Lezione 4: Termodinamica. Seminario didattico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 4: Termodinamica. Seminario didattico"

Transcript

1 Lezione 4: Termodinamica Seminario didattico

2 Esercizio n 1 Un gas all interno di una camera percorre il ciclo mostrato in figura. Si determini il calore totale fornito al sistema durante la trasformazione CA se il calore QAB fornito durante la trasformazione AB è 20,0J, considerato che durante la trasformazione BC non si ha alcun trasferimento di calore, e che il lavoro totale compiuto durante il ciclo è 15,0J. DATI: Q AB = 20,0 J Q BC = 0,0 J L tot = 15,0 J? Q CA 2

3 Svolgimento esercizio 1 (1) Primo principio della termodinamica: Q ciclo L ciclo =ΔE int =0 Q ciclo =L ciclo Sommando i contributi delle varie trasformazioni si ha anche: Q ciclo =Q A B Q BC Q C A =Q A B 0 Q CA Dal confronto segue: Q AB Q CA = L ciclo Q CA =L ciclo Q AB = 5,0J 3

4 Esercizio n 5 n 2 Quando un sistema viene portato da uno stato iniziale a uno stato finale lungo il percorso iaf mostrato in figura, si ha Q = 50cal ed L = 20cal. Lungo il percorso ibf, Q = 36cal. a) Qual è il valore di L lungo il percorso ibf? Se L = -13cal per il percorso curvilineo di ritorno dallo stato finale a quello iniziale, b) quale è il valore di Q per questo percorso? Sia Ui = 10cal. c) Qual è il valore di Uf? Se Ub=22cal, d) quali sono i valori di Q per il processo ib e bf? DATI: Q iaf = 50 cal L iaf = 20 cal Q ibf =36 cal a)? L ibf L fi = -13 cal b)?q fi 4

5 Svolgimento esercizio 2(2) a) Considero le trasformazioni iaf ed ibf: esse hanno stesso stato iniziale i e finale f, per cui la variazione di energia interna nelle due trasformazioni è la stessa. Dal primo principio della termodinamica otteniamo: Δ U iaf =U f U i =Q iaf L iaf Q iaf L iaf =Q ibf L ibf Δ U ibf =U f U i =Q ibf L ibf Eguagliando le due espressioni precedenti si ottiene: L ibf =Q ibf Q iaf L iaf =6 cal b) Considero il ciclo iafi :la variazione di energia interna in un ciclo è nulle per cui posso scrivere: 0= ΔU iafi =Q iafi L iafi = Q iaf Q fi L iaf L fi Q fi = L iaf L fi Q iaf = 43cal 5

6 Svolgimento esercizio 2(2) c) Considero le trasformazioni iaf ed ibf: esse hanno stesso stato iniziale i e finale f, per cui la variazione di energia interna nelle due trasformazioni è la stessa. Dal primo principio della termodinamica otteniamo: Δ U iaf =U f U i =Q iaf L iaf Δ U ibf =U f U i =Q ibf L ibf Quindi da ciascuna delle due precedenti espressioni possiamo ricavare: U f =U i Q iaf L iaf =U i Q ibf L ibf =40cal d) Considero la trasformazione ibf : Q ibf = Q ib Q bf L ibf = L ib L bf =L ib =6 cal Quindi: dato che L bf =0 (trasf. Isocora) : Q ib = ΔU ib L ib =U b U i L ib =18cal Q bf =Q ibf Q ib =18cal 6

7 Esercizio n 3 Ad una mole di gas monoatomico viene fatto percorrere il ciclo mostrato in figura il processo bc è una espansione adiabatica; p B =1.03 bar, V b =1.0*10-3 m 3, V C =8V b.si calcoli per l'intero ciclo: a) il calore fornito al gas; b) il calore restituito dal gas: c) il lavoro totale compiuto dal gas; d) il rendimento del ciclo. e) le variazioni di entropia. DATI: P b = 1.03 bar = 1.03*10 5 N/m 2 V b =1.0*10-3 m 3 V c =8V b =8V a P a =P c Q a =? Q c =? W tot =? η=? S=? 7

8 Svolgimento esercizio 3 (1) Analizziamo ciascuna trasformazione in maniera separata. Poiché la trasformazione bc è adiabatica reversibile il calore scambiato è nullo: Q bc =0 L'espressione infinitesima del primo principio della termodinamica in ciascun punto della trasformazione reversibile risulta: du dw =nc v dt p dv =nc v dt nrt V Utilizzando la relazione di Mayer R=c p -c v : dt T = R dv c v V dv =0 dt T = 1 dv V ln T c T b =ln V b V c 1 L'ugualglianza dei logaritmi comporta l'uguaglianza degli argomenti: T c V c 1 =T b V b 1 P c V c =P b V b P c =P b V b V c =P b 8 8

9 Svolgimento esercizio 3 (2) Poichè il gas è ideale e monoatomico si ha: c V = 3 2 R c P = 5 2 R γ= c P c V = 5 3 Il primo principio applicato alla trasformazione adiabatica bc risulta: U bc = W bc =nc v T c T b = c v R P c V c P b V b W bc = U bc = 3 2 P bv b = J Il calore scambiato durante la trasformazione isocora ab risulta: Q ab =nc v T b T a = c v R P bv b P a V a = 3 2 P bv b 1 8 Poichè tale quantità è positiva questo calore è assorbito dal gas. Il lavoro fatto durante una trasformazione isocora è nullo pertanto: W ab =0 5 3 = J 9

