Esercizio: pendolo sferico. Soluzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizio: pendolo sferico. Soluzione"

Transcript

1 Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle quadrature e discutere l andamento qualitativo delle soluzioni. Scrivere inoltre la reazione vincolare in funzione delle coordinate e dei dati iniziali. Soluzione Il sistema ha due gradi di liberta e lo spazio delle configurazioni e S 2 (superficie sferica di raggio uno in R 3 ). Fissiamo un sistema di riferimento con origine nel centro della sfera e asse z orientato in verso opposto alla gravita (cfr. fig. 1). Siano (r, θ, φ) le corrispondenti coordinate sferiche. L equazione del vincolo e allora semplicemente r = R. E inoltre naturale scegliere come coordinate lagrangiane del punto vincolato P la coppia (θ, φ), θ (0, π), φ [0, 2π). Si osservi che abbiamo escluso gli estremi 0, π dell intervallo di variabilita di θ, corrispondenti al caso in cui P si trovi in uno dei due poli della sfera. Questo perche nei poli la coordinata φ non e definita. In altri termini le coordinate (θ, φ) non possono essere usate come coordinate lagrangiane per descrivere il moto di P quando P passa per uno dei poli. In tali situazioni dovremo usare altre coordinate lagrangiane non singolari ai poli, come ad esempio le coordinate cartesiane (x, y) di P. Le coordinate cartesiane di P in funzione delle coordinate lagrangiane scelte (θ, φ) si scrivono x = R sin θ cos φ y = R sin θ sin φ z = R cos θ (1) Quindi per le componenti della velocita si ha ẋ = R cos θ θ cos φ R sin θ sin φ φ ẏ = R cos θ θ sin φ + R sin θ cos φ φ ż = R sin θ θ (2)

2 Dalle (2) si ricava l energia cinetica di P in funzione di (θ, φ) T = 1 2 m(ẋ2 + ẏ 2 + ż 2 ) = 1 2 mr2 ( θ 2 + sin 2 θ φ 2 ) L energia potenziale corrispondente alla forza peso, che e l unica forza attiva, si scrive U(z) U(0) = z 0 ( mg)dξ = mgz Posto U(0) = 0 e facendo uso di (1) si ha U(θ) = mgr cos θ. La lagrangiana del sistema e allora L = T U = 1 2 mr2 ( θ 2 + sin 2 θ φ 2 ) mgr cos θ (3) La lagrangiana (3) e naturalmente ben definita fuori dai poli θ = 0, π. equazioni di Lagrange sono Le corrispondenti mr 2 θ = mr 2 sin θ cos θ φ 2 + mgr sin θ (4) d dt (mr2 sin 2 θ φ) = 0 (5) Vogliamo ora studiare i punti di equilibrio e la loro stabilita. Siccome l energia potenziale per θ 0, π si scrive U(θ) = mgr cos θ e quindi U = mgr sin θ, θ U = 0, risulta che al di fuori dei poli non ci sono posizioni di equilibrio. φ In un intorno del polo nord (θ = 0), usando le coordinate cartesiane x, y di P, il vincolo si scrive cosicche l energia potenziale e Risulta allora z = R 2 x 2 y 2 (6) U 1 (x, y) = mg R 2 x 2 y 2 (7) U 1 x = mgx U 1 R2 x 2 y 2 y = mgy R2 x 2 y 2 (8) 2 U 1 x = mg R 2 y 2 2 U 1 2 (R 2 x 2 y 2 ) 3/2 y = mg R 2 x 2 2 (R 2 x 2 y 2 ) 3/2 (9) 2 U 1 x y = mg xy (R 2 x 2 y 2 ) 3/2 (10)

