UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA"

Transcript

1 UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale: y = CAMPO DI ESISTENZA. Poiché si tratta di una funzione polinomiale, risulta: C.E. = { R: < < + } La funzione non ha asintoti verticali!!! INTERSEZIONI CON GLI ASSI. Poiché si è in presenza di un polinomio di terzo grado, occorre, in primo luogo, vedere se è possibile scomporlo nel prodotto di due polinomi, uno di primo grado ed uno di secondo grado, attraverso la Regola di Ruffini. I divisori del termine noto, 8, sono esattamente ±, ±, ± 4, ± 8. Ma allora si ha: P( ) = da cui, procedendo per tentativi, risulta: P =+ = + 6 8= + 6 8= ( ) ( ) ( ) ( ) ( ) P = = + 6 8= = cioè per = + il polinomio si annulla. Quindi si ottiene il seguente prospetto: Pertanto il polinomio P() si può scrivere anche nel seguente modo: P = + 6 8= ( ) ( )( ) Inoltre è possibile scomporre il polinomio di secondo grado: Q = + 8 ( )

2 utilizzando la formula risolutiva: ± + 8, = = ± 9= ± = = 4 e = + = Quindi risulta: Q( ) = + 8= ( )( + 4) da cui: P = + 6 8= = ( ) ( )( ) ( )( )( ) È ora possibile determinare le intersezioni della funzione con gli assi cartesiani: = = y = y = 8 A =, 8 è il punto di intersezione della funzione con l asse y ( ) y = = ( 4,) y = y = y = + = = ( + )( )( + 4) = = = + 4= = 4 sono i punti di intersezione della, D =, funzione con l asse B = C = ( ) ( ) SEGNO DELLA FUNZIONE. Risulta: y > > > > > ( + )( )( + 4) > > > + 4 > y < y > y < y >

3 LIMITI AGLI ESTREMI DEL CAMPO DI ESISTENZA. ( 6 8) ( ) ( 6 8) ( ) lim y= lim + = lim = lim y= lim + = lim = La funzione non ha asintoti orizzontali!!! STUDIO DEL SEGNO DELLA DERIVATA PRIMA. Risulta: D = ( ) da cui segue: y ' > > + > Troviamo, in primo luogo, le soluzioni dell equazione associata a tale disequazione: ± +, = = ± =,7 e = +,7 da cui: + > < e > Crescenza M Decrescenza m Crescenza Dunque la funzione ha un massimo in = ed un minimo in = +. In particolare: = y = ( ) + ( ) 6( ) 8,9 = + y = ( + ) + ( + ) 6( + ) 8,9 Ne segue, quindi, che: m,7;,9 è il punto di minimo ( ) M (,7;,9) è il punto di Massimo

4 IL GRAFICO. y M B C D O A m 4

5 ) Studiare la seguente funzione razionale fratta: + y = + CAMPO DI ESISTENZA. Poiché si tratta di una funzione razionale fratta, risulta: C.E. = { R: + } = { R: < < + } poiché + è sempre diverso da zero (è la somma di due quadrati, essendo il quadrato di ). La funzione non ha asintoti verticali!!! INTERSEZIONI CON GLI ASSI. Risulta: = = + y = y,5 A =, è il punto di intersezione = = + della funzione con l asse y y = y = y = + + = = + = + + y = ± + 8 ± 9 ±, = = = y = y = e + = = = = 4 4 B = (,) C =, sono i punti di intersezione della funzione con l asse SEGNO DELLA FUNZIONE. Risulta: + + > y > > + + > <, > sempre ( somma di due quadrati) 5

6 y > y < y > LIMITI AGLI ESTREMI DEL CAMPO DI ESISTENZA. + lim y = lim = lim = ± ± + ± cioè la retta di equazione y = è un asintoto orizzontale per la funzione. AO..: y= STUDIO DEL SEGNO DELLA DERIVATA PRIMA. Risulta: ( 4+ ) ( + ) ( + ) ( ) ( ) + D = = = = ( + ) ( + ) da cui segue: > < y ' > > ( + ) ( + ) > ( + ) > Poiché risulta: 5± 5+ =, = = 5± 7 = 5 7,9 e = 5+ 7,9 segue: < 5 7 < < 5+ 7 y ' > ( + ) > sempre ( èun quadrato) 6

