Sensori Fisici.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sensori Fisici. a.tognetti@centropiaggio.unipi.it"

Transcript

1 Sensori Fisici

2 Sensori FISICI per misure biomediche Un sensore è quella parte della catena di misura che converte il misurando in un segnale elettrico. Ambiente Sorgente X(t) Elemento sensibile y(t) Modificatore Variabili influenza Temperatura Umidità Vibrazioni Gas Page 2 Tipologie: deformazione, forza, spostamento, accelerazione, velocità, temperatura, flusso termico, flusso di fluidi...

3 Sensori fisici Misure di temperatura Misure di forza deformazione Misure di accelerazione Page 3

4 Misure di temperatura Importanza biomedica Scopi diagnostici e di monitoraggio Temperatura interna del corpo La misura con sensori a contatto è il più comune e diffuso metodo di rilevazione. Temperatura superficiale del corpo Anche in questo caso la conoscenza della temperatura può rappresentare un importante strumento diagnostico. Viene misurata sia con tecniche a contatto diretto che per via radiativa. Temperatura sanguigna La temperatura del sangue è misurata con tecniche di cateterismo intravascolare. Utilizzabile per la valutazione indiretta della portata sanguigna tramite (tecnica della termo-diluizione) Page 4

5 Misure di temperatura Obiettivo: misurare la temperatura di un corpo in contatto col sensore Tutti i sensori di temperatura, a prescindere dal meccanismo di trasduzione, presentano alcune caratteristiche comuni che influiscono sulle prestazioni del sensore stesso in termini sia di precisione sia di velocità di risposta. Queste caratteristiche sono legate al fatto che un sensore di temperatura consta sempre di un elemento sensibile che, per effettuare la misura, deve essere messo in contatto con il corpo (che indicheremo con X) di cui si vuole valutare la temperatura (che indicheremo con Tx). Page 5

6 Analogia elettro-termica Il flusso di calore P (Watt) può essere rappresentato da un generatore di corrente elettrica Le temperature T nei vari punti hanno un equivalente nella tensione elettrica (Celsius C o Kelvin K) La resistenza termica R T ( C/W) è equivalente alla resistenza elettrica La capacità C T termica può essere rappresentata da una capacità elettrica ( la rispettiva reattanza sarà ancora espressa in C/W) Si può quindi ricavare un'equazione formalmente uguale alla legge di Ohm Δ T =R T P Δ V =R I Page 6

7 Misure di temperatura Caratteristiche ideali Il sensore raggiunge immediatamente la stessa temperatura del corpo in misura La temperatura del corpo non viene modificata dal contatto con il sensore Obiettivo T s =T x Errore misura e=(t s -T x ) Page 7

8 Misure di temperatura Caratteristiche reali Il sensore ha una capacità termica Cs non nulla. Questo comporta che il sensore raggiunge l'equilibrio termico con X dopo un certo tempo e che, per raggiungere questo equilibrio, deve assorbire o cedere calore ad X, tendendo a modificare la temperatura T x T La resistenza termica tra sensore e corpo ( R XS ) non è zero: questo implica che ci sarà sempre una differenza di temperatura tra sensore e corpo X dovuta al calore che scorre tra corpo e sensore. La resistenza termica tra il sensore e l'ambiente ( ) non è infinita; ciò ha come conseguenza che attraverso il sensore passa calore dall'ambiente al corpo X, e questo ne modifica ancora la temperatura. Inoltre questo flusso di calore passa attraverso la ( R T XS ) causando un salto di temperatura tra il sensore ed X, introducendo quindi un errore nella misura Il funzionamento del sensore stesso può implicare uno sviluppo di calore che si riverserà in X producendo una differenza di temperatura tra il sensore e il corpo stesso. Essendo generalmente: R T T XS R SA T R XA Page 8

9 Misure di temperatura Caso 1: Per comprendere il ruolo dei vari elementi dello schema della figura conviene far riferimento ad alcuni schemi semplificati. Mettiamo in evidenza il ruolo delle capacità termiche, consideriamo isolati sia il sensore che il corpo X, giungendo allo schema di figura (a). Page 9 Obiettivo Ts( ) = Tx(0) Vogliamo che la Ts del sensore a regime sia uguale a quella del corpo prima del contatto col sensore (il sensore non deve modificare la Tx del corpo)

10 Misure di temperatura La chiusura del tasto T simboleggia l'istante in cui X e S vengono messi a contatto per effettuare la misura. La risoluzione del circuito dà come risultato, per la temperatura T s : T s =T f +(T S (0) T f )e t τ T f = C S T S (0)+C X T X (0) C X +C S τ=r T XS C serie NB: solo se Cx>> Cs T f approssima Tx(0) C serie = ( 1 C S + 1 C X ) 1 Page 10

11 Misure di temperatura Risposta esponenziale (sistema primo ordine) Equilibrio: Tx e Ts sono uguali (Tf), ma sono diversi talla quantità che volevamo misurare Tx(0) Errore: Tf-Tx(0) diminuisce al diminuire di Cs Se il sensore ha capacità termica trascurabile rispetto al corpo Tf approssima Tx(0) Per basse capacità termiche del sensore diminuisce il tempo di risposta. Bassa capacità termica del sensore Miniaturizzazione Page 11

12 Misure di temperatura Caso 2: Tx imposta da meccanismi esterni, non perturbatile dal sensore. Sensore isolato che non produce calore T s =T f +(T S (0) T f )e t τ T f =T X (0) τ=r T XS C S Errore a regime nullo Velocità risposta determinata da Cs Page 12 Comportamento d a filtro passa basso rispetto alle variazioni di Tx 1 f c = 2 π R T XS C S

13 Misure di temperatura Caso 3: Tx imposta da meccanismi esterni. Il sensore produce calore (auto-riscaldamento) T s =T f +(T S (0) T f )e t τ T f =T X (0)+R T XS P s τ=r T XS C S Errore a regime non nullo Minimizzazione resistenza termica 1 f c = 2π R T XS C S Page 13

14 Misure di temperatura Caso 4: Tx imposta da meccanismi esterni. Il sensore non produce calore ma non è isolato dall'ambiente (cause: segnale prelevato attraverso conduttori elettrici che sono ottimi conduttori di calore) T f =T X +(T A T X )( T R XS R T SA +R XS T ) Errore a regime non nullo Minimizzazione resistenza termica tra sensore e corpo, massimizzazione resistenza termica tra sensore ed ambiente Page 14

15 Sensori resistivi Sensore resistivo: La resistenza elettrica varia in funzione del misurando Il misurando (temperatura, deformazione) può far variare conduttore le seguenti grandezze: Proprietà fisiche Dimensioni geometriche Esempi: termo-resistenze, estensimetri (strain gauges) Page 15

16 Trasduttori termoresistivi I trasduttori termoresistivi sfruttano la proprietà di alcuni metalli e semiconduttori di cambiare la loro resistenza con la temperatura. Tale dipendenza è descritta da opportune equazioni che introducono un coefficiente termico della resistenza caratteristico del tipo di metallo o semiconduttore utilizzato TCR(T )= 1 R(T ) dr dt (T ) Materiali: metalli, miscele di ossidi metallici compressi (sinterizzati), cristalli di semiconduttori drogati Il TCR dipende dalla temperatura, dalle caratteristiche del materiale utilizzato e non dalla geometria del resistore R(T )=R(T 0 )(1+α(T T 0 )+α 1 (T T 0 ) ) R(T ) R(T 0 ) (1+α(T T 0 ))=R(T 0 )(1+TCR(T 0 )(T T 0 )) Page 16 TCR(T 0 )= 1 R(T 0 ) dr dt (T 0)=α

17 Proprietà fisiche materiali termoresistivi Page 17

18 Trasduttori termoresistivi Sensori a filo o film metallico RTD: resistive temperature detectors Variazioni lineari della resistenza con la temperatura Platino: α= o C -1 Elevata linearità Elevata stabilità chimica, stabilità temporale della risposta Costi relativamente alti Altri materiali: nickel, ferro-nickel R=R 0 (1+α ΔT ) TCR(T 0 )=α= 1 R 0 dr dt (T 0 ) T 0 =0 R 0 =100Ω Page 18 PT100 Se occorrono precisioni maggiori Passo ad approssimazioni di ordine superiore R=R 0 (1+α 1 ΔT +α 2 ΔT α n ΔT n )

19 Sensori termoresistivi y=sx+r(0) Inverso funzione di taratura s=r 0 α=0.39 Ohm/C sensibilità R(0) = 100 Ohm offset (uscita con misurando nullo) c = 1/s= 2.56 C/Ohm Costante di taratura Page 19 TCR(0 o C )= 1 R(0) dr dt (0)= s R(0) = 0.39Ω/C 100Ω = C 1 Precisione: Tolleranza sul valore della resistenza a 0 o C Esempio: Ohm, ottengo una precisione di C (divido per la sensibilità o moltiplico per il coefficiente di taratura)

20 Trasduttori termoresistivi Termistori Resistori ad ossidi metallici la cui resistenza varia fortemente con la temperatura NTC TCR negativo Sono i più usati Fortemente non lineari PTC TCR positivo Usati principalmente nei circuiti di termoregolazione Page 20

21 Termistori R=R(T 0 )exp[ B ( 1 T 1 T 0 )] TCR= B T 2 R(T 0 ) [1 kohm - 1MOh] T Espressa in Kelvin T 0 Temperatura di riferimento B Temperatura caratteristica [ K] Sensibilità a temperatura ambiente un ordine di grandezza maggiore di quella degli RTD Page 21

22 Autoriscaldamento e Linearizzazione termistore (1) Relazione Resistenza/Temperatura fortemente non lineare Parametri Si consideri un termistore R(T 0 ), β, T 0 Si consideri un corpo a temperatura Tx con capacità termica infinita Si consideri il sensore alimentato con una certa corrente I Necessità di linearizzazione all'intorno del punto di lavoro Tx L'approssimazione lineare sarà valida all'interno di un intorno di Tx Necessità di valutare che l'intrinseco errore di auto-riscaldamento non invalidi l'approssimazione Equivalente termico a regime T s =T x +R T XS P s =T x +R T XS R(T s ) I 2 Errore di auto-riscaldamento Page 22 Δ T =T s T x =R T XS R(T s ) I 2

23 Autoriscaldamento e Linearizzazione termistore (2) L'errore di auto-riscaldamento (ΔT) dipende da Ts in modo non lineare (tramite R(Ts)) Linearizzazione di R(T) intorno al punto di lavoro (temperatura del corpo Tx) R(T )=R(T x )+ dr dt (T Sviluppo in serie di Taylor x)(t T x ) Fino al primo ordine R(T )=R(T x ) ( 1+ 1 R(T x ) dr dt (T x)(t Tx) ) =R(T x )(1+TCR(T T x )) R(T x )=R 0 exp[ B ( 1 T x 1 T 0 )] TCR= β T x 2 R(Tx)*TCR sensibilità Inverso costante taratura Page 23

24 Autoriscaldamento e Linearizzazione termistore (4) Determiniamo l'errore di auto-riscaldamento con la relazione linearizzata Δ T =T s T x =R T XS P s =R T XS R(T s ) I 2 Δ T =T s T x =R T XS R(T x ) (1+TCR (T s T x )) I 2 Δ T =R T XS R(T x )(1+TCR Δ T ) I 2 Δ T = R T XS R(T x ) I 2 1 R T XS TCR R(T x ) I 2 T s =Δ T +Tx Page 24

25 Autoriscaldamento e Linearizzazione termistore (4) L'approssimazione lineare è valida per ΔT piccoli (Ts vicino al punto di lavoro) Esempio T 0 =20C (293K), R(T 0 )=500 Ohm, B = 4000 K,R T XS =80 K/W, T x =36.5 C(309.5 K), I=7mA Otteniamo: ΔT=0.916C 0vvero Ts=Tx+ΔT= Se ΔT è accettabile per la nostra applicazione (e.g. ΔT<0.1 C) il sensore è utilizzabile per misurare la temperatura di interesse Attenzione valutare l'errore di linearizzazione, se ΔT fosse troppo elevata l'approssimazione lineare potrebbe essere non più valida Page 25

26 Fenomeno dell'auto-riscaldamento Sensori resistivi sono soggetti ad auto-riscaldamento in quanto attraversati dalla corrente I 0 di polarizzazione Una riduzione della corrente riduce l'auto-riscaldamento, ma riduce anche la sensibilità del sistema Effetto della variazione dovuta alla temperatura paragonabile col rumore Alternativa: polarizzazione con corrente impulsata con frequenza maggiore della frequenza di taglio del sistema e campionamento per valori alti della corrente Il sensore non fa in tempo a riscaldarsi Page 26

27 Circuiti di misura 2 fili La misura viene effettuata sugli stessi conduttori che trasportano la corrente di polarizzazione Esempio: RTD, Rc1+Rc2=0.4 Ohm, Errore 1 o C Page 27

28 Circuiti di misura 4 fili La corrente di polarizzazione viene portata attraverso conduttori separati rispetto a quelli di misura Risolve il problema precedente Page 28

29 Circuiti di misura Esempio 2 fili V u (T )= V r R 3 +R 2 R 2 R 1 R T (T 0 )α(t T 0 ) V u (T )= I 0 R T (T 0 )α(t T 0 ) I 0 Compromesso tra sensibilità e errore di autoriscaldamento Page 29

30 Circuiti di misura Esempio 4 fili I = V r R I V u = V r R 1 R T A Page 30

31 Estensimetri Strain gage L'estensimetro (Strain gage) è un sensore in cui la deformazione elastica subita da un elemento metallico oppure da un semiconduttore si riflette nella variazione della resistenza dell'elemento. Sono utilizzati per la misura di deformazione e conseguentemente di forza/pressione (conoscendo le proprietà elastiche del mezzo a cui vengono applicati) Le principali tipologie costruttive degli estensimetri son tre: filo metallico teso Un sottile filo metallico conduttore viene vincolato, in tensione, alla struttura di cui si desidera misurare la deformazione mediante dei supporti isolanti. Questi devono essere posti lungo l'asse in cui si intende rilevare la deformazione. La deformazione della struttura provoca una variazione della distanza fra i supporti e quindi una deformazione del filo metallico che subisce sia una variazione della lunghezza l, sia una variazione sia della sezione S. R=ρ l S Page 31

32 Estensimetri Strain gage deposito metallico su film Negli estensimetri a deposito metallico su film si usa come elemento deformabile un elemento simile ad un circuito stampato che vede una sottile pista conduttrice solidale ad un supporto isolante costituito da un film plastico di modesto spessore. La forma della pista conduttrice è tale da esaltare la dimensione totale lungo un asse e minimizzare quella lungo l'asse ortogonale. All'estremità della pista conduttrice sono poi ricavate delle piazzole per il collegamento dei reofori di alimentazione e misura. Spesso più estensimetri vengono disposti l'uno vicino all'altro, secondo assi concorrenti per ottenere una scomposizione vettoriale della deformazione. Page 32

33 Estensimetri Strain gage Semiconduttore Gli estensimetri a semiconduttore vengono realizzati mediante un processo di drogaggio del supporto che porta ad ottenere una pista conduttiva di forma analoga a quella dell'estensimetro a deposito metallico su film. Il supporto è frequentemente realizzato con la tecnologia del film spesso (thick film) I valori nominali di resistenza per gli estensimetri a deposito metallico su film sono compresi fra 100Ω e 1kΩ, con delle tolleranze di produzione dell'ordine del '1 2% Gli estensimetri a semiconduttore hanno invece resistenze comprese fra 60Ω e 10k Ω con delle tolleranze che vanno dall'1% al 10% Page 33

34 Estensimetri Strain gage La caratteristica di maggiore interesse nell'estensimetro è la sensibilità con cui la resistenza si modifica in conseguenza della deformazione: per giungere però un tale parametro si deve preventivamente definire come misurare la deformazione. Facendo riferimento ad una struttura cilindrica di altezza pari ad L in condizioni di riposo si consideri di applicare una sollecitazione assiale di trazione: il cilindro subirà una deformazione più o meno evidente a seconda dell'intensità della sollecitazione, delle caratteristiche del materiale e della geometria. L'altezza subirà un'allungamento pari a ΔL. Il rapporto ΔL/L costituisce l'indicazione della deformazione specifica subita dal cilindro. Il valore del rapporto, indicato col simbolo ε, viene chiamato "strain". ϵ= Δ L L ε è adimensionale, ma viene comunemente misurato in microstrain (με = ε * 10 6) Deformazione massima con strain gage metallici με (4%) Page 34

35 Estensimetri Strain gage F L ΔL ε=δl/l GF = Δ R R Δ L L R(ϵ)=R 0 (1+GF ϵ) Page 35

36 Estensimetri Strain gage Fattore di gage (gage factor) È possibile ricavare l'espressione della sensibilità dell'estensimetro rapportando la variazione relativa di resistenza ΔR/R al valore dello strain. Questo fattore viene comunemente indicato con il termine di "fattore di gage" (GF). GF = Δ R R Δ L L Δ R R=GF ϵ Il valore del fattore di gage dipende dal materiale utilizzato per la realizzazione dell'estensimetro: per gli estensimetri metallici GF è compreso fra 2 e 4. La variazione della resistenza è tipicamente molto piccola Il valore del fattore di gage è influenzato dalla temperatura R(ϵ)=R 0 (1+GF ϵ) Page 36

37 Effetto temperatura R(ϵ)=R 0 (1+GF ϵ)(1+α(t T 0 )) errore= ϵ 2 ϵ 1 =Δ ϵ= Δ R R 0 GF R(ϵ 1, T 1 ) R(ϵ 1, T 0 )=Δ R Page 37 Δ R Δ ϵ =R 0GF

38 Influenza temperatura Influenza temperatura Esempio: GF=2, ε1 = 1000 με, T0=20C, T1=40C, α = 10*10-6 C -1 errore= ( R(ϵ 1, T 1 ) R(ϵ 1, T 0 )) GF R 0 =10 4 =100μ ϵ Nota: 20C di variazione implicano 100με di errore È necessario compensare la dipendenza dalla temperatura Page 38

39 Estensimetri configurazioni Asse di sensibilità Page 39

40 Estensimetri circuiti di lettura + Ponte di Wheatstone - + Resistenza del sensore = R in assenza di deformazione - V out =V ref ( R 2R ( R ) R+R+Δ R =V ref Δ R=R 0 GF ϵ Δ R R 4+2 Δ R R ) V ref 1 4 Δ R R Page 40

41 Estensimetri circuiti di lettura Compensazione effetti temperatura Il sensore 2 Non risente della deformazione Dummy gage: Stesso effetto termico, ma non risente della deformazione Page 41

42 Estensimetri circuiti di lettura Rsg R 1 =R 2 R sg0 =R 3 Page 42

43 Estensimetri - applicazioni biomediche I sensori piezoresistivi vengono utilizzati, in campo biomedico, in quelle applicazioni in cui è importante misurare variazioni dimensionali o stati di tensione meccanica. Esempi di questo tipo possono essere la misura della variazione della circonferenza della gabbia toracica per il monitoraggio della respirazione o il rilevamento delle variabili cinematiche di parti del corpo in movimento. Un'altra importante applicazione è la pletismografia basata sull'uso di estensimetri. Il metodo consiste nel circondare l'arto in esame con un fascia elastica dotata di estensimetri e di registrare la variazione relativa di resistenza. Attraverso il fattore di gauge si può risalire alla variazione di lunghezza e di conseguenza alla variazione di volume. Sebbene qualche controversia sull'affidabilità di questa metodologia, studi comparativi con sistemi tradizionali ne hanno decretato l'efficacia. Sono utilizzati anche nella realizzazione di piattaforme di forza per lo studio della cinematica e dinamica articolari nell'analisi della camminata (gait analysis) Page 43

44 Misure di pressione Ponte estensimetrico Gli estensimetri a semiconduttore, per le ridotte dimensioni geometriche e per l'elevato GF, che può arrivare fino a 200, si prestano particolarmente per la realizzazione di sensori di pressione a membrana deformabile. In questo sensore la pressione da misurare agisce su di una membrana di materiale idoneo (silicio od altro) su cui sono stati ricavati, con le usuali tecniche di drogaggio selettivo, gli estensimetri e gli eventuali circuiti elettronici per il trattamento dell'informazione. La deformazione del substrato provoca la variazione della resistenza degli estensimetri e quindi la nascita di una tensione di squilibrio. Page 44

45 Misure di pressione Si deve però segnalare il pericolo che il fluido sotto misura possa contenere elementi chimici in grado di reagire con il materiale che compone la membrana modificando la risposta del sensore. Per questo motivo si continuano a costruire anche sensori in cui la membrana elastica è costituita da metalli inattaccabili su cui vengono montati degli estensimetri classici a deposito metallico su film. Il vantaggio principale degli estensimetri a semiconduttore e quello che sullo stesso chip possono essere integrati sia l'elemento sensibile, sia un circuito elettronico in grado di effettuare operazioni quali la linearizzazione o la compensazione in temperatura migliorando sensibilmente le prestazioni metrologiche del sistema. Page 45

Sensori Fisