SOLIDA Aventi forma e volume propri LIQUIDA Avente solo volume proprio, assume la forma del contenitore

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SOLIDA Aventi forma e volume propri LIQUIDA Avente solo volume proprio, assume la forma del contenitore"

Transcript

1 1. DENSITÀ Per il nostro studio assumeremo che valga la semplice schematizzazione secondo cui gran parte delle sostanze può assumere tre differenti stati di aggregazione (o fasi): la fase solida, nella quale esse hanno una forma ed un volume proprio, la fase liquida, nella quale hanno un volume proprio ma assumono la forma del recipiente, e la fase aeriforme, nella quale le sostanze, se disposte in un contenitore ove sia stato fatto il vuoto, tendono ad occupare integralmente lo spazio disponibile assumendo la forma ed il volume del contenitore. Le sostanze che si trovano negli stati di aggregazione liquida ed aeriforme si dicono fluidi. FSI DELLE SOSTNZE PURE SOLID venti forma e volume propri LIQUID vente solo volume proprio, assume la forma del contenitore ERIFORME né forma né volume propri, si espande fino ad occupare tutto lo spazio disponibile FLUIDI Questa schematizzazione è di guida all intuizione, ma non ha un carattere assoluto: vi sono anche solidi che possono assumere la forma del contenitore (si pensi ad un sale che sia pressato entro un vaso fino compattarsi assumendone la forma) e vi sono liquidi che in certe condizioni hanno una forma propria (ad esempio l acqua od il mercurio si dividono in goccioline ellissoidali, che diverrebbero sferiche in assenza di gravità). Dato che, per individuare la massa di un fluido, è indispensabile far riferimento al volume V occupato, è pratico servirsi di una grandezza che esprima la massa di un unità di volume. Conviene quindi definire la densità di una sostanza, come rapporto fra la massa m di un certo quantitativo ed il volume V che esso occupa. Indicando con la lettera greca ρ (rho) questo rapporto, si ha: m = V ρ Kg/m da cui m= ρv Qualsiasi rapporto può essere letto come il quantitativo del numeratore associabile ad una unità del denominatore: ad esempio se acquisto Kg di mele per 5 euro, il numero 5 è il prezzo di un chilo di mele, cioè quanto del numeratore (gli euro) è associato ad un unità del denominatore (un chilo). nalogamente il rapporto 5 è quanto del numeratore (i chili di mele) si associa ad un unità del denominatore (un euro), vale a dire quanti chili di mele si comprano con un euro 1. Quindi la densità rappresenta la massa di un metro cubo di sostanza, ed in modo simile si potrebbe definire il volume specifico V m come volume (al numeratore) occupato da un chilo di sostanza (associato ad una unità del denominatore). 1 Un famoso quesito ipotizza che un anello attorno all equatore, perfettamente aderente al terreno, venga allargato di un metro. Il problema è calcolare quanto spazio si crea fra la superficie terrestre e l anello. La risposta è immediata se si perimetro legge nel modo suggerito sopra il rapporto π = : ad ogni pezzo lungo.14 m sulla circonferenza diametro corrisponde un tratto di 1m sul diametro. Quindi allungando di un metro la circonferenza il diametro cresce di 1 = 0.m e pertanto fra anello e superficie si crea uno spazio di circa 16 cm. Il risultato non cambia se invece.14 della terra si considera un oggetto molto più piccolo come un arancia. 1

2 titolo di esempio abbiamo: ρ = 1000 acqua Kg/m ρ = 1.9 Kg/m (livello del mare) aria Calcoliamo ad esempio la massa di aria contenuta in un frigorifero di dimensioni 1.0 m 0.60m 0.70m : ( )( ) m= 1.9 Kg/ m 0.4m = 0.54 Kg la densità si estende naturalmente anche alle fasi solide, ad esempio ρ = 1900 Kg/m. oro. L PRESSIONE IDROSTTIC Poniamo su di un tavolo un blocco avente la forma di un parallelepipedo con tre facce differenti: sappiamo che l equilibrio richiede che il piano d appoggio eserciti una forza verso l alto, uguale e contraria alla gravità. nche se è comodo riferirsi alla gravità come ad un unica forza, applicata nel baricentro dell oggetto, essa è il risultato dell azione combinata delle attrazioni che la Terra esercita su ciascuna delle particelle costituenti il blocco. nalogamente, anche la forza normale che proviene dal tavolo è un modo conveniente di rappresentare la somma delle spinte elementari che il piano esercita sulle piccolissime porzioni in cui possiamo immaginare suddivisa l intera superficie di contatto. Indipendentemente da quale sia la faccia che poggia, la somma delle spinte elementari deve comunque eguagliare il peso mg del blocco, e quindi la forza complessiva proveniente dal piano d appoggio si può distribuire, a seconda dei casi, su di un area più o meno estesa. Se quindi dividiamo la forza totale mg per l area della faccia otteniamo valori assai differenti della forza per unità di superficie, il maggiore dei quali sarà relativo alla faccia più piccola. E necessario introdurre una grandezza fisica nuova, anche se già disponiamo della forza? Quando si esercita su di un area una forza F, definiamo pressione il rapporto fra l intensità F n della componente di forza normale alla superficie e l estensione della superficie stessa: mg F n P= N/m Ricordando che un rapporto può essere letto come il quantitativo del numeratore associabile ad una unità del denominatore, la pressione rappresenta quanta forza normale è esercitata su di un metro quadrato di superficie. La pressione è una grandezza fisica che contiene informazioni differenti rispetto a quelle fornite dalla forza: sul parallelepipedo poggiato alternativamente sulla base larga o su quella più stretta agisce la medesima forza normale, ma una pressione differente. Se ponessimo una striscia di gomma sotto al blocco, questa si assottiglierebbe molto di più sotto alla faccia stretta che non sotto alla faccia larga, nonostante la forza complessiva sia la stessa. Per motivi analoghi si foggiano a punta gli oggetti che devono penetrare, come spilli, chiodi e viti, così che la forza esercitata si concentri su di una superficie molto piccola, producendo pressioni elevate. L unità di misura della pressione, che ha le dimensioni di N/m, ha un nome proprio nel Sistema Internazionale, il Pascal Pa.

3 La pressione è esercitata dal blocco o dal piano? norma del terzo principio della dinamica, il blocco esercita sul piano una forza uguale e contraria a quella che il piano esercita sul blocco, che, come abbiamo visto, deve essere pari al peso mg per garantire l equilibrio. Diremo allora, indifferentemente, che il blocco esercita una pressione P sul piano, oppure che il piano esercita una pressione P sul blocco. P Come si estende il concetto di pressione alle sostanze in fase fluida (liquida od aeriforme)? E più pratico descrivere la dinamica di sostanze in fase liquida od aeriforme attraverso la pressione piuttosto che tramite un vettore applicato come la forza. Quest ultima grandezza infatti, richiede che si individui il punto di applicazione, cosa tutt altro che facile se l oggetto non ha un propria forma, ma muta continuamente di geometria a seconda delle circostanze. Per inquadrare il problema si immagini di intingere un dito nell acqua e si dica in che punto la forza è stata applicata. Con il termine pressione nei fluidi intendiamo, in modo del tutto analogo al caso dei solidi, il rapporto fra la forza esercitata dal fluido (o sul fluido) perpendicolarmente ad una qualunque porzione piana di superficie e l area della superficie stessa. Così la pressione atmosferica al livello del mare sarà il rapporto fra il peso della colonna d aria sovrastante e la superficie della base della colonna, mentre la pressione in fondo all oceano sarà la forza per unità di superficie esercitata dalla colonna d acqua sommata a quella dovuta alla colonna d aria. Quali differenze di comportamento si osservano, rispetto ad un solido, quando si comprime un liquido? Immaginiamo di porre, fra il blocco ed il piano precedentemente considerati, prima una lastra di vetro e poi uno strato d acqua. La differenza fra il comportamento delle due sostanze è assai evidente: mentre il vetro non subisce deformazioni apprezzabili, l acqua schizza via lateralmente lasciando solo uno strato sottilissimo di liquido fra il blocco ed il tavolino. Quest accelerazione dell acqua in direzione orizzontale può sorprendere se si pensa che le forze in gioco il peso del blocco e la reazione del piano agiscono tutte verticalmente. Ma, come si è visto, al contrario di quelle di un soldo, le molecole di un fluido sono libere di scorrere le une sulle altre così che la repulsione reciproca fra particelle vicine trasforma il peso del blocco in un azione orizzontale. Lo stesso farebbero una serie di strati di palline da ping pong, spostando lateralmente le sottostanti per farsi largo qualora venisse adagiato un peso sopra di esse. In un fluido, quindi, ad una forza esercitata verticalmente si accompagna un azione in direzione orizzontale. Quale legge regola questo comportamento dei liquidi? Semplici osservazioni permettono di intuire che sopra ad ogni superficie, comunque orientata, posta a contatto con un liquido in condizioni statiche, si esercita una forza proporzionale all estensione della superficie e diretta perpendicolarmente ad essa. In altri termini la forza orizzontale osservata prima, sull acqua schiacciata dal blocco, in realtà agisce in qualunque direzione. Riempiamo d acqua un cilindro cavo dotato di un pistone perfettamente aderente, e di un apertura laterale in un punto in basso. Se non si provvede ad esercitare col dito una pressione sul foro, l acqua tende ad uscire, il che implica che sul liquido sta agendo una forza orizzontale. Dato che la posizione dell apertura non ha nulla di particolare, dobbiamo concludere che un azione analoga si eserciti in qualunque altro punto a contatto con le pareti del cilindro e venga da queste controbilanciata. Se ora chiudiamo il foro con una membrana elastica a contatto col fluido, questa si deforma assumendo la geometria di una porzione di sfera. nalogamente, un palloncino sferico, bloccato forzatamente sott acqua, mantiene la propria geometria restringendosi ugualmente in tutte le direzioni senza divenire ovale. La grande simmetria di queste deformazioni è spiegabile solo con l azione di una forza che sia in ogni punto di pari intensità e perpendicolare alla membrana. Osservazioni e misure più dettagliate mostrano infatti la validità del principio seguente, che si deve allo scienziato e filosofo francese Blaise Pascal (16-166):

4 PRINCIPIO DI PSCL In ogni punto di una superficie piana a contatto con un liquido, in condizioni statiche, agisce una forza normale alla superficie e proporzionale alla sua area. Essendo la forza proporzionale all area, il rapporto F si mantiene inalterato, trasmettendosi a tutte le superfici a contatto con il liquido, anche internamente. Il valore assunto da questo rapporto si chiama pressione idrostatica. Quindi la pressione nei fluidi non ha una propria direzione? E proprio così, la pressione si esercita perpendicolarmente a qualunque superficie interna al liquido. Che poi, su ogni porzione di liquido, spinga da tutte le direzioni una pressione di pari intensità è confermato dall assenza di movimenti all interno del liquido stesso. Non è dunque possibile espandere o comprimere un liquido in una data direzione senza che si osservino variazioni che compensino nelle altre due direzioni spaziali da essa indipendenti. E questo il modo in cui i liquidi riescono a riempire qualunque contenitore assumendone la forma. Nell esempio del cilindro, pertanto, la pressione esercitata alla base del blocco, p= mg si trasmette inalterata fino al foro, che per essere chiuso richiede quindi una forza ps, dove S ne è la sezione. La perpendicolarità della forza alla superficie di contatto viene anche espressa dicendo che in un qualunque liquido in condizioni statiche sono assenti sforzi di taglio. Osserviamo infine che il principio di Pascal non si applica ai solidi, come facilmente si intuisce immaginando il cilindro riempito, ad esempio, con un blocco di legno: in questo caso il vincolo che le molecole hanno di oscillare attorno a posizioni fisse origina relazioni molto complesse fra le capacità di deformarsi nelle varie direzioni. Come funziona il torchio idraulico? Il fatto che la pressione in un fluido si trasmetta inalterata a qualunque superficie di contatto trova una notevole F 1 applicazione nel meccanismo detto torchio idraulico, usato fra l altro per moltiplicare la forza che esercitiamo sul pedale dei freni a disco e per sollevare le vetture. Il fluido che tocca la y 1 y superficie grande 1, vi esercita la medesima pressione p con cui preme sulla superficie piccola. In questo modo, è solo l estensione dell area di contatto a determinare f l intensità della spinta complessiva: come già si è visto, infatti, il principio di Pascal prevede che la forza sia proporzionale alla superficie. 1) Situazione statica E possibile equilibrare una grande forza F tramite una piccola forza f se le due stanno in rapporto fra loro come le aree di applicazione. Essendoci un unico valore di pressione p su tutto il liquido, si ha infatti: F f 1 p= = F= f 1 ) Situazione dinamica Quando poi si utilizza il torchio idraulico per spostare il punto di applicazione della forza F (ad esempio se si vuole sollevare un auto), l incompressibilità del fluido impone che sia uguale il volume trasferito da una colonna all altra: 1 y1= y y1= y quindi il tratto y1 lungo cui viene spostato il punto di applicazione di F è molto più breve del tratto di cui y1 viene spostato il punto di applicazione di f. In effetti il rapporto è esattamente il reciproco del y 1 rapporto F f, il che esprime il fatto che il torchio idraulico non crea energia ma, come una leva meccanica, 4

5 trasforma l applicazione di una piccola forza per un lungo tratto, nell applicazione di una grande forza per un breve tratto, in modo però che entrambe compiano lo stesso lavoro L: L= F y1= f y Nel calcolo della pressione idrostatica non dovremmo tenere conto anche del peso del liquido? Se abbiamo a che fare con recipienti dalle dimensioni contenute, come una bottiglia od un becker da laboratorio, il peso del liquido fornisce soltanto un contributo trascurabile, e così, in ogni punto viene applicato un unico valore p di pressione idrostatica. Ma se consideriamo colonne di liquido molto alte, come quando scendiamo in fondo al mare, il ruolo della gravità diventa determinante. In questi casi il fluido sovrastante esercita una considerevole forza verso il basso, producendo una pressione che cresce con la profondità. lla base di un cilindro di sezione ed altezza y, riempito di acqua, graveranno sia la pressione P 0 che l atmosfera esercita sul pelo libero del liquido, sia la forza per unità di superficie dovuta al peso mg della colonna di fluido: mg P= P0+ y P 0 Essendo m= ρv, e V= y, l espressione della pressione sul fondo del cilindro diviene: relazione che va sotto il nome di: ρvg ρyg P= P0+ = P0+ LEGGE DI STEVINO In una colonna di liquido alta y, se P 0 è la forza per unità di superficie che insiste sul pelo libero alla sommità, e ρ la densità della sostanza, la pressione alla base vale: P= P + ρgy 0 Quali conseguenze comporta la legge di Stevino sull equlibrio di un liquido in due vasi comunicanti? Il fatto che la pressione in un fluido dipenda solo dall altezza dà origine ad alcuni sorprendenti paradossi idrostatici, come quello qui a fianco dei vasi comunicanti. Quando si ha a che fare con un tubo ad U, il fluido che si trova nella sezione orizzontale viene spinto verso destra e verso sinistra con una pressione pari a quella che le due colonne esercitano verticalmente sul fondale, in quanto la direzione non influisce sul valore della pressione. Di conseguenza la parte orizzontale sarà in equilibrio solo se il pelo libero delle due colonne si trova alla stessa altezza y. Se le pareti sono verticali basta che la forza per unità di superficie alla base sia la stessa perché la colonna a destra possa sostenere la maggiore grande massa d acqua nel vaso a sinistra - ed in genere il peso di una colonna di qualunque sezione. Nel caso di pareti inclinate invece, queste forniscono un contributo importante all equilibrio. Pa Pa Pb y P y b 5

6 Cosa accade nel caso in cui il contenitore abbia delle rientranze? nche la pressione sul fondo di due contenitori come quelli qui a fianco è la medesima, dato che in entrambi i casi il pelo libero del liquido si tova alla stessa distanza y dalla base. Si potrebbe erroneamente pensare che la pressione sul fondo del contenitore a sinistra sia minore, dato che il peso del liquido sovrastante è inferiore rispetto al contenitore di y destra, ma la superficie della base è in entrambi i casi uguale ad 1. In realtà, nel contenitore di sinistra, è lecito calcolare la pressione come rapporto fra il peso del fluido (oltre y 1 all atmosfera) e l area, soltanto sul fondo della colonnina centrale di sezione. Fuori da questa regione,infatti, non 1 vi è soltanto il peso a gravare. Come richiesto dal pricipio di Pascal, sulla superficie sporgente di estensione 1, a causa del contatto con il liquido, spinge una pressione esattamente uguale a quella che preme dove finisce la colonnina di sezione, cioè P + ρg( y y). Per la terza legge della dinamica, un eguale forza per unità di superficie viene esercitata 0 1 dalla parete orizzontale del recipiente sul fluido, ed essa causa nella regione a sezione larga, 1, la stessa compressione che nel contenitore a destra si deve al peso del liquido sovrastante. Esercizio Un tubo ad U è riempito di acqua ( ρ = 1000 Kg/m delle due colonne si trova uno strato alto ( ρ = 806 Kg/m et nelle due colonne. a ), ma su una d= 10.0cmdi alcool etilico ). Calcola la differenza fra i livelli del pelo libero y 1 d y Il problema richiede di calcolare la differenza y y1. ffinché la sezione orizzontale sia in equilibrio dev essere P1 = P. Risulta: P1 P P = P + ρy 1 at a 1 P = Pat + ρetd+ ρa ( y d ) da cui uguagliando le due pressioni per l equilibrio: ρ + ρetd+ ρa ( y d ) Pat + ay1= Pat ρ( y y) = ρd ρ d a 1 a et ρa ρet y y1= d= 0.100= m = 1.94cm ρ 1000 a Cap XIV assegnare: Stevino e Pascal p 47 n6 (svolto), p45 n 14,16,18, 0 6

MASSA VOLUMICA o DENSITA

MASSA VOLUMICA o DENSITA MASSA VOLUMICA o DENSITA Massa volumica di una sostanza: è la massa di sostanza, espressa in kg, che occupa un volume pari a 1 m 3 1 m 3 di aria ha la massa di 1,2 kg 1 m 3 di acqua ha la massa di 1000

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

LEGGE DI STEVINO. La pressione non dipende dalla superficie della base del recipiente

LEGGE DI STEVINO. La pressione non dipende dalla superficie della base del recipiente LA PRESSIONE NEI LIQUIDI DOVUTA ALLA FORZA PESO In condizioni di equilibrio la superficie libera di un liquido pesante deve essere piana ed orizzontale. Liquido di densitàρ Ogni strato orizzontale di liquido

Dettagli

Proprieta meccaniche dei fluidi

Proprieta meccaniche dei fluidi Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Possiamo vedere in azione questo principio nell impianto frenante delle automobili, o nei ponti idraulici delle officine.

Possiamo vedere in azione questo principio nell impianto frenante delle automobili, o nei ponti idraulici delle officine. La pressione Pressione: intensità della forza F che agisce perpendicolarmente alla superficie S. La formula diretta è: Nota bene che: 1. la pressione è una grandezza scalare, F p = S 2. la forza è espressa

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Capitolo 03 LA PRESSIONE ATMOSFERICA. 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni

Capitolo 03 LA PRESSIONE ATMOSFERICA. 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni Capitolo 03 LA PRESSIONE ATMOSFERICA 3.1 Esperienza del Torricelli 3.2 Unità di misura delle pressioni 12 3.1 Peso dell aria I corpi solidi hanno un loro peso, ma anche i corpi gassosi e quindi l aria,

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

ELEMENTI DI IDROSTATICA IDROSTATICA L'idrostatica (anche detta fluidostatica) è una branca della meccanica dei fluidi che studiailiquidi liquidiin instato statodi diquiete quiete. Grandezze caratteristiche

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

Lezione 11: Forze e pressioni nei fluidi

Lezione 11: Forze e pressioni nei fluidi Lezione 11 - pag.1 Lezione 11: Forze e pressioni nei fluidi 11.1. Dalla forza alla pressione Abbiamo visto che la Terra attrae gli oggetti solidi con una forza, diretta verso il suo centro, che si chiama

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

TEORIA CINETICA DEI GAS

TEORIA CINETICA DEI GAS TEORIA CINETICA DEI GAS La teoria cinetica dei gas è corrispondente con, e infatti prevede, le proprietà dei gas. Nella materia gassosa, gli atomi o le molecole sono separati da grandi distanze e sono

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Pressione. www.easymaths.altervista.org. 01 - Pressione.

Pressione. www.easymaths.altervista.org. 01 - Pressione. Pressione 01 - Pressione La forza è una grandezza fisica caratterizzata dal fatto di essere in grado di modificare lo stato di moto di un corpo o di modificarne la struttura interna Supponiamo che una

Dettagli

L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI. Il punto materiale e il corpo rigido. L equilibrio del punto materiale

L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI. Il punto materiale e il corpo rigido. L equilibrio del punto materiale L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI Il punto materiale e il corpo rigido Un corpo è in equilibrio quando è fermo e continua a restare fermo. Si intende, per punto materiale, un oggetto così piccolo

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

EQUILIBRIO DEI FLUIDI

EQUILIBRIO DEI FLUIDI ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ EQUILIBRIO DEI FLUIDI CLASSI III A, III B E IV A Prof. Erasmo Modica erasmo@galois.it SOLIDI, LIQUIDI E GAS La divisione della materia nei suoi tre

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti

Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 Un punto materiale di massa 5 kg si muove di moto circolare uniforme con velocità tangenziale 1 m/s. Quanto

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante IDRAULICA LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante 2 LEGGE DI STEVIN Z = ALTEZZA GEODETICA ENERGIA POTENZIALE PER UNITA DI PESO p /

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013 Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti

Dettagli

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi LO STATO GASSOSO Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi STATO GASSOSO Un sistema gassoso è costituito da molecole

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

DINAMICA. 1. La macchina di Atwood è composta da due masse m

DINAMICA. 1. La macchina di Atwood è composta da due masse m DINAMICA. La macchina di Atwood è composta da due masse m e m sospese verticalmente su di una puleggia liscia e di massa trascurabile. i calcolino: a. l accelerazione del sistema; b. la tensione della

Dettagli

LABORATORIO DI FISICA

LABORATORIO DI FISICA LABORATORIO DI FISICA 01.12.2014 Relazione: Davide Nali, Antonia Marongiu, Anna Buonocore, Valentina Atzori, Maria Sofia Piredda, Giulia Ghiani, Anna Maria Pala TITOLO: NON LASCIARMI AFFONDARE OBIETTIVO:

Dettagli

CAFFE` Il segreto è nel fisico

CAFFE` Il segreto è nel fisico CAFFE` Il segreto è nel fisico Preparata la macchina del caffè, e messala sul fuoco: L acqua raggiunge rapidamente la temperatura di ebollizione (100 C). Lo spazio del serbatoio lasciato libero viene occupato

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI LE FONDAZIONI Generalità sulle fondazioni Fondazioni dirette Plinti isolati Trave rovescia Esecutivi di strutture di fondazione Generalità Le opere di fondazione hanno il compito di trasferire le sollecitazioni

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

Fenomeni di superficie Tensione superficiale

Fenomeni di superficie Tensione superficiale enomeni di superficie Tensione superficiale Caratteristiche del potenziale di interazione fra due molecole. Assumiamo che le molecole siano a simmetria sferica, che r rappresenti la distanza fra due molecole

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ]

Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ] Idrogeologia Oltre alle proprietà indici del terreno che servono a classificarlo e che costituiscono le basi per utilizzare con facilità l esperienza raccolta nei vari problemi geotecnici, è necessario

Dettagli

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

FAM. 1. Sistema composto da quattro PM come nella tabella seguente Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente

Dettagli

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1

Dettagli

Lavoro di una forza costante

Lavoro di una forza costante Lavoro ed energia Per spostare un oggetto o per sollevarlo dobbiamo fare un lavoro Il lavoro richiede energia sotto varie forme (elettrica, meccanica, ecc.) Se compio lavoro perdo energia Queste due quantità

Dettagli

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO v 23 CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO Un campione di terreno viene considerato come un sistema multifase,

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

1. LE GRANDEZZE FISICHE

1. LE GRANDEZZE FISICHE 1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere

Dettagli

Capitolo 1 ( Cenni di chimica/fisica di base ) Pressione

Capitolo 1 ( Cenni di chimica/fisica di base ) Pressione PRESSIONE: La pressione è una grandezza fisica, definita come il rapporto tra la forza agente ortogonalmente 1 su una superficie e la superficie stessa. Il suo opposto (una pressione con verso opposto)

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata? Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio

Dettagli

Questionario. figura il filo si rompe. Quale traiettoria segue la boccia?

Questionario. figura il filo si rompe. Quale traiettoria segue la boccia? Questionario 1) Due palline metalliche hanno le stesse dimensioni, ma una pesa il doppio dell altra. Le due palline vengono lasciate cadere contemporaneamente dal tetto di un edificio di due piani. Il

Dettagli

Lezione 14: L energia

Lezione 14: L energia Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Verifica sperimentale del principio di conservazione dell'energia meccanica totale Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone

Dettagli

Esame sezione Brevetti 2003-2004 Prova Pratica di meccanica

Esame sezione Brevetti 2003-2004 Prova Pratica di meccanica Esame sezione Brevetti 2003-2004 Prova Pratica di meccanica OGGETVO: Brevettazione dl un perfezionamento riguardante I pressatori per mescolatori dl gomma Egregio dottore, Le invio una breve relazione

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

Concetto di forza. 1) Principio d inerzia

Concetto di forza. 1) Principio d inerzia LA FORZA Concetto di forza Pi Principi ii dll della Dinamica: i 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale i e forza peso Accelerazione di gravità Massa, peso,

Dettagli

Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili

Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Angolo di risalita = 25 Altezza massima della salita = 25,87 m Altezza della salita nel tratto lineare (fino all ultimo pilone di metallo)

Dettagli

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Solvente (componente presente in maggior quantità) SOLUZIONE Soluti

Dettagli

Il vantaggio comparato. Il vantaggio comparato. Il vantaggio comparato

Il vantaggio comparato. Il vantaggio comparato. Il vantaggio comparato Il vantaggio comparato Nel giorno di San Valentino la domanda statunitense di rose è di circa 10 milioni. Coltivare rose negli Stati Uniti d inverno è difficile. E necessario l uso di serre riscaldate.

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Calore e temperatura. Calore e temperatura. Cos'è il calore? Il calore si chiama anche energia termica.

Calore e temperatura. Calore e temperatura. Cos'è il calore? Il calore si chiama anche energia termica. sono due cose diverse (in scienze si dice sono due grandezze diverse). 01.1 Cos'è il calore? Per spiegare cos è il calore facciamo degli esempi. Esempi: quando ci avviciniamo o tocchiamo un oggetto caldo

Dettagli

Lezione 18. Magnetismo WWW.SLIDETUBE.IT

Lezione 18. Magnetismo WWW.SLIDETUBE.IT Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà

Dettagli

Appunti sul galleggiamento

Appunti sul galleggiamento Appunti sul galleggiamento Prof.sa Enrica Giordano Corso di Didattica della fisica 1B a.a. 2006/7 Ad uso esclusivo degli studenti frequentanti, non diffondere senza l autorizzazione della professoressa

Dettagli

Capitolo 4. Elasticità. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke. Copyright 2007 - The McGraw-Hill Companies, srl

Capitolo 4. Elasticità. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke. Copyright 2007 - The McGraw-Hill Companies, srl Capitolo 4 Elasticità In questa lezione introdurremo il concetto di elasticità: un indicatore dell entità con cui domanda e offerta reagiscono a variazioni di prezzo, reddito ed altri elementi. Nella lezione

Dettagli

Capitolo 10 Z Elasticità della domanda

Capitolo 10 Z Elasticità della domanda Capitolo 10 Z Elasticità della domanda Sommario Z 1. L elasticità della domanda rispetto al prezzo. - 2. La misura dell elasticità. - 3. I fattori determinanti l elasticità. - 4. L elasticità rispetto

Dettagli

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro Cos è il calore? Per rispondere si osservino le seguenti immagini Temperatura e calore Il calore del termosifone fa girare una girandola Il calore del termosifone fa scoppiare un palloncino Il calore del

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

LABORATORI SULL ARIA E SULLA PRESSIONE ATMOSFERICA (ALL.

LABORATORI SULL ARIA E SULLA PRESSIONE ATMOSFERICA (ALL. L'ARIA L'aria è una cosa leggera che ricopre tutta la terra come copre la buccia la pera ma nessuno la vede o l'afferra E' una specie di fumo lucente e anche se non si vede con gli occhi, la respira col

Dettagli

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Pagina 1 di 8 LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: This paper explains that all physical constants and consequently

Dettagli

Acqua azzurra, acqua chiara. Istituto Comprensivo della Galilla Scuola Media Dessì - Ballao

Acqua azzurra, acqua chiara. Istituto Comprensivo della Galilla Scuola Media Dessì - Ballao Acqua azzurra, acqua chiara Istituto Comprensivo della Galilla Scuola Media Dessì - Ballao Proprietà fisiche Ecosistemi acquatici Origine della vita Ciclo dell acqua Acqua Scoperte Sensazioni Leggi La

Dettagli

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti;

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti; !""##"!$%&'((""!" )**&)+,)-./0)*$1110,)-./0)*!""##"!$%&'((""!" *&)23+-0-$4--56%--0.),0-,-%323 -&3%/ La presente relazione ha lo scopo di illustrare il meccanismo di calcolo che sta alla base del dimensionamento

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:

Dettagli