3 Da (8)(9)(10) si ricava subito che il polo nord e un equilibrio instabile. Procedendo in modo analogo, in un intorno del polo sud (θ = π) il vincolo si scrive e l energia potenziale e z = R 2 x 2 y 2 (11) U 2 (x, y) = mg R 2 x 2 y 2 (12) E quindi facile verificare che il polo sud e un equilibrio stabile. Vogliamo ora ridurre il moto di P alle quadrature facendo uso degli integrali primi. Siccome la lagrangiana non dipende dal tempo si conserva l energia. Inoltre la variabile φ e ciclica e quindi il corrispondente momento cinetico si conserva, come risulta dalla equazione (5). Abbiamo cosi i due integrali primi E = 1 2 mr2 ( θ 2 + sin 2 θ φ 2 ) + mgr cos θ (13) p φ = mr 2 sin 2 θ φ (14) Si osservi che p φ e la componente z del momento angolare L z m(xẏ yẋ) = mr 2 sin 2 θ φ. La sua conservazione, per il teorema di Noether, e diretta conseguenza dell invarianza del sistema per rotazioni intorno all asse z. Ricavando φ da (14) e sostituendo in (13) si ha E = 1 2 mr2 θ2 + 2mR 2 sin 2 + mgr cos θ (15) θ La (15) esprime la conservazione dell energia per un punto materiale che si muove sull intervallo (0, π) con una energia potenziale p 2 φ V eff = 2mR 2 sin 2 + mgr cos θ (16) θ Procedendo come nei problemi unidimensionali, la (15) puo essere integrata e si puo ricavare, a meno di quadrature, θ(t). Sostituendo poi θ(t) in (14) e integrando si puo ricavare φ(t). La determinazione del moto e cosi ridotta a quadrature. Naturalmente la soluzione sara prolungabile fino al primo istante t 1 in cui θ(t 1 ) = 0 o π. Passiamo ora all analisi qualitativa del moto di P. E evidente che l andamento di V eff e molto diverso nei casi p φ = 0, p φ 0. Distinguiamo allora i due casi. p 2 φ

4 a) p φ = 0 Il moto avviene lungo un cerchio massimo passante per i poli e coincide quindi con il moto di un pendolo semplice (verificare, facendo attenzione alle coordinate che si usano quando P passa per i poli). b) p φ 0 In questo caso le coordinate θ, φ sono sempre adeguate a descrivere il moto perche V eff e tale da impedire a P di passare per i poli. Risulta infatti che V eff e regolare in (0, π) e diverge positivamente agli estremi dell intervallo. Inoltre V eff(θ) = p2 φ sin θ cos θ mr 2 sin 4 mgr sin θ (17) θ I punti critici di V eff sono quindi le soluzioni dell equazione p2 φ sin 4 θ = cos θ (18) m 2 gr3 La (18) ha una sola soluzione θ ( π, π) (cfr. fig. 2) e quindi V 2 eff ha un unico minimo in θ. In figura 3 e mostrato l andamento qualitativo del grafico di V eff. Se risulta E = V eff ( θ) allora si ha θ(t) = θ p e, sostituendo in (14), φ(t) = φ mr 2 sin 2 θ t + φ 0. Il moto di P e allora circolare uniforme. L orbita e il parallelo θ = θ e il periodo e T = 2πmR 2 sin 2 θ p φ. E facile determinare le condizioni iniziali θ 0, θ 0, φ 0, φ 0 per cui si ha una soluzione periodica di questo tipo. Siccome la soluzione deve essere della forma θ(t) = θ 0, φ(t) = φ 0 t + φ 0 (19) allora deve essere anzitutto θ 0 = 0. Inoltre deve essere soddisfatta la condizione (18), tenendo conto che p φ = mr 2 sin 2 θ 0 φ0. Imponendo che valga la (18) si ottiene la relazione 1 + R g cos θ 0 φ 2 0 = 0 (20) La (20) e θ 0 = 0 sono le condizioni sui dati da imporre per avere la soluzione richiesta. Si noti che φ 0 puo essere arbitrario, come e naturale aspettarsi per la simmetria del problema. Si verifichi che si ottiene lo stesso risultato imponendo che le (19) siano soluzione delle equazioni di Lagrange. Consideriamo ora il caso in cui E > V eff ( θ). Il moto nella variabile θ e periodico, con estremi di oscillazione θ 1, θ 2, con θ 1 < θ 2, che si ottengono come soluzioni dell equazione E = V eff (θ). Risulta inoltre θ 2 > π. 2