10 Svolgimento esercizio 3 (3) Il calore scambiato durante la trasformazione isobara ca risulta: Q ca =nc p T a T c = c p R P av a P c V c = 5 2 P bv b 7 8 Poichè tale quantità è negativa questo calore è ceduto dal gas. Il lavoro fatto durante una trasformazione isobara risulta: W ca = c a P dv =Pa V a V c = 7 P b V b 8 Dai risultati precedenti abbiamo: a) Q a =Q ab = J b) Q c =Q ca = J c) W tot =W ab +W bc +W ca =93.34 J d)il rendimento del ciclo è il seguente: = J 3 = J = W Q a =1 Q c Q a =

11 Svolgimento esercizio 3 (4) Durante la trasformazione adiabatica reversibile bc non si hanno scambi di calore, la trasformazione è isoentropica. S bc =0 La variazione di entropia di un gas ideale per una trasformazione reversibile generica, la si ottiene usando la formula seguente: S= i f dq = f T i rev n c v dt T f i nr dvv =n c v ln T f T i nr ln V f Utilizzando l'equazione di stato e la relazione di Mayer si ottiene: S=n c v ln P f nc P p ln V f i Le variazioni di entropia durante le trasformazioni ab e ca risultano: S ab =n c v ln P b P a =n c v ln 8 =n c p ln 8 =43.2J /k La variazione di entropia di un ciclo è nulla: V i S ca =nc p ln V a V c = n c p ln 8 = 43.2J / K S ciclo = S ab S ca S bc =0 V i 11

12 Esercizio n 4 n moli di gas perfetto biatomico compiono il ciclo reversibile costituito dalle seguenti trasformazioni: AB adiabatica, BC isoterma CA isobara. Sapendo che VB / VA = 5.66 e VB / VC = 11, determinare: a) il rapporto TA /TB; b) il rendimento η del ciclo; p C A B DATI: n moli gas perfetto biatomico V B /V A = 5.66 V B /V C = 11? a) T A /T B? b) rendimento η V 12

13 (a) Svolgimento esercizio 4 (1) Si tratta di gas perfetto biatomico, per cui sappiamo che i calori specifici a volume e pressione costante valgono rispettivamente: c V = 5 2 R c P = 7 2 R Consideriamo la prima fase del ciclo: si tratta di una TRASFORMAZIONE ADIABATICA REVERSIBILE, per cui nel tratto A B posso usare la relazione: T A V A γ 1 =T B V B γ 1 T A T B = γ= c P = 7 c V 5 V B V A γ 1 2 = =2 (b) La seconda fase del ciclo è una TRASFORMAZIONE ISOTERMA REVERSIBILE, per cui la variazione di energia interna nel tratto B C è nulla; per il primo principio della termodinamica si ha: ΔU BC =0 Q BC =W BC = B C pdv =nrt B B C dv V =nrt B ln V C V 0 B Q BC è minore di zero poiché V C /V B <1. Quindi il calore scambiato nel tratto B C è calore ceduto dal gas. 13

14 Svolgimento esercizio 4 (2) Adesso considero il terzo tratto del ciclo: si tratta di una TRASFORMAZIONE ISOBARA REVERSIBILE. Possiamo calcolare subito il calore scambiato: A questo punto possiamo calcolare il rendimento: nrt B ln V C V B nc P T A T B =1 η= W = Q A Q C =1 Q C =1 Q A Q A Q A Q CA =nc P T A T C =nc P T A T B 0 Quindi il calore scambiato nel tratto C A è calore assorbito dal gas. η=1 2 7 ln V B V C T A T B 1 =0.31 RT B ln V B V C c P T A T B =1 2 7 ln V B V C T A T B 1 14

15 Esercizio n 5 Una mole di gas perfetto monoatomico subisce le seguenti trasformazioni: -una trasformazione adiabatica irreversibile dallo stato iniziale con pressione p 0 = 1 atm e volume V 0 =22.4 litri ad uno stato A. -una successiva compressione isobara reversibile fino a uno stato B caratterizzato da V B =V A /2; Il lavoro compiuto dal gas in questa trasformazione è L = -1.5 *10 3 J. a)si calcoli il lavoro L* compiuto nell'adiabatica irreversibile. Lo stato B è tale che con una trasformazione adiabatica reversibile il gas ritorna nelle condizioni iniziali. b)si calcolino la pressione, il volume e la temperatura negli stati A e B e la variazione di entropia nella trasformazione adiabatica irreversibile. DATI: p 0 = 1 atm = N/m 2 P V 0 =22.4 litri = m 3 O B A V V B =V A /2 L AB = -1.5 *10 3 J OA adiabatica irr. AB isobara rev BO adiabatica rev L*=? T A, T B, P A, P B, V A, V B =? S OA =? 15

16 Svolgimento esercizio 5 (1) a)valutiamo la pressione degli stati A e B conoscendo il lavoro compiuto dal gas durante la compressione isobara: L AB = p A V = p A V B V A = p A V A 2 V = p A A V A 2 da cui otteniamo: p A V A = 2 L AB p B V B = L AB Il lavoro dell'adiabatica irreversibile (da O ad A) lo possiamo valutare solo considerando la variazione di energia interna tra gli estremi della trasformazione (il calore scambiato con l'esterno è nullo): U OA = L * =nc v T A T 0 = c v R p A V A p 0 V 0 L * = c v R 2 L AB p 0 V 0 = J 16

