauro Valorani Univeristà La Sapienza. Equazioni del moto dei fluidi Lecture 4 Equazioni del Text: Motori Aeronautici Mar. 6, 2015 Equazioni del Mauro alorani Univeristà La Sapienza 4.39 Agenda Equazioni del 1 2 4.40 Modelli Macroscopico a Equazioni del Ipotesi: volume

Dettagli

Compressore e turbina [1-19]

Compressore e turbina [1-19] Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 4 sezione c Compressore e turbina

Dettagli

Fenomeni di rotazione

Fenomeni di rotazione Fenomeni di rotazione Si e visto che nel caso di un fluido, data la proprietà di deformarsi quando sottoposti a sforzi di taglio, gli angoli di rotazione di un elemento di fluido rispetto ad sistema di

Dettagli

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1 Dinamica del fluidi A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi A. Stefanel - Fluidodinamica 1 Per descrivere il moto di un fluido ci sono due formalismi equivalenti: Lagrange: si descrive il moto

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale 4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di un compressore assiale. Con riferimento alla

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi FLUIDI LIQUIDI Hanno volume proprio Sono incomprimibili GAS Non hanno volume proprio Sono facilmente comprimibili CARATTERISTICHE COMUNI Non sostengono gli sforzi di taglio (non hanno

Dettagli

Lecture 18. Text: Motori Aeronautici Mar. 26, Mauro Valorani Università La Sapienza. Analisi dimensionale delle turbomacchine

Lecture 18. Text: Motori Aeronautici Mar. 26, Mauro Valorani Università La Sapienza. Analisi dimensionale delle turbomacchine Lecture 18 Analisi Text: Motori Aeronautici Mar. 26, 2015 Analisi Mauro Valorani Università La Sapienza 18.331 Agenda Analisi 1 Numero di giri e 18.332 Analisi L analisi e il confronto tra le turbomacchine

Dettagli

RISOLUZIONE DI PROBLEMI DI FISICA

RISOLUZIONE DI PROBLEMI DI FISICA RISOUZIONE DI PROBEMI DI FISICA Problema 1 Una massa puntiforme m = 2 kg è soggetta ad una forza centrale con associata energia potenziale radiale U( r) 6 A =, dove A = 2 J m 6. Il momento angolare della

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

Fluidodinamica, Martedì 5 luglio

Fluidodinamica, Martedì 5 luglio Fluidodinamica, Martedì 5 luglio 0.1 Parte di Fluidodinamica I Domanda 1 L equazione di continuità è l espressione matematica della legge di conservazione della massa. Illustrare la sua forma matematica

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

Teoria del disco attuatore

Teoria del disco attuatore Prima di affrontare l argomento nel particolare e nacessario fare un po di teoria. Teoria del disco attuatore L elica iinvestita dal vento puo essere assimilata come un disco che separa il flusso in moto.

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Università degli studi di Trento Corso di Laurea in Enologia e Viticoltura. Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica

Università degli studi di Trento Corso di Laurea in Enologia e Viticoltura. Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Università degli studi di Trento Corso di Laurea in Enologia e Viticoltura Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Agrometeorologia 5. Caratteristiche dei moti atmosferici

Dettagli

Lez. 20: Turbine ad azione

Lez. 20: Turbine ad azione Condizioni di ristagno allo scarico del rotore Lez. 0: Turbine ad azione Lavoro di turbina ad impulso Si consideri un triangolo delle velocità generico per una turbina ad impulso (grado di reazione: Λ

Dettagli

5a.Rotazione di un corpo rigido attorno ad un asse fisso

5a.Rotazione di un corpo rigido attorno ad un asse fisso 5a.Rotazione di un corpo rigido attorno ad un asse fisso Un corpo rigido è un corpo indeformabile: le distanze relative tra i punti materiali che lo costituiscono rimangono costanti. Il modello corpo rigido

Dettagli

Fluidodinamica applicata Esercizi Proposti (Da Risolvere)