5 Il periodo di tale moto periodico e θ2 T θ = 2 θ 1 dθ 2 (E V mr 2 eff (θ)) Il moto di P risultera allora compreso fra i due paralleli θ = θ 1, θ = θ 2. Dalla (14) risulta che φ ha segno costante, cosicche P gira sempre nello stesso verso intorno all asse z. L equazione dell orbita di P si ottiene da dφ dθ = dφ dt dt dθ = p φ mr 2 sin 2 θ 1 2 (E V mr 2 eff (θ)) In generale l orbita di P non e chiusa. Calcoliamo allora l angolo di precessione φ, definito come l angolo φ spazzato dal raggio vettore di P in una oscillazione completa dell angolo θ θ2 φ = 2 θ 1 dθ 2mR sin 2 θ E V eff (θ) L orbita di P e chiusa, e quindi il moto e periodico, se e solo se esistono due numeri interi m, n tali che φ = 2π m n. Passiamo infine a studiare la reazione vincolare su P. Le equazioni di Newton-D Alembert per il moto di P sono p φ (21) (22) (23) ẍ = g + λ G m (24) G x 2 + y 2 + z 2 R 2 = 0 (25) Derivando due volte rispetto al tempo l equazione del vincolo (25) si ha d 2 G dt 2 = v2 + x ẍ = 0 (26) dove si e posto v = ẋ. Sostituendo (24) in (26) si ha v 2 + x g + λ m x G = 0 (27) Dalla (27) si puo ricavare λ, e quindi la reazione vincolare, in funzione di posizione e velocita di P. Usando poi la conservazione dell energia si puo eliminare v 2 dalla (27). Si ha cosi

6 3mg cos θ λ = E (28) 2R R 2 La (28) fornisce la reazione vincolare in funzione dei dati iniziali (attraverso E) e della coordinata θ di P. Nel caso particolare delle traiettorie periodiche trovate precedentemente λ sara costante lungo ciascuna traiettoria.

7

, con x =, y. 3. Si disegni il grafico delle curve di livello sul piano delle fasi (x, ẋ) al variare di E e si discuta la natura qualitativa del moto.

, con x =, y. 3. Si disegni il grafico delle curve di livello sul piano delle fasi (x, ẋ) al variare di E e si discuta la natura qualitativa del moto. 7 o tutorato - MA - Prova Pre-Esonero - 8/4/5 Esercizio Una massa puntiforme m è vincolata a muoversi nel piano verticale xy (con x l asse orizzontale e y l asse verticale orientato verso l alto), su una

Dettagli

FM210 / MA - Secondo scritto ( )

FM210 / MA - Secondo scritto ( ) FM10 / MA - Secondo scritto (6-7-017) Esercizio 1. Un asta rigida omogenea di lunghezza l e massa M è vincolata a muoversi su un piano verticale di coordinate x-y (con l asse x orizzontale e l asse y verticale,

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà)

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà) Foglio di Esercizi 5 Meccanica Razionale a.a. 017/18 Canale A-L (P. Buttà) Esercizio 1. Su un piano orizzontale sono poste due guide immateriali circolari di centri fissi O 1 e O e uguale raggio r; sia

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

FM210 / MA - Terzo scritto ( ), con l > 0. Il vincolo può supporsi ideale. Oltre alle forze di reazione vincolare, il punto è soggetto a

FM210 / MA - Terzo scritto ( ), con l > 0. Il vincolo può supporsi ideale. Oltre alle forze di reazione vincolare, il punto è soggetto a FM10 / MA - Terzo scritto (9-9-017) Esercizio 1. Un punto materiale P di massa m è vincolato a muoversi senza attrito sulla superficie di equazione z = l log x +y, con l > 0. Il vincolo può l supporsi

Dettagli

Prova Scritta di di Meccanica Analitica. 8 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 8 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = x x4 Schematizzare lo spazio delle fasi calcolando i

Dettagli

Prova Scritta di di Meccanica Analitica. 11 febbraio Problema 1

Prova Scritta di di Meccanica Analitica. 11 febbraio Problema 1 Prova Scritta di di Meccanica Analitica 11 febbraio 019 Problema 1 Si consideri un punto materiale P di massa m vincolato a muoversi su una retta orizzontale e connesso mediante una molla di costante elastica

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM10 - Fisica Matematica I Seconda Prova di Esonero [13-01-01] Soluzioni Problema 1 1. Il moto si svolge in un campo di forze centrale in assenza di attrito. Pertanto si avranno due integrali primi del

Dettagli

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale.