7 Dunque la funzione ha un minimo in = 5 7 ed un massimo in = In particolare si ha: = 5 7 = 5+ 7 ( ) ( ) ( 5 7) + ( ) ( ) ( 5+ 7) y =, y =,4 Ne segue, quindi, che: M,9;,4 è il punto di Massimo ( ) Decrescenza Decrescenza m m(,9;,54) è il punto di minimo Crescenza M 7

8 IL GRAFICO. y M I y = B O C A m Osservazione. La funzione interseca l asintoto orizzontale. Possiamo calcolare il punto di intersezione tra la funzione assegnata e la retta y = risolvendo il seguente sistema: + y = + + = + y = = = + + = 5 I = 5,. Dunque il punto di intersezione sarà ( ) (essendo uguali i primi membri delle due equazioni del sistema dovranno necessariamente essere uguali anche i secondi membri) 5 = + 5= 8

9 ) Studiare la seguente funzione irrazionale: y = + 4 CAMPO DI ESISTENZA. Osserviamo in primo luogo che la funzione data è irrazionale: il suo indice di radice è dispari, pari a, ed il suo radicando è una frazione; poiché si tratta di una radice cubica, essa è definita su tutto l asse reale, ma essendo il radicando una frazione bisogna considerare il denominatore diverso da zero. Risulta, pertanto: C.E. = { R: 4 } = { R: ± } = = { R: < <, < < +, + < < + } Ne segue subito che le rette =, = + sono due asintoti verticali per la funzione assegnata. A.V.: =, = + INTERSEZIONI CON GLI ASSI. = = + y = A =, y = =, y = y = y = y = = = = + = y = non ci sono intersezioni con l asse mai ( somma di due quadrati) SEGNO DELLA FUNZIONE. Si ha: y > + > 4 + > 4 ( ) sempre somma di due quadrati <, >+ + > 4> 9

10 y > y < y > LIMITI AGLI ESTREMI DEL CAMPO DI ESISTENZA. Risulta: + + lim y = lim = lim = = ± ± 4 ± 4 Ne segue che, per ±, la y : dunque la retta di equazione y = è un Asintoto Orizzontale. A.O.: y = STUDIO DEL SEGNO DELLA DERIVATA PRIMA. Si ottiene: + D 4 + ( 4) ( + ) D = = = ( 4) = = Ne segue: y ' > ( 4) ( 4) > + ( 4) > ( 4) > + > 4 > ( 4) >

11 sempre ( il radicando èun quadrato equindi sempre positivo) < sempre ( somma di due quadrati) Crescenza M Decrescenza Dunque il punto di massimo, ottenuto in =, coincide esattamente con il punto di intersezione della funzione con l asse y. IL GRAFICO. y y = O A M = - =

12 4) Studiare la seguente funzione esponenziale: y = e CAMPO DI ESISTENZA. Poiché si tratta di una funzione esponenziale, il cui esponente è una frazione, il suo campo di esistenza è rappresentato da tutto l asse reale esclusi i punti in cui il denominatore della frazione si annulla, cioè: C.E. = { R: + } = { R: } = { R: < <, < < + } Ne segue subito che la retta = è un asintoto verticale per la funzione assegnata. A.V.: = + INTERSEZIONI CON GLI ASSI. = y = e y = = e + + = + + y= e = e = y = + e = SEGNO DELLA FUNZIONE. Si ha: y > e A = (,) è il punto di intersezione della funzione con l asse y y = non ci sono intersezioni con l asse mai + > sempre in quanto si tratta di una funzione esponenziale, cioè: y > LIMITI AGLI ESTREMI DEL CAMPO DI ESISTENZA. Risulta: lim + lim ( ) + + lim lim lim y= lim e = e = e = e = e =+ + lim ( ) lim lim + + y= lim e = e = e = e = e = = = e