Fluidodinamica applicata Esercizi Proposti (Da Risolvere) MARTEDÌ 1..000 ESERCIZI PROPOSTI 1) una parete verticale separa due invasi pieni d acqua. Noti i livelli dell acqua nei due invasi 1 ed, con 1 < e la densità ρ dell acqua, calcolare la forza per unità

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014 Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 014 Esercizio 1: Una molla ideale è utilizzata per frenare un blocco di massa 50 kg che striscia su un piano

Dettagli

Elementi di dinamica rotazionale

Elementi di dinamica rotazionale In questa dispensa studieremo: Elementi di dinamica rotazionale Il momento torcente. Il momento di inerzia. Il secondo principio della dinamica rotazionale. L energia cinetica totale. Il momento angolare.

Dettagli

FM210 / MA - Secondo scritto ( )

FM210 / MA - Secondo scritto ( ) FM10 / MA - Secondo scritto (6-7-017) Esercizio 1. Un asta rigida omogenea di lunghezza l e massa M è vincolata a muoversi su un piano verticale di coordinate x-y (con l asse x orizzontale e l asse y verticale,

Dettagli

Turbomacchine Impiegate in Aeronautica

Turbomacchine Impiegate in Aeronautica Lezione 11 1 Turbomacchine Impiegate in Aeronautica Ci si occuperà ora in maggior dettaglio delle turbomacchine più diffuse nel campo aeronautico. Esse sono: Tra i compressori Compressore radiale centrifugo

Dettagli

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema SISTEMI APERTI Ipotesi: EQUILIBRIO LOCALE in ogni punto del sistema aperto le proprietà termostatice assumono il valore ce avrebbero se nell intorno di quel punto il sistema fosse uniforme Ipotesi: MOTO

Dettagli

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz:

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz: Esercitazione 6 Esercizio 1 - omento d inerzia del cono Calcolare il momento di inerzia di un cono omogeneo, di altezza H, angolo al vertice α e massa, rispetto al suo asse di simmetria. Calcoliamo il

Dettagli

Meccanica Dinamica del corpo rigido Elementi di fluidodinamica

Meccanica Dinamica del corpo rigido Elementi di fluidodinamica Meccanica 17-18 Dinamica del corpo rigido Elementi di fluidodinamica x Assi principali d inerzia z ω u L O y OQ 1/ Z Q O I OQ X Y Ellissoide d inerizia L I ω u + I ω u + I ω u x x x y y y z z z e scegliamo

Dettagli

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale 5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di una turbina assiale con i seguenti valori di progetto:

Dettagli

ESAME DI AERODINAMICA 16/4/2007

ESAME DI AERODINAMICA 16/4/2007 ESAME DI AERODINAMICA 6/4/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

MACCHINE Lezione 9 Turbine Idrauliche II Francis e Kaplan

MACCHINE Lezione 9 Turbine Idrauliche II Francis e Kaplan MACCHINE Lezione 9 Turbine Idrauliche II Francis e Kaplan Dr. Paradiso Berardo Laboratorio Fluidodinamicadelle delle Macchine Dipartimento di Energia Politecnico di Milano Turbine a reazione generalità

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

MOTORI PER AEROMOBILI

MOTORI PER AEROMOBILI MOTORI PER AEROMOBILI Cap. 4 RICHIAMI SULLE TURBOMACCHINE 1.1 Introduzione Come ricordato nel corso di Propulsori Aerospaziali: Le TURBOMACCHINE sono macchine (cioè convertitori di energia) in cui lo scambio

Dettagli

Fisica Generale 1 per Chimica Formulario di Meccanica

Fisica Generale 1 per Chimica Formulario di Meccanica Fisica Generale 1 per Chimica Formulario di Meccanica Vettori : operazioni elementari: Nota: un vettore verra' qui rappresentato in grassetto es: A = ( A x, A y, A z ) Prodotto scalare A. B = A B cos θ,

Dettagli

Lezione 16 Geometrie toroidali di confinamento magnetico

Lezione 16 Geometrie toroidali di confinamento magnetico Lezione 16 Geometrie toroidali di confinamento magnetico G. osia Universita di Torino G. osia - Fisica del plasma confinato Lezione 16 1 Geometria toroidale I più moderni sistemi di confinamento magnetico

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

Re. Soluzioni esterne e

Re. Soluzioni esterne e Capitolo 7 Re. Soluzioni esterne e vorticità 7.1 Flussi irrotazionali Come si è già visto nel capitolo precedente per Re si ha un problema di perturbazione singolare e la soluzione esterna si ottiene ponendo

Dettagli

ESAME DI AERODINAMICA 26/3/2008

ESAME DI AERODINAMICA 26/3/2008 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza

Dettagli

ESAME DI AERODINAMICA 26/3/2008

ESAME DI AERODINAMICA 26/3/2008 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

, con x =, y. 3. Si disegni il grafico delle curve di livello sul piano delle fasi (x, ẋ) al variare di E e si discuta la natura qualitativa del moto.

, con x =, y. 3. Si disegni il grafico delle curve di livello sul piano delle fasi (x, ẋ) al variare di E e si discuta la natura qualitativa del moto. 7 o tutorato - MA - Prova Pre-Esonero - 8/4/5 Esercizio Una massa puntiforme m è vincolata a muoversi nel piano verticale xy (con x l asse orizzontale e y l asse verticale orientato verso l alto), su una

Dettagli

τ ij = pδ ij (30.1.1)

τ ij = pδ ij (30.1.1) 30. Fluidi I fluidi presentano una varia fenomenologia con moti regolari e moti turbolenti. Le equazioni del moto sono non lineari e, per un gas rarefatto, possono essere derivate da un modello microscopico

Dettagli

Equazione dell'energia. Fenomeni di Trasporto

Equazione dell'energia. Fenomeni di Trasporto Equazione dell'energia Fenomeni di Trasporto 1 Trasporto convettivo di energia La portata volumetrica che attraversa l elemento di superficie ds perpendicolare all asse x è La portata di energia che attraversa

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Flussi comprimibili [1-11]

Flussi comprimibili [1-11] Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 3 sezione c_i Flussi comprimibili

Dettagli

Forme alternative delle equazioni

Forme alternative delle equazioni Forme alternative delle equazioni In questo capitolo ripresentiamo le diverse forme in cui è comodo porre le equazioni del moto dei fluidi. Particolare attenzione verrà dedicata al caso di fluido non viscoso

Dettagli

Illustrazione 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare

Illustrazione 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare 1 Flusso interno Un flusso interno è caratterizzato dall essere confinato da una superficie. Questo fa sì che lo sviluppo dello strato limite finisca per essere vincolato dalle condizioni geometriche.

Dettagli

Moti rotatori. Definizioni delle grandezze rotazionali

Moti rotatori. Definizioni delle grandezze rotazionali Moti rotatori Definizioni delle grandezze rotazionali Moti dei corpi rigidi n Un corpo rigido ha generalmente un moto complesso (vedi un bastone lanciato in aria). n In realtà qualunque moto può essere

Dettagli

Soluzioni del Tutorato 4 (29/03/2017)

Soluzioni del Tutorato 4 (29/03/2017) 1 Soluzioni del Tutorato 4 (29/3/217) Esercizio 1 Si consideri il moto di una particella di massa m = 1 soggetta a una forza centrale di potenziale V ( r ) = log( r ) Si studi qualitativamente il moto

Dettagli

Meccanica Dinamica dei fluidi

Meccanica Dinamica dei fluidi Meccanica 6-7 Dinamica dei fluidi Proprietà meccaniche dei fluidi olidi Liquidi Gas orma propria Pressione acqua Assumono la forma dell ambiente che li contiene Volume proprio Incompressibile ρ kg/m 3

Dettagli

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Dinamica dei fluidi Universita' di Udine 1 Caratteristiche di un fluido In generale: FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene) liquido volume limitato dalla superficie

Dettagli

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 1 FISICA GENERALE L-B. Prof. Antonio Zoccoli

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 1 FISICA GENERALE L-B. Prof. Antonio Zoccoli rof. Antonio Zoccoli 1) Una carica Q è distribuita uniformemente in un volume sferico di raggio R. Determinare il lavoro necessario per spostare una carica q da una posizione a distanza infinita ad una

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAICA DI SISTEI AEROSPAZIALI Tema d esame 24-02 - 2016 g f s, f d α G B A J, R d, J l ω d g O T l τ, η Esercizio 1. La gondola motore di un convertiplano, posta nel piano verticale, ha massa e momento

Dettagli

Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 15 Turno: 1 Fila: 2 Posto: 1 Matricola: 0000731097 Cognome e nome: (dati nascosti per tutela privacy) 1. Un corpo di peso pari a 10 N è appoggiato su di un tavolo, in quiete. Qual è

Dettagli

SOLUZIONE DELL EQUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME

SOLUZIONE DELL EQUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME SOLUZIONE DELL EUAZIONE DI FOURIER PER PER PIASTRA SOTTILE CON SORGENTE TERMICA IN MOTO UNIFORME Luca Ghezzi May 2 Abstract L equazione del calore di Fourier è risolta analiticamente nel caso di un mezzo

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 11/1 FM1 - Fisica Matematica I Soluzioni al tutorato del 9-1-1 1. Due particelle di massa m e coordinate x, y R si muovono sotto l effetto di una forza centrale

Dettagli

Laboratorio Sperimentale di Aerodinamica

Laboratorio Sperimentale di Aerodinamica Dipartimento di Ingegneria Meccanica e Aerospaziale Laboratorio Sperimentale di Aerodinamica Giorgia Sinibaldi (giorgia.sinibaldi@uniroma1.it) A.A. 2018/2019 Info corso Idoneità Laboratorio (giovedì pomeriggio

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

Correnti incomprimibili non viscose irrotazionali

Correnti incomprimibili non viscose irrotazionali F. Auteri e L. Quartapelle: Fluidodinamica. Capitolo 4 pagina 99 colore nero Novembre 1, 006 99 CAPITOLO 4 Correnti incomprimibili non viscose irrotazionali Introduzione In questo capitolo studieremo un

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

TUBO O D I I P I P T I OT O : A N A AL A IS I I S I DEL E

TUBO O D I I P I P T I OT O : A N A AL A IS I I S I DEL E MISUR DI LOCITA DI FLUIDI Il moto dei fluidi e un fenomeno complesso. La velocita dei fluidi e = f (x,y,z,t) CAMPO DI MOTO z P =(x,y,z,t) 1 y 2 Flusso turbolento: In un punto P(x,y,z) si puo scomporre

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

FISICA (modulo 1) PROVA SCRITTA 21/02/2014

FISICA (modulo 1) PROVA SCRITTA 21/02/2014 ESERCIZI FISICA (modulo 1) PROVA SCRITTA 21/02/2014 E1. Due corpi di massa m 1 = 1000 Kg e m 2 = 1200 Kg collidono proveniendo da direzioni perpendicolari. L urto è perfettamente anelastico e i due corpi

Dettagli

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: 0000695216 Cognome e nome: (dati nascosti per tutela privacy) 1. Di quanto ruota in un giorno sidereo il piano di oscillazione del pendolo di

Dettagli

Sistemi Dinamici e Meccanica Classica A/A Alcuni Esercizi

Sistemi Dinamici e Meccanica Classica A/A Alcuni Esercizi Sistemi Dinamici e Meccanica Classica A/A 2008 2009. Alcuni Esercizi G.Falqui, P. Lorenzoni, Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca. Versione del 23 Dicembre 2008 con esercizi

Dettagli

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione n.2 Prof. D. P. Coiro coiro@unina.it www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni - Prof. D. Corio - Intro Il Velivolo 1

Dettagli

Laboratorio Sperimentale di Aerodinamica

Laboratorio Sperimentale di Aerodinamica Dipartimento di Ingegneria Meccanica e Aerospaziale Laboratorio Sperimentale di Aerodinamica Giorgia Sinibaldi (giorgia.sinibaldi@uniroma1.it) A.A. 2017/2018 Info corso Idoneità Laboratorio (mercoledì

Dettagli

Flussi Di Fanno. 1 Definizione del flusso di Fanno

Flussi Di Fanno. 1 Definizione del flusso di Fanno Flussi Di Fanno 1 Definizione del flusso di Fanno Si consideri un flusso adiabatico all interno di un condotto a sezione costante, in presenza di attrito e senza scambio di lavoro con l esterno. Tale regime

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015 Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 3 giugno 015 Problema 1 Si consideri un sistema costituito da un cilindro omogeneo di raggio R 1 = 10 cm e altezza h = 0 cm, inserito all

Dettagli

ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica

ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 700 Pavia, Italy - tel. 038/98.7905 girolett@unipv.it - www.unipv.it/webgiro 004 elio giroletti dinamica dei fluidi RISCHI FISICI,

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

CENNI DI FLUIDODINAMICA

CENNI DI FLUIDODINAMICA CENNI DI FLUIDODINAMICA DOWNLOAD Il pdf di questa lezione (0509a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 09/05/2012 MOTO DEI FLUIDI PERFETTI Il comportamento dei fluidi reali

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 7 Luglio 8 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il corpo rigido piano descritto in figura, formato

Dettagli

MECCANICA DEI FLUIDI

MECCANICA DEI FLUIDI MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl SOLUZIONI problemi cap.8 8.1 La pressione del vapore è mantenuta costante. Perciò, la temperatura del vapore rimane costante anche alla temperatura Se si suppone che la trasformazione non implichi irreversibilità

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

Rotazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Rotazioni. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Rotazioni ALTAIR http://metropolis.sci.univr.it Argomenti Propietá di base della rotazione Argomenti Argomenti Propietá di base della rotazione Leggi base del moto Inerzia, molle, smorzatori, leve ed ingranaggi

Dettagli

Flussi Di Rayleigh. 1 Definizione del flusso di Rayleigh

Flussi Di Rayleigh. 1 Definizione del flusso di Rayleigh Flussi Di Rayleigh 1 Definizione del flusso di Rayleigh Il flusso di Rayleigh descrive molti casi di interesse pratico come i processi di combustione nelle camere di combustione o il moto di un fluido

Dettagli

Se prendiamo in considerazione una sfera rotante su se stessa con velocità periferica C p

Se prendiamo in considerazione una sfera rotante su se stessa con velocità periferica C p Effetti giroscopici su una sfera rotante, teoria dell effetto Magnus, massa longitudinale e massa trasversale, Abbiamo visto che la presenza di materia può essere rilevata ( e dunque la materia esiste)

Dettagli

Teoria dei mezzi continui

Teoria dei mezzi continui Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente

Dettagli

ESAME DI AERODINAMICA 11/6/2012

ESAME DI AERODINAMICA 11/6/2012 ESAME DI AERODINAMICA /6/202 La velocità in un campo fluidodinamico bidimensionale è espressa, in m/s, da u = x y t,v = 2 y 2. La vorticità nel punto (x= -2 m, y= m) al tempo t=2 s è, in s : (a) -4 (b)

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

CAMPI VETTORIALI (Note)

CAMPI VETTORIALI (Note) CAMPI VETTORIALI (Note) Sia v(x,y,z) il vettore che definisce la grandezza fisica del campo: il problema che ci si pone è di caratterizzare il campo vettoriale sia in termini locali, cioè validi punto

Dettagli

FM210 / MA - Terzo scritto ( ), con l > 0. Il vincolo può supporsi ideale. Oltre alle forze di reazione vincolare, il punto è soggetto a

FM210 / MA - Terzo scritto ( ), con l > 0. Il vincolo può supporsi ideale. Oltre alle forze di reazione vincolare, il punto è soggetto a FM10 / MA - Terzo scritto (9-9-017) Esercizio 1. Un punto materiale P di massa m è vincolato a muoversi senza attrito sulla superficie di equazione z = l log x +y, con l > 0. Il vincolo può l supporsi

Dettagli

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI TERMODINAMICA Termodinamica: scienza che studia le proprietà e il comportamento dei sistemi, la loro evoluzione e interazione con l'ambiente esterno che li circonda. Studia le trasformazioni dei sistemi

Dettagli