17 Svolgimento esercizio 5 (2) b) Poichè B e 0 sono lungo una adiabatica reversibile le variabili termodinamiche degli estremi devono verificare la seguente relazione: p V p V = 0 0 L AB L AB p 0 V 0 = p B V B = L AB V B V B V B = = m 3 Dal valore di V B possiamo valutare tutte le quantità termodinamiche del sistema: p A = p B = L AB V B V A =2V B = m 3 = N /m 2 =0.3 atm T A = p A V A nr = K T B= p B V B nr = K 17

18 Svolgimento esercizio 5 (3) Per valutare la variazione dell'entropia nell'adiabatica irreversibile 0A consideriamo la variazione dell'entropia in tutto il ciclo. S ciclo =0= S 0A S AB S B0 La trasformazione B0 è una adiabatica reversibile pertanto non si ha variazione di entropia: S B0 =0 S AB = S 0A La variazione di entropia per una trasformazione reversibile di un gas ideale generica, può essere espressa tramite la seguente formula: S AB =n c v ln P B P A nc p ln V B V A =nc p ln V B V A =nc p ln 1 2 S 0A =14.41J / K 18

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1 GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato

Dettagli

PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa ; ) Q 2 = Q 1 Q 1. t = dm. dt H; = nrt A ln 4 < 0; R 1 = 3 2 R: C + ln 4 C p = 1

PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa ; ) Q 2 = Q 1 Q 1. t = dm. dt H; = nrt A ln 4 < 0; R 1 = 3 2 R: C + ln 4 C p = 1 PROBLEMI SULLE MACCHINE TERMICHE A cura del Prof. T.Papa. Il funzionamento di una macchina a vapore puo essere approssimato a quello di una macchina di Carnot, che assorbe calore alla temperatura 2 della

Dettagli

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale

Dettagli

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale. Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.

Dettagli

Esercitazione X - Legge dei gas perfetti e trasformazioni

Esercitazione X - Legge dei gas perfetti e trasformazioni Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

Secondo principio della Termodinamica

Secondo principio della Termodinamica Secondo principio della Termodinamica Enunciato di Kelvin Enunciato di Clausius Ciclo di Carnot Entropia Antonio Pierro Per consigli, suggerimenti, eventuali errori o altro potete scrivere una email a

Dettagli

Formulario di Termodinamica

Formulario di Termodinamica Formulario di Termodinamica Punto triplo dell acqua: T triplo = 273.16 K. Conversione tra gradi Celsius e gradi Kelvin (temperatura assoluta): t( C) = T (K) 273.15 Conversione tra Caloria e Joule: 1 cal

Dettagli

Facoltà di Ingegneria. Fisica 1. AA.2007/08. Prova in itinere n.2. Cognome Nome Anno di corso

Facoltà di Ingegneria. Fisica 1. AA.2007/08. Prova in itinere n.2. Cognome Nome Anno di corso Siena 28/03/2008 vers.1 Si consideri il ciclo reversibile ABCA che riguarda del gas perfetto monoatomico e che è costituito, nell ordine, dalla compressione adiabatica AB, dall isoterma BC e dall isocora

Dettagli

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V 1 Esercizio (tratto dal Problema 13.4 del Mazzoldi 2) Un gas ideale compie un espansione adiabatica contro la pressione atmosferica, dallo stato A di coordinate, T A, p A (tutte note, con p A > ) allo

Dettagli

6. Determinare il titolo del vapor d acqua che ad 8,00 bar ha un entalpia specifica di 2000 kj/kg.

6. Determinare il titolo del vapor d acqua che ad 8,00 bar ha un entalpia specifica di 2000 kj/kg. ESERCIZI DI FISICA TECNICA TERMODINAMICA APPLICATA Termodinamica degli stati 1. Utilizzando il piano pt e le tabelle A.3 del vapor d acqua saturo, si dica quali sono le fasi presenti nei sistemi costituiti

Dettagli

Lezione di Combustione

Lezione di Combustione Lezione di Combustione Introduzione Da un punto di vista chimico-fisico la combustione è un processo reattivo fortemente esotermico Generalmente le temperature in gioco sono particolarmente elevate e dipendono

Dettagli

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica

Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 1 Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 2 Esercizio 3, 5 luglio 2005 Una macchina di Carnot produce

Dettagli

Lezione 7 I e II Prinicipio

Lezione 7 I e II Prinicipio Lezione 7 I e II Prinicipio Lavoro: W = pdv Serway, 17 ap. se la pressione é costante: Unitá di misura: 7.1 lavoro ed energia termica 7.1.1 XVII. 18 W = p V 1litro = 10 3 m 3 1atm 1.01310 5 P a = 1.01310

Dettagli

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Termodinamica Equazione di Stato: p = pressione ; V = volume ; T = temperatura assoluta ; n = numero di moli ; R = costante

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Le macchine termiche e il secondo principio della termodinamica

Le macchine termiche e il secondo principio della termodinamica Le macchine termiche e il secondo principio della termodinamica ) Definizione di macchina termica È sperimentalmente verificato che nel rispetto del primo principio della termodinamica (ovvero della conservazione

Dettagli

TRASFORMAZIONI TERMODINAMICHE esercizi risolti Classi quarte L.S.

TRASFORMAZIONI TERMODINAMICHE esercizi risolti Classi quarte L.S. TRASFORMAZIONI TERMODINAMICHE esercizi risolti Classi quarte L.S. In questa dispensa verrà riportato lo svolgimento di alcuni esercizi inerenti l'applicazione del primo principio della termodinamica, per

Dettagli

3. Le Trasformazioni Termodinamiche

3. Le Trasformazioni Termodinamiche 3. Le Trasformazioni Termodinamiche Lo stato termodinamico di un gas (perfetto) è determinato dalle sue variabili di stato: ressione, olume, Temperatura, n moli ffinché esse siano determinate è necessario

Dettagli

LEGGE GAS PERFETTI. Gas perfetto è governato dalla legge: PV=nRT=(N/NA) RT. kb=1.38*10-23 (J/K) cost Boltzmann

LEGGE GAS PERFETTI. Gas perfetto è governato dalla legge: PV=nRT=(N/NA) RT. kb=1.38*10-23 (J/K) cost Boltzmann LEGGE GAS PERFETTI Gas perfetto è governato dalla legge: PV=nRT=(N/NA) RT PV=NkBT dove kb=r/na kb=1.38*10-23 (J/K) cost Boltzmann TEORIA CINETICA DEI GAS Scopo: legame tra quantità macroscopiche e microscopiche

Dettagli

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni).

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Gas, liquidi, solidi Tutti i gas raffreddati liquefano Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Sostanza T L ( C) T E ( C) He - -269 H 2-263

Dettagli

Esercizi sui Motori a Combustione Interna

Esercizi sui Motori a Combustione Interna Esercizi sui Motori a Combustione Interna 6 MOTORE 4TEMPI AD ACCENSIONE COMANDATA (Appello del 08.0.000, esercizio N ) Un motore ad accensione comandata a 4 tempi di cilindrata V 000 cm 3, funzionante

Dettagli

Termodinamica e laboratorio : esperienze 2-3 (2009-2010) Apparato per lo studio delle leggi sui gas - Macchina termica

Termodinamica e laboratorio : esperienze 2-3 (2009-2010) Apparato per lo studio delle leggi sui gas - Macchina termica Termodinamica e laboratorio : esperienze 2-3 (2009-2010) Apparato per lo studio delle leggi sui gas - Macchina termica L apparato consiste in un sistema pistone-cilindro, collegabile ad una camera di espansione

Dettagli

CALCOLO DELL'ENERGIA INTERNA

CALCOLO DELL'ENERGIA INTERNA CALCOLO DELL'ENERGIA INTERNA Enrico Valenti Matricola 145442 29 novembre ore 10,30-12,30 ( trasformazione a temperatura costante ) U 0 = 0 J energia ( J ) p 0 = 1 bar pressione ( Pa ) T 0 = 273 K temperatura

Dettagli

Sperimentalmente si verifica che per una massa di gas segue alcune leggi valide per tutti i tipi di gas generalmente indicate come:

Sperimentalmente si verifica che per una massa di gas segue alcune leggi valide per tutti i tipi di gas generalmente indicate come: Gas perfetti Fisica Tecnica G. Grazzini Sperimentalmente si erifica che per una massa di gas segue alcune leggi alide per tutti i tipi di gas generalmente indicate come: Legge di Boyle V = cost. Legge

Dettagli

Ai fini della comprensione e risoluzione corretta de problema risulta molto utile rappresentarne la trasformazione su un diagramma SY.

Ai fini della comprensione e risoluzione corretta de problema risulta molto utile rappresentarne la trasformazione su un diagramma SY. Silvia Tosini matr. 146697 Lezione del 31/1/3 ora 1:3-1:3 (6(5&,,' (6$( &RQVLJOLSHUXQDJLXVWDOHWWXUDGHLGDWL Si ricorda che le cifre in lettere: A B C D E F dei dati si riferiscono rispettivamente al primo,

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013 Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti

Dettagli

Esercizi di Termodinamica e Cinetica chimica

Esercizi di Termodinamica e Cinetica chimica Esercizi di Termodinamica e Cinetica chimica Diego Frezzato Dipartimento di Scienze Chimiche Università degli Studi di Padova (versione aggiornata al 01.02.2011) La presente raccolta di esercizi di Termodinamica

Dettagli

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1 LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)

Dettagli

Princìpi della termodinamica. Luca Peliti

Princìpi della termodinamica. Luca Peliti Princìpi della termodinamica Luca Peliti Agosto Settembre 2007 Capitolo 1 Sistemi termodinamici La termodinamica utilizza dei concetti del linguaggio comune, come calore e temperatura, in un senso molto

Dettagli

Primo principio della termodinamica

Primo principio della termodinamica Primo riniio della termodinamia Priniio di equivalenza Due ori a temeratura diversa, in ontatto, raggiungono l'equilibrio termio Durante il ontatto, il "alore" si trasferise dal oro iù aldo al oro iù freddo

Dettagli

Compito d esame di CHIMICA-FISICA. Appello del 25/3/2004

Compito d esame di CHIMICA-FISICA. Appello del 25/3/2004 Compito d esame di CHIMICA-FISICA. Appello del 25/3/2004 Un campione di 0.85 moli di un gas ideale, inizialmente alla pressione di 15.0 atm e a 300 K, si espande isotermicamente finchè la pressione finale

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 20/2 Appello del 29/0/203. Tempo a disposizione: 2h30. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

CHIMICA GENERALE MODULO

CHIMICA GENERALE MODULO Corso di Scienze Naturali CHIMICA GENERALE MODULO 6 Termodinamica Entalpia Entropia Energia libera - Spontaneità Relatore: Prof. Finelli Mario Scienza che studia i flussi energetici tra un sistema e l

Dettagli

Trasformazione di calore in lavoro: le macchine termiche

Trasformazione di calore in lavoro: le macchine termiche 1 rasformazione di calore in lavoro: le macchine termiche Lo schema di una macchina termica Nello studio delle trasformazioni termodinamiche abbiamo visto che se forniamo calore a un gas contenuto in un

Dettagli

TERMODINAMICA 1. INTRODUZIONE ALLA TERMODINAMICA. 114 2. EQUAZIONE DI STATO DEI GAS. 117 3. TRANSIZIONI DI FASE. 119 4. 120 5. 121 6.

TERMODINAMICA 1. INTRODUZIONE ALLA TERMODINAMICA. 114 2. EQUAZIONE DI STATO DEI GAS. 117 3. TRANSIZIONI DI FASE. 119 4. 120 5. 121 6. TERMODINAMICA 1. INTRODUZIONE ALLA TERMODINAMICA... 114 2. EQUAZIONE DI STATO DEI GAS... 117 3. TRANSIZIONI DI FASE... 119 4. I GAS IDEALI O PERFETTI E I GAS REALI... 120 5. IL 1 O PRINCIPIO DELLA TERMODINAMICA...

Dettagli

Il lavoro nelle macchine

Il lavoro nelle macchine Il lavoro nelle macchine Corso di Impiego industriale dell energia Ing. Gabriele Comodi I sistemi termodinamici CHIUSO: se attraverso il contorno non c è flusso di materia in entrata ed in uscita APERTO:

Dettagli

CORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A.

CORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A. ORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A. 2006/07 FISIA TENIA Esercizi Prof. Ing. Marco Beccali Ing. Fulvio Ardente Si ringrazia il Prof. Giuliano Dall O Esercizi di Fisica Tecnica pag. 1 Simbologia Simbolo

Dettagli

Programma del corso di Fisica Tecnica 7 crediti

Programma del corso di Fisica Tecnica 7 crediti Fisica Tecnica, ESERCITAZIONI, Prof. Araneo, aa 014-015 Termodinamica v1b Prof. Lucio Araneo Politecnico di Milano Laurea in Ingegneria della Produzione Industriale, Lecco, aa 014/15 Versione del file:

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA

FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA FONDAMENTI CHIMICO FISICI DEI PROCESSI IL SECONDO E IL TERZO PRINCIPIO DELLA TERMODINAMICA LE MACCHINE TERMICHE Sono sistemi termodinamici che trasformano il calore in lavoro. Operano ciclicamente, cioè

Dettagli

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma

Dettagli

EQUAZIONE DI STATO e LEGGI DEI GAS esercizi risolti Classi quarte L.S.

EQUAZIONE DI STATO e LEGGI DEI GAS esercizi risolti Classi quarte L.S. EQUAZIONE DI STATO e LEGGI DEI GAS esercizi risolti Classi quarte L.S. In questa dispensa verrà riportato lo svolgimento di alcuni esercizi inerenti l'equazione di stato dei gas perfetti e le principali

Dettagli

Per la prima volta viene proposta una connessione, sostenuta da prove sperimentali, tra mondo vivente e mondo non-vivente.

Per la prima volta viene proposta una connessione, sostenuta da prove sperimentali, tra mondo vivente e mondo non-vivente. CALORE Per il calore anticamente erano state proposte varie teorie. Una di queste, dovuta a J.J. Becher (1635-1682) era la teoria del flogisto (dal grecocombustibile). Tale teoria postulava l'esistenza

Dettagli

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Termodinamica 1) In un recipiente di volume V = 20 l sono contenute 0.5 moli di N 2 (PM=28) alla temperatura di 27 0 C.

Dettagli

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1 I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano pag.1

Dettagli

Corso di Chimica Fisica A. Tutoraggio

Corso di Chimica Fisica A. Tutoraggio Università di orino Corso di Studi in Chimica - Laurea riennale Anno Accademico 2004-2005 Corso di Chimica Fisica A utoraggio Bartolomeo Civalleri Roberto Dovesi /home/mimmo/testitex/tut cf-a 05/tuto/tut

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

Proprieta meccaniche dei fluidi

Proprieta meccaniche dei fluidi Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.

Dettagli

Capitolo 5 Impianti termici motori e operatori

Capitolo 5 Impianti termici motori e operatori Appunti di FISICA ECNICA Capitolo 5 Impianti termici motori e operatori Introduzione... Impianti termici motori a turbina a vapore... Introduzione... Ciclo Rankine a vapore surriscaldato...6 Rendimento

Dettagli

Esercizi di Fisica Generale

Esercizi di Fisica Generale Esercizi di Fisica Generale 2. Temodinamica prof. Domenico Galli, dott. Daniele Gregori, prof. Umberto Marconi dott. Alessandro Tronconi 27 marzo 2012 I compiti scritti di esame del prof. D. Galli propongono

Dettagli

La fisica di Feynmann Termodinamica

La fisica di Feynmann Termodinamica La fisica di Feynmann Termodinamica 3.1 TEORIA CINETICA Teoria cinetica dei gas Pressione Lavoro per comprimere un gas Compressione adiabatica Compressione della radiazione Temperatura Energia cinetica

Dettagli

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia Secondo principio della termodinamica Macchine termiche Rendimento Secondo principio della ermodinamica Macchina di arnot Entropia Introduzione al secondo principio della termodinamica Da quanto studiato

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

ESERCIZI UNITA E03 SOMMARIO. Condensazione isoterma di una miscela satura liquido-vapore

ESERCIZI UNITA E03 SOMMARIO. Condensazione isoterma di una miscela satura liquido-vapore Fisica Tecnica Termodinamica E0/0 ESERCIZI UNITA E0 SOMMARIO E0. SISTEMI APERTI E CICLI TERMODINAMICI E0.. E0.. E0.. E0.. E0.5. E0.. E0.7. E0.8. E0.9. Cabinet per apparecciature elettronice Computer server

Dettagli

Il Rendimento di secondo Ordine

Il Rendimento di secondo Ordine Il Rendimento di secondo Ordine Il rendimento di primo ordine già definito come h = W/Qh è stato un utilissimo strumento di ottimizzazione energetica fino al 1973. Questo indicatore ha però il limite di

Dettagli

STIRLING. Laboratorio 2 (meccanica e termodinamica) F.Balestra 1. Vista complessiva del motore ad aria calda

STIRLING. Laboratorio 2 (meccanica e termodinamica) F.Balestra 1. Vista complessiva del motore ad aria calda SPERIMENTAZIONI CON STIRLING IL MOTORE AD ARIA CALDA DI Vista complessiva del motore ad aria calda Il motore ad aria calda (inventato da R. Stirling, 1816), assieme al motore a vapore, e la macchina termica

Dettagli

I GAS POSSONO ESSERE COMPRESSI.

I GAS POSSONO ESSERE COMPRESSI. I GAS Tutti i gas sono accomunati dalle seguenti proprietà: I GAS POSSONO ESSERE COMPRESSI. L aria compressa occupa un volume minore rispetto a quello occupato dall aria non compressa (Es. gomme dell auto

Dettagli

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole

Dettagli

1 Esercizi di Riepilogo sui piani di ammortamento

1 Esercizi di Riepilogo sui piani di ammortamento 1 Esercizi di Riepilogo sui piani di ammortamento 1. Un individuo riceve, al tempo t 0, in prestito la somma di euro S 60.000 da restituire con quattro rate semestrali posticipate R 1 ; R ; R 3 ; R 4.

Dettagli

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV.

Definiamo Entalpia la funzione: DH = DU + PDV. Variando lo stato del sistema possiamo misurare la variazione di entalpia: DU = Q - PDV. Problemi Una mole di molecole di gas ideale a 292 K e 3 atm si espandono da 8 a 20 L e a una pressione finale di 1,20 atm seguendo 2 percorsi differenti. Il percorso A è un espansione isotermica e reversibile;

Dettagli

Ottava esercitazione di Fisica I Termodinamica 1 PROBLEMI RISOLTI

Ottava esercitazione di Fisica I Termodinamica 1 PROBLEMI RISOLTI Ottava esercitazione di Fisica I ermodamica PROBLEMI RISOLI. Il rapporto tra il lavoro compiuto ed il calore assorbito da una mole di gas monoatomico che si espande isobaricamente alla pressione di una

Dettagli

Applicazioni fisiche dell integrazione definita

Applicazioni fisiche dell integrazione definita Applicazioni fisiche dell integrazione definita Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Aprile 27. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato

Dettagli

I GAS GAS IDEALI. PV=nRT. Pressione Volume numero di moli Temperatura Costante dei gas. P V n T R. n, T= cost Legge di Boyle

I GAS GAS IDEALI. PV=nRT. Pressione Volume numero di moli Temperatura Costante dei gas. P V n T R. n, T= cost Legge di Boyle I GAS Pressione Volume numero di moli Temperatura Costante dei gas GAS IDEALI P V n T R n = 1 Isoterma: pv = cost Isobara: V/T = cost. Isocora: P/t = cost. n, T= cost Legge di Boyle n, P = cost Legge di

Dettagli

Motori e cicli termodinamici

Motori e cicli termodinamici Motori e cicli termodinamici 1. Motore a scoppio 2. Motore diesel 3. Frigoriferi 4. Centrali elettriche XXII - 0 Trasformazioni Trasformazioni reversibili (quasistatiche: Ciascun passo della trasformazione

Dettagli

Stati di aggregazione della materia unità 2, modulo A del libro

Stati di aggregazione della materia unità 2, modulo A del libro Stati di aggregazione della materia unità 2, modulo A del libro Gli stati di aggregazione della materia sono tre: solido, liquido e gassoso, e sono caratterizzati dalle seguenti grandezze: Quantità --->

Dettagli

X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3)

X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3) CICLI TERMODINAMICI Un ciclo termodinamico è un insieme di trasformazioni tali che lo stato iniziale del sistema coincide con lo stato finale. Un ciclo termodinamico è indivaduato nel diagramma XY generico

Dettagli

TERMOLOGIA & TERMODINAMICA

TERMOLOGIA & TERMODINAMICA TERMOLOGIA & TERMODINAMICA TERMOLOGIA & TERMODINAMICA TERMOLOGIA TERMOLOGIA Il calore TERMOLOGIA Il calore La temperatura TERMOLOGIA Il calore La temperatura Teoria cinetica dei gas ideali TERMOLOGIA Il

Dettagli

FISICA. V [10 3 m 3 ]

FISICA. V [10 3 m 3 ] Serie 5: Soluzioni FISICA II liceo Esercizio 1 Primo rinciio Iotesi: Trattiamo il gas con il modello del gas ideale. 1. Dalla legge U = cnrt otteniamo U = 1,50 10 4 J. 2. Dal rimo rinciio U = Q+W abbiamo

Dettagli

3 Variabile intensiva coniugata alla quantità di moto 1

3 Variabile intensiva coniugata alla quantità di moto 1 EQUILIBRIO ERMODINAMICO LOCALE Contents 1 Variabili termodinamiche locali 1 2 Quantità di moto 1 3 Variabile intensiva coniugata alla quantità di moto 1 4 Densità delle variabili estensive 2 5 Equilibrio

Dettagli

Unità di apprendimento programmata di termodinamica n.1

Unità di apprendimento programmata di termodinamica n.1 ermodinamica 9 Unità di apprendimento programmata di termodinamica n. Equazione di stato dei gas Esercizi su Rappresentazione degli stati e delle trasformazioni di un sistema termodinamico Lavoro esterno

Dettagli

Università degli Studi di Perugia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Anno Accademico 2010-2011

Università degli Studi di Perugia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Anno Accademico 2010-2011 Università degli Studi di Perugia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Anno Accademico 00-0 Esercizi di Fisica Tecnica ) Individuare sul diagramma P-v, punti e trasformazioni

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

I principio della termodinamica: E tot = 0 = E sistema + E ambiente. E=q+w

I principio della termodinamica: E tot = 0 = E sistema + E ambiente. E=q+w I principio della termodinamica: E tot 0 E sistema + E ambiente Eq+w ESERCIZIO: Un sistema ha un aumento di Energia Interna di 000cal e compie un lavoro di 50cal. Qual è il calore assorbito o ceduto dal

Dettagli

Modello Black-Scholes

Modello Black-Scholes Modello Black-Scholes R. Marfé Indice 1 Il modello Black Scholes 1.1 Formule di valutazione per le opzioni standard......... 3 1. Implementazione in VBA..................... 6 1 1 Il modello Black Scholes

Dettagli

Macchine termiche. Alla fine di ogni ciclo il fluido ripassa per lo stesso stato.

Macchine termiche. Alla fine di ogni ciclo il fluido ripassa per lo stesso stato. Macchine termiche In una macchina termica - ad esempio un motore - un fluido (il vapore delle vecchie locomotive, la miscela del motore a scoppio) esegue qualche tipo di ciclo termodinamico. Alla fine

Dettagli

Esercizi sui Compressori e Ventilatori

Esercizi sui Compressori e Ventilatori Esercizi sui Compressori e Ventilatori 27 COMPRESSORE VOLUMETRICO (Appello del 08.06.1998, esercizio N 2) Testo Un compressore alternativo monocilindrico di cilindrata V c = 100 cm 3 e volume nocivo V

Dettagli

Università di Catania CdL in INGEGNERIA INDUSTRIALE Compito di Fisica I del 18 novembre 2015

Università di Catania CdL in INGEGNERIA INDUSTRIALE Compito di Fisica I del 18 novembre 2015 Università di Catania CdL in INGEGNERIA INDUSTRIALE Compito di Fisica I del 18 novembre 2015 Problema 1 Dato il vettore a, di componenti cartesiane a x = -3 e a y = 5, se ne calcoli il versore. Individuare

Dettagli

Università del Salento. Facoltà di Ingegneria

Università del Salento. Facoltà di Ingegneria Università del Salento Facoltà di Ingegneria ESERCIZI DI FISICA TECNICA di Giuseppe Starace & Gianpiero Colangelo Esercizi di Fisica Tecnica INDICE. (Alfano pag. 60 N )... 5. (Alfano pag. 6 N 3)... 8 3.

Dettagli

Prova Scritta Corso di Fisica (6 CFU) Laurea in Scienze Naturali 02.04.2012

Prova Scritta Corso di Fisica (6 CFU) Laurea in Scienze Naturali 02.04.2012 02.04.2012 A. Si consideri un oggetto di massa M = 800g che si trova su un piano inclinato privo di attrito, legato ad una fune, così come mostrato in fig.1. Sia α pari a 30. 1. Si rappresenti il diagramma

Dettagli

Programma del corso di Fisica Tecnica e Macchine 8 crediti

Programma del corso di Fisica Tecnica e Macchine 8 crediti Ore Ore tot 4 4 5 e 10 nov 2 5 10 e 11 nov Prof. Lucio Araneo Politecnico di Milano Laurea in Ingegneria dell Automazione, Milano Leonardo, aa 2015/16 Versione del file: parte 2 v1, data: 1 Novembre 2015.

Dettagli

I PRINCIPI DELLA TERMODINAMICA. Liceo scientifico M. Curie Savignano s R.

I PRINCIPI DELLA TERMODINAMICA. Liceo scientifico M. Curie Savignano s R. I PRINCIPI DELLA TERMODINAMICA Liceo scientifico M. Curie Savignano s R. Termodinamica - alcune definizioni La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema

Dettagli

Seminario NOTE SULL EQUAZIONE INTEGRALE DI BILANCIO DELL ENERGIA MECCANICA

Seminario NOTE SULL EQUAZIONE INTEGRALE DI BILANCIO DELL ENERGIA MECCANICA Università degli Studi di Modena e Reggio Emilia SCUOLA DI DOTTORATO DI RICERCA in Meccanica Avanzata e Tecnica del eicolo Seminario NOTE SULL EQUAZIONE INTEGRALE DI BILANCIO DELL ENERGIA MECCANICA Modena,

Dettagli

CAPITOLO 13 MOTORI CONTINUI A GAS (TURBINE A GAS) Introduzione.

CAPITOLO 13 MOTORI CONTINUI A GAS (TURBINE A GAS) Introduzione. CAPITOLO 13 MOTORI CONTINUI A GAS (TURBINE A GAS) Introduzione. I motori a turbina a gas, comunemente indicati come turbine a gas, furono sviluppati nella loro forma moderna a cavallo degli anni '50 del

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

PROGRAMMAZIONE DELLE DISCIPLINE CHIMICHE

PROGRAMMAZIONE DELLE DISCIPLINE CHIMICHE I. I. S. S. A. DE PACE - LECCE TECNICO CHIMICO BIOLOGICO ANNO SCOLASTICO 2012 2013 CLASSE 4 TCB sez. A PROGRAMMAZIONE DELLE DISCIPLINE CHIMICHE Prof. Giovanni Sgueglia PROFILO PROFESSIONALE DEL TECNICO

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

Esercizi svolti. 1 quesito Calcolo del flusso termico q in condizioni stazionarie Il flusso termico è q = T/R (1)

Esercizi svolti. 1 quesito Calcolo del flusso termico q in condizioni stazionarie Il flusso termico è q = T/R (1) Esercizi svolti Esercizio n.1 Una parete piana è costituita da tre strati omogenei disposti in serie e separa due ambienti a temperatura rispettivamente di 20 C e di 3 C. Gli strati hanno le seguenti caratteristiche:

Dettagli

FISICA TECNICA 1 (CCS Ing.Meccanica La Spezia)

FISICA TECNICA 1 (CCS Ing.Meccanica La Spezia) DISPENSE DEL CORSO FISICA TECNICA 1 (CCS Ing.Meccanica La Spezia) Prof. Annalisa MARCHITTO Prof. Giovanni TANDA Anno Accademico 2006-07 Settembre 2006 CAPITOLO 1. TERMOMETRIA La termodinamica presuppone,

Dettagli

6. IMPIANTO DI CLIMATIZZAZIONE CALCOLO PSICROMETRICO DEL SOGGIORNO-PRANZO

6. IMPIANTO DI CLIMATIZZAZIONE CALCOLO PSICROMETRICO DEL SOGGIORNO-PRANZO 6. IMPIANTO DI CLIMATIZZAZIONE CALCOLO PSICROMETRICO DEL SOGGIORNO-PRANZO Regime estivo Dal calcolo dei carichi termici effettuato a regime variabile (includendo anche quelli apportati dagli utenti e dall

Dettagli

See more about www.scienzaescuola.it

See more about www.scienzaescuola.it See more about www.scienzaescuola.it ESERCIZI SUI GAS ORDINATI PER TIPOLOGIA E RISOLTI: Prof. Gabrielli Luciano (Lic. Scientifico L. da Vinci Sora FR) Charles, Boyle, Gay-Lussac, Eq. Stato, Eq. Stato e

Dettagli

Formulario di Fisica Tecnica Matteo Guarnerio 1

Formulario di Fisica Tecnica Matteo Guarnerio 1 Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI

Dettagli

Esercizi sui Circuiti RC

Esercizi sui Circuiti RC Esercizi sui Circuiti RC Problema 1 Due condensatori di capacità C = 6 µf, due resistenze R = 2.2 kω ed una batteria da 12 V sono collegati in serie come in Figura 1a. I condensatori sono inizialmente

Dettagli

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro.

Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Lezione IX - 9/03/003 ora 8:30-0:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Ciclo di Carnot Si consideri una macchina termica semplice che compie trasformazioni reversibili,

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi Roberto Lensi 1. Complementi sui sistemi termici Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 1. Complementi sui sistemi termici Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico

Dettagli

Università degli Studi di Genova - Facoltà di Scienze MFN FISICA PER SCIENZE BIOLOGICHE - corso A a.a. 2008 2009

Università degli Studi di Genova - Facoltà di Scienze MFN FISICA PER SCIENZE BIOLOGICHE - corso A a.a. 2008 2009 Università degli Studi di Genova - Facoltà di Scienze MFN FISICA PER SCIENZE BIOLOGICHE - corso A a.a. 2008 2009 1^ prova scritta parziale - FILA A DATA 7-11-2008 1) Una palla da hockey di massa 110 g

Dettagli