13 Ne segue che, per, la y : dunque la retta y = è un Asintoto Orizzontale Sinistro (la funzione, cioè ci tende solo da sinistra). A.O.S.: y = STUDIO DEL SEGNO DELLA DERIVATA PRIMA. Si ottiene: ( )( + ) ( ) D e = e D = e = + ( + ) = e e = ( ) + ( + ) da cui: + + e > e > + y ' > + e > ( > ) > ( + ) ( + ) > sempre ( in quanto funzione esponenziale) + > sempre ( in quanto èun quadrato) Troviamo, pertanto, le soluzioni dell equazione associata alla disequazione che figura nel sistema. Poiché risulta: ± + + =, = = ± =,7 e = +,7 segue: sempre ( in quanto funzione esponenziale) sempre y ' > + > < sempre ( in quanto èun quadrato) sempre,

14 Crescenza M Decrescenza m Crescenza Dunque la funzione ha un massimo in = ed un minimo in = +. In particolare si ha: ( ) ( ) = y= e ( ) +,5 ( + ) ( + ) ( + ) + = + y= e,58 Ne segue, quindi, che: m,7;,58 è il punto di minimo ( ) M (,7;,5) è il punto di Massimo 4

15 IL GRAFICO. y M A m y = O = 5

16 5) Studiare la seguente funzione logaritmica: y= ln + 4 ( ) CAMPO DI ESISTENZA. Poiché si tratta di una funzione logaritmica il cui argomento è un polinomio di secondo grado con termine noto nullo, il campo di esistenza si ottiene esclusivamente imponendo che l argomento del logaritmo sia strettamente positivo (il polinomio, infatti, è definito su tutto l asse reale!!!). Allora risulta: C.E. = { R: + 4 >} = { R: ( + 4) > } = { R : < 4, > } C.E. Non C.E. esiste cioè le rette = 4 ed = sono due asintoti verticali per la funzione assegnata. AV..: = 4, = INTERSEZIONI CON GLI ASSI. Osserviamo che in = la funzione non è definita, per cui essa non interseca l asse y. y = y = y = = ln( + ln 4) ln( + 4) = ( + 4) e = e y = y = y = ± = + 4 =, = = ± 5 y = y = e = 5 4, = + 5, A = ( 5,) B = ( + 5, sono i punti di intersezione ) della funzione con l asse SEGNO DELLA FUNZIONE. Risulta: y > ln( ) + 4 > e ( + ) ln 4 > e + 4> + 4 > < 5, > + 5 6

17 avendo già calcolato precedentemente (nelle intersezioni con l asse ) le soluzioni dell equazione associata alla disequazione di secondo grado y > y < y > LIMITI AGLI ESTREMI DEL CAMPO DI ESISTENZA. ( 4 ) ( 4 ) ( ) lim y= lim ln ln lim ln = + = + =+ + lim y= lim ln( 4 ) ln ( 4 lim ) ln( ) + = + = + =+ La funzione non ha asintoti orizzontali!!! STUDIO DEL SEGNO DELLA DERIVATA PRIMA. Risulta: D ln( 4) + = ( + 4) + 4 da cui segue: > > y ' > > > ( + 4) > > < 4, > Derivata Decrescenzscenzscenza Cre- Decre- m M m C.E. Non esiste Crescenza C.E. Campo di esistenza 7

18 Dunque, tenendo conto dei due grafici contemporaneamente, segue che la funzione non ha né massimi né minimi: le rette = 4 ed = sono, infatti, due asintoti verticali della funzione!!! IL GRAFICO. A = 4 non è definita y la funzione O B = 8

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Daniela TONDINI Parziale n. - Compito II A.