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale. Prova Scritta di di Meccanica Analitica 4 Luglio 7 Problema ) Si consideri un punto materiale di massa m soggetto al potenziale V x) ax 4 determinare la dipendenza del periodo dall energia. ) Si scriva

Dettagli

II Dinamica del punto materiale e dei sistemi: Analisi qualitativa dei moti unidimensionali

II Dinamica del punto materiale e dei sistemi: Analisi qualitativa dei moti unidimensionali II Dinamica del punto materiale e dei sistemi: Analisi qualitativa dei moti unidimensionali conservativi. 1. Problema matematico, teorema di esistenza e unicita per i sistemi di equazioni di erenziali

Dettagli

Tutorato 7 - MA/FM210-5/5/2017

Tutorato 7 - MA/FM210-5/5/2017 Tutorato 7 - MA/FM1-5/5/17 Esercizio 1. Si consideri la Lagrangiana L(q 1, q, q 1, q = 1 ( q 1 + q + q 1 + q (q 1 + q 3. Scrivere le equazioni di Eulero-Lagrange, e determinare l energia (generalizzata

Dettagli

Esercizio: pendoli accoppiati. Soluzione

Esercizio: pendoli accoppiati. Soluzione Esercizio: pendoli accoppiati Si consideri un sistema di due pendoli identici, con punti di sospensione posti alla stessa quota in un piano verticale. I due pendoli sono collegati da una molla di costante

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 9 Gennaio 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Esercizio. di centro l'origine e raggio R nel piano verticale O(x; z). Sia A il punto piu' alto dove la

Esercizio. di centro l'origine e raggio R nel piano verticale O(x; z). Sia A il punto piu' alto dove la Esercizio Due punti materiali P 1 e P, di ugual massa m, sono vincolati a muoversi sulla circonferenza di centro l'origine e raggio R nel piano verticale Ox; z). Sia A il punto piu' alto dove la circonferenza

Dettagli

FM210 / MA - Soluzioni della seconda prova di esonero ( )

FM210 / MA - Soluzioni della seconda prova di esonero ( ) FM10 / MA - Soluzioni della seconda prova di esonero (31-5-017) Esercizio 1. Un asta rigida omogenea AB di lunghezza l e massa M è vincolata a muoversi su un piano verticale Π, con estremo A fissato nel

Dettagli

Prova Scritta di di Meccanica Analitica. 10 Febbraio 2017

Prova Scritta di di Meccanica Analitica. 10 Febbraio 2017 Prova Scritta di di Meccanica Analitica 10 Febbraio 017 Problema 1 Si consideri un punto materiale di massa m soggetto alla forza peso e vincolato ad una curva in un piano verticale y x x Schematizzare

Dettagli

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema.

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema. Esercizio 1. Un sistema materiale è costituito da una lamina piana omogenea di massa M e lato L e da un asta AB di lunghezza l e massa m. La lamina scorre con un lato sull asse x ed è soggetta a una forza

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Primo Scritto [1-6-018] 1. Si consideri il sistema meccanico bidimensionale per x R. ẍ = ( x 4 1)x, (a) Si identifichino due integrali

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Prima Prova Scritta [26-1-212] Soluzioni Problema 1 1. Riscriviamo il sistema come e risolviamo la prima equazione: xt) = x e 3t + 2 ẋ = 3x + 2, ẏ = y + z 3, ż = 2x + z, Inserendo

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA Corsi di laurea in Matematica e Fisica - Anno Accademico 07/8 FM0 / MA Seconda Prova di Esonero [8-5-08]. Un sistema meccanico è costituito da due sbarre uguali, rettilinee, omogenee, pesanti, di massa

Dettagli

Compito di gennaio 2005

Compito di gennaio 2005 Compito di gennaio 2005 In un piano verticale, si consideri il vincolo mobile costituito da una semicirconferenza di raggio R e centro C, i cui estremi A e B possono strisciare lungo l asse delle ascisse:

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Compito del 21 giugno 2004

Compito del 21 giugno 2004 Compito del 1 giugno 00 Una lamina omogenea di massa m è costituita da un quadrato ABCD di lato a da cui è stato asportato il quadrato HKLM avente i vertici nei punti medi dei lati di ABCD. La lamina è

Dettagli

II compito di esonero di Meccanica Razionale per fisici del 2 maggio 1989 Università dell Aquila

II compito di esonero di Meccanica Razionale per fisici del 2 maggio 1989 Università dell Aquila II compito di esonero di Meccanica Razionale per fisici del 2 maggio 1989 Università dell Aquila Agli estremi di una sbarretta di lunghezza 2l e massa trascurabile sono saldate due particelle puntiformi

Dettagli

x = λ y = λ z = λ. di libertà del sistema ed individuare un opportuno sistema di coordinate lagrangiane.

x = λ y = λ z = λ. di libertà del sistema ed individuare un opportuno sistema di coordinate lagrangiane. 1 Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Correzione prova scritta Esame di Fisica Matematica 22 febbraio 2012 1. Determinare, per il seguente sistema di vettori

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

Prova Scritta di di Meccanica Analitica

Prova Scritta di di Meccanica Analitica Prova Scritta di di Meccanica Analitica 7 gennaio 015 Problema 1 Un punto di massa unitaria si muove sull asse x soggetto al potenziale V (x) = x e x a) Determinare le posizioni di equilibrio e la loro

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica II parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Primo compito di esonero. Meccanica Razionale - Canale A - La. 23 aprile Docente C. Cammarota

Primo compito di esonero. Meccanica Razionale - Canale A - La. 23 aprile Docente C. Cammarota Primo compito di esonero Meccanica Razionale - Canale A - La 23 aprile 2014 Docente C. Cammarota Un punto materiale P di massa m è vincolato a muoversi senza attrito su un profilo descritto dall equazione

Dettagli

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz:

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz: Esercitazione 6 Esercizio 1 - omento d inerzia del cono Calcolare il momento di inerzia di un cono omogeneo, di altezza H, angolo al vertice α e massa, rispetto al suo asse di simmetria. Calcoliamo il

Dettagli

Prova Scritta di di Meccanica Analitica. 7 Giugno 2017

Prova Scritta di di Meccanica Analitica. 7 Giugno 2017 Prova Scritta di di Meccanica Analitica 7 Giugno 217 Problema 1 1) Si consideri un pendolo di massa m e lunghezza l il cui punto di aggancio si muove di moto uniformente accelerato lungo l asse orizzontale

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 7 Luglio 8 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il corpo rigido piano descritto in figura, formato

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 5 Giugno 018 (usare fogli diversi per esercizi diversi) Primo Esercizio In un piano si fissi un sistema di riferimento Oxy e si

Dettagli

L 2, L ] L 2. σ(x,y )= m ( (x,y ) [0,L]

L 2, L ] L 2. σ(x,y )= m ( (x,y ) [0,L] Scritto di meccanica razionale del.. Esercizio Un sistema rigido, costituito da una lamina quadrata ABCD di lato L, ruotaconvelocità angolare costante ω attorno all asse Ox di una terna Oxyz, asse passante

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 26 Marzo 2008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Esercizi proposti di Meccanica Razionale

Esercizi proposti di Meccanica Razionale Esercizi proposti di Meccanica Razionale Docente Alessandro Teta a.a. 2015/16 1 Equazioni differenziali ordinarie Esercizio 1.1. Si consideri il sistema ẋ = ax (1 y) ẏ = cy (1 x) definito in D = {(x, y)

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI:

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: risoluzione mediante le euazioni cardinali della dinamica Esercizio n.11 Siadatounpianoinclinatofisso e posto in un piano verticale. Su di esso rotola senza strisciare

Dettagli

Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale

Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 30 Meccanica Razionale 1: Scritto Generale 02.02.2011 Cognome e nome:....................................matricola:......... 1.

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Svincolamento statico Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 16 Febbraio 27 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi un sistema di riferimento Oxy in un piano e

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Prova Scritta di di Meccanica Analitica. 3 giugno Un punto di massa unitaria si muove soggetto al potenziale ) V (x) = x exp.

Prova Scritta di di Meccanica Analitica. 3 giugno Un punto di massa unitaria si muove soggetto al potenziale ) V (x) = x exp. Prova Scritta di di Meccanica Analitica 3 giugno 015 Problema 1 Un punto di massa unitaria si muove soggetto al potenziale V x = x exp x a Determinare le posizioni di equilibrio e la loro stabilitá b Tracciare

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (12 gennaio 2018) (Prof. A. Muracchini)

PROVA SCRITTA DI MECCANICA RAZIONALE (12 gennaio 2018) (Prof. A. Muracchini) PRV SRITT DI MENI RZINLE (12 gennaio 2018) Il sistema in figura, mobile in un piano verticale, è costituito di un disco rigido D, omogeneo (massa M, raggio R) vincolato in modo che il punto del suo bordo

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 18 Settembre 27 usare fogli diversi per esercizi diversi) Primo Esercizio In un piano si fissi un sistema di riferimento Oxy. Un

Dettagli

Sistemi Dinamici e Meccanica Classica A/A Alcuni Esercizi

Sistemi Dinamici e Meccanica Classica A/A Alcuni Esercizi Sistemi Dinamici e Meccanica Classica A/A 2008 2009. Alcuni Esercizi G.Falqui, P. Lorenzoni, Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca. Versione del 23 Dicembre 2008 con esercizi

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011)

PROVA SCRITTA DI MECCANICA RAZIONALE (21 gennaio 2011) PRV SRITT DI MENI RZINLE (21 gennaio 2011) Il sistema in figura, posto in un piano verticale, è costituito di un asta rigida omogenea (massa m, lunghezza 2l) i cui estremi sono vincolati a scorrere, senza

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

FISICA MATEMATICA (Ingegneria Civile) V APPELLO ( ) A.A.2017/18

FISICA MATEMATICA (Ingegneria Civile) V APPELLO ( ) A.A.2017/18 FISICA ATEATICA Ingegneria Civile V APPELLO 05.09.208 A.A.207/8 COGNOE E NOE.............................. N.Ro ATR.................................................. LUOGO E DATA DI NASCITA....................................................................................

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Nome... N. Matricola... Ancona, 13 gennaio 2018 1. Un sistema rigido piano è costituito

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accademico 006-007 Esercizio n.: Un punto materiale di massa m e vincolato a muoversi lungo un binario orizzontale scabro. Siano µ s e µ d i coefficienti

Dettagli

Meccanica Analitica e Relativistica - I Esonero - 14/12/2016

Meccanica Analitica e Relativistica - I Esonero - 14/12/2016 Meccanica nalitica e Relativistica - I Esonero - 14/12/2016 In un piano verticale è scelto un sistema di riferimento di assi cartesiani ortogonali z di origine e con l asse z orientato verso il basso.

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 08 (usare fogli diversi per esercizi diversi) Primo Esercizio i) Assumiamo che Q sia un punto di un corpo rigido piano

Dettagli

Sistemi dinamici-parte2 Equazioni di Lagrange per il punto materiale

Sistemi dinamici-parte2 Equazioni di Lagrange per il punto materiale Sistemi inamici-parte2 Equazioni i Lagrange per il punto materiale AM Cherubini 2 Aprile 2007 1 / 16 Warning! Warning! Da Newton a Lagrange Cambio coorinate: coorinate polari el piano a una curva Lagrangiana

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 1/13 FM1 - Fisica Matematica I Seconda Prova di Esonero [14-1-13] SOLUZIONI Esercizio 1 (a) La coordinata del centro di massa è data da X cm = 1 (x 1 + x

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 2018 (usare fogli diversi per esercizi diversi) Primo Esercizio In un piano verticale si fissi un sistema di riferimento

Dettagli

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo;

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo; 1 Esercizio Un sasso di massa m.5 Kg viene lanciato dalla cima di una torre alta h 2 m con velocità iniziale di modulo v 12 m/s, ad un angolo ϕ 6 o rispetto all orizzontale. La torre si trova in prossimità

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 11/1 FM1 - Fisica Matematica I Soluzioni al tutorato del 9-1-1 1. Due particelle di massa m e coordinate x, y R si muovono sotto l effetto di una forza centrale

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Soluzioni del Tutorato 4 (29/03/2017)

Soluzioni del Tutorato 4 (29/03/2017) 1 Soluzioni del Tutorato 4 (29/3/217) Esercizio 1 Si consideri il moto di una particella di massa m = 1 soggetta a una forza centrale di potenziale V ( r ) = log( r ) Si studi qualitativamente il moto

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido Seminario didattico Ingegneria Elettronica Lezione 3: Dinamica del Corpo Rigido Esercizio n 1 Un cilindro di raggio R e massa M = 2 Kg è posto su un piano orizzontale. Attorno al cilindro è avvolto un

Dettagli

Laurea Triennale in Matematica Fisica Matematica Primo compitino 28 aprile 2016

Laurea Triennale in Matematica Fisica Matematica Primo compitino 28 aprile 2016 Laurea Triennale in Matematica Fisica Matematica Primo compitino 8 aprile 016 Attenzione: Siete invitati a consegnare DUE soli fogli (protocollo bianchi, a 4 facciate), su entrambi scrivete chiaramente

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

Esercitazione di Giovedì 18 maggio 2017

Esercitazione di Giovedì 18 maggio 2017 Fisica Generale I con esercitazioni per studenti di Chimica. Esercizi su argomenti del secondo semestre proposti da Anna Nobili e Marco Mendolicchio, svolti in classe e raccolti da Marco Mendolicchio Esercitazione

Dettagli

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come:

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come: 9 Moti rigidi notevoli In questo capitolo consideriamo alcuni esempi particolarmente significativi di moto di un sistema rigido. Quelle che seguono sono applicazioni delle equazioni cardinali di un sistema

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x):

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x): sercizio Considerare il moto di un punto materiale di massa m = soggetto ad un potenziale V (x): ẍ = V (x), dove V (x) = x x.. Scrivere esplicitamente l equazione del moto e verificare esplicitamente la

Dettagli

Tutorato 3 - Soluzione

Tutorato 3 - Soluzione Tutorato 3 - Soluzione Sistemi unidimensionali conservativi /0/04 Esercizio : Si consideri il sistema meccanico unidimensionale ẍ = 4x (x + ) x. - Si determini l espressione dell energia del sistema, e

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A.

PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A. PRV SCRITT DI MECCNIC RZINLE (9 gennaio 2015) In un piano verticale, un disco D omogeneo (massa m, raggio r), rotola senza strisciare sull asse ; al suo centro è incernierata un asta omogenea (massa m,

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 10 Gennaio 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il sistema di riferimento Oxy. L estremo

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

Esonero 17 Novembre 2017

Esonero 17 Novembre 2017 Esonero 7 Novembre 207 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Università degli Studi di Roma La Sapienza Anno Accademico 207-208 Esercizio Un punto materiale P di massa m = g è appoggiato

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

FM210 / MA - Prima prova pre-esonero ( )

FM210 / MA - Prima prova pre-esonero ( ) FM10 / MA - Prima prova pre-esonero (4-4-018) 1. Una particella di massa m si muove in una dimensione sotto l effetto di una forza posizionale, come descritto dalla seguente equazione: mẍ = A x xx 0 3x

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 4-5 Esercizio 1 Una ruota di massa m = 1 kg e raggio R = 1 m viene tirata contro un gradino di altezza h = 3 cm con una velocità

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n.

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. Analisi Matematica II, Anno Accademico 17-18. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. CAMMINI ESERCIZIO 1 Un cammino soddisfa le relazioni y = x z, z = y + x 3, essendo

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Prima Prova di Esonero [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Prima Prova di Esonero [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Prima Prova di Esonero [9-4-018] 1. Un punto materiale di massa m si muove in una dimensione sotto l effetto di una forza posizionale,

Dettagli

Esercizi di statica e dinamica I parte

Esercizi di statica e dinamica I parte Esercizi di statica e dinamica I parte EQ1) Una lamina CD di forma quadrata (lato 2L e densità in un suo generico punto P, µ(p) = 3m 8L 4 GP 2, con G punto d incontro delle diagonali del quadrato) è vincolata

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 18 Luglio 7 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. L estremo

Dettagli

Meccanica Razionale 1: Secondo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 somma

Meccanica Razionale 1: Secondo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 somma Meccanica Razionale 1: Secondo parziale 4.6.21 Cognome e nome:....................................matricola:......... es.1 es.2 es. somma 1 1 1 1. Consideriamo il pendolo semplice con attrito, dove un

Dettagli