Dettagli

Daniela Tondini

Daniela Tondini Daniela Tondini dtondini@unite.it Facoltà di Medicina veterinaria C.L. in Tutela e Benessere Animale Università degli Studi di Teramo 1 a 0 < a < 1 a > 1 1 1 0 = 0 = 0 0 Esempio 1 1 e 1) Determinazione

Dettagli

CAMPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } 2 x1,2 C +

CAMPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } 2 x1,2 C + y = x + 7x + 5 CAPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } INTERSEZIONI CON GLI ASSI. Per determinare l intersezione

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Daniela Tondini

Daniela Tondini Daniela Tondini dtondini@unite.it Facoltà di Medicina veterinaria C.L. in Tutela e Benessere Animale Università degli Studi di Teramo 1 n = m 1 P1 5 Q 9 n > m P4 Q 3 4 4 3 4 3 n < m P 5 1 1 3 Q3 4 Esempio

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri, Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 202/203 docente: Elena Polastri, plslne@unife.it Studio di funzione con indicazione degli asintoti e grafico probabile Studiare

Dettagli

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano:

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano: Funzione polinomiale di 1 grado y = ax + b y = x 6 (coefficiente di x positivo) D = R Determino dove la funzione si annulla (cioè troviamo gli zeri della funzione) risolvendo l equazione x 6 = 0 che, essendo

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzioni Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente x quando esiste un legame di natura qualsiasi che ad ogni valore di x faccia corrispondere

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2017/18 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo

Dettagli

PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C

PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado. Il piano cartesiano. Distanza tra

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 Classe 1A MODULO 1: I NUMERI NATURALI 1. Le operazioni definite nell insieme dei numeri

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Matematica classe quinta - Lo studio di funzione Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia Ing. Alessandro Pochì

Dettagli

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2 QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 27/8 23 LUGLIO 28 CORREZIONE Esercizio ) Considerate la funzione f definita da f(x) = x 2 + x 2. Trovatene il dominio

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Appello del 16/2/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato

Appello del 16/2/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato Corso di Laurea in Economia e Management Appello del 16//017 Matematica per l Economia lettere E-Z, a.a. 016 017, compito A, prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERITÀ DEGLI TUDI DI TERAMO FACOLTÀ DI CIENZE POLITICHE CORO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED AICURATIVA I Parziale - Compito B 5/4/5 A. A. 4 5 ) Risolvere la seguente disequazione razionale

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

DOMINIO E IMMAGINE DI UNA FUNZIONE REALE DI VARIABILE REALE

DOMINIO E IMMAGINE DI UNA FUNZIONE REALE DI VARIABILE REALE OMINIO E IMMAGINE I UNA FUNZIONE REALE I VARIABILE REALE La prima operazione che dobbiamo fare quando ci accingiamo a studiare una funzione (per poterne poi determinare il grafico) è quella di individuare

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA Classe 1 a E Indirizzo COSTRUZIONI, AMBIENTE E TERRITORIO Cap. 1 I NUMERI NATURALI I numeri naturali le quattro operazioni multipli e divisori le potenze e le relative proprietà espressioni numeriche la

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta. Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

SYLLABUS DI ANALISI 5B DON BOSCO

SYLLABUS DI ANALISI 5B DON BOSCO SYLLABUS DI ANALISI 5B DON BOSCO 2016-17 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure. Al contrario,

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERITÀ DEGLI TUDI DI TERAMO FACOLTÀ DI CIENZE POLITICHE CORO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED AICURATIVA I Parziale - Compito C 5//5 A. A. 5 ) Risolvere la seguente disequazione razionale

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

Programma di matematica effettivamente svolto Docente Patrizia Locatelli Classe 3B a.s. 2017/2018

Programma di matematica effettivamente svolto Docente Patrizia Locatelli Classe 3B a.s. 2017/2018 Programma di matematica effettivamente svolto Classe 3B Ripasso elementi base del calcolo algebrico: scomposizione in fattori e frazioni algebriche, disequazioni lineari e di grado superiore al primo,

Dettagli

Argomento 7 - Studi di funzioni Soluzioni Esercizi

Argomento 7 - Studi di funzioni Soluzioni Esercizi Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi LICEO LINGUISTICO NINNI CASSARÁ Classe VA Studio di Funzioni prof. Alessio Cangemi Di seguito saranno schematizzati gli step fondamentali per tracciare il grafico probabile di una funzione f(x). 1 Ricerca

Dettagli

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni:

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni: Definizioni fondamentali Un intorno di un punto = 0 è un intervallo I che contiene 0. Un intorno destro per semplicità lo chiamiamo + 0 ) di 0 è un intervallo in cui l estremo sinistro è 0 : tutti i punti

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA per i Licei RESPONSABILE: CONFORTI U. CLASSE: prima Liceo Artistico e Musicale Comunicazione nella madrelingua Competenza

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA per i Licei RESPONSABILE: CONFORTI U. CLASSE: prima Liceo Artistico e Musicale Utilizzare le tecniche e le procedure

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche

Dettagli

ESERCITAZIONE 10 : EQUAZIONI E DISEQUAZIONI

ESERCITAZIONE 10 : EQUAZIONI E DISEQUAZIONI ESERCITAZIONE 10 : EQUAZIONI E DISEQUAZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 11 Dicembre 2012 Esercizio

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Risolvere la seguente diequazione nell incognita x:

Risolvere la seguente diequazione nell incognita x: Università degli Studi di Catania Corso di Laurea in Scienze Ambientali e Naturali Esercizi proposti - Corso Zero - Risolvere la seguente diequazione nell incognita x: (1) x 2 3x + 2 0, I (2) x 2 x + 1

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima servizi commerciali calcolo numerico (N,

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali

Dettagli

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE Leonardo da Vinci Martina Franca ANNO SCOLASTICO 2015/2016 Disciplina: MATEMATICA APPLICATA Classe : 3 ^ A A.F.M. Docente : Prof. GIANGASPERO Francesco Testo :

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione f(x), l'insieme di tutti i valori reali che assegnati alla variabile indipendente x permettono

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN

Dettagli

1) Nel piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), è assegnata la curva

1) Nel piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), è assegnata la curva Sessione ordinaria 994 Liceo di ordinamento ) Nel piano, riferito ad un sistema di assi cartesiani ortogonali (Oy), è assegnata la curva k di equazione y + ln +. Disegnarne un andamento approssimato dopo

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

Calcolo di limiti. = e il limite. La funzione non è definita in La funzione è definita in. La funzione è continua a destra in

Calcolo di limiti. = e il limite. La funzione non è definita in La funzione è definita in. La funzione è continua a destra in LIMITI Calcolo di limiti FUNZIONE CONTINUA Definizione Una funzione si dice continua in un punto quando il limite = La funzione non è definita in La funzione è definita in La funzione è definita in ma

Dettagli

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali. 1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero

Dettagli

ESERCIZIO N MATH.III/"CORSOBASEBLU.MATEMATICA" - B.T.B.V

ESERCIZIO N MATH.III/CORSOBASEBLU.MATEMATICA - B.T.B.V STUDIO DI FUNZIONI / Funzioni Algebriche Irrazionali Intere a Indice Dispari ESERCIZIO N MATH.III/"CORSOBASEBLU.MATEMATICA" - B.T.B.V48.09 ( FUNZIONI ALGEBRICHE IRRAZIONALI INTERE / INDICE DISPARI E RADICANDO

Dettagli

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B Funzioni Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y = () y viene chiamato immagine di e indicato anche

Dettagli

MODULI DI MATEMATICA (SECONDO BIENNIO)

MODULI DI MATEMATICA (SECONDO BIENNIO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI MATEMATICA (SECONDO BIENNIO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 MATEMATICA Matematico TERZA

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 4 Novembre 016 Trinomi di secondo grado Possiamo usare le soluzioni dell equazione di secondo grado per scomporre il trinomio

Dettagli

SCHEDA PROGRAMMA SVOLTO A.S. 2017/18 Classe 1^ e 2^ Ps (serale)

SCHEDA PROGRAMMA SVOLTO A.S. 2017/18 Classe 1^ e 2^ Ps (serale) Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia lettere E-Z, a.a. 216 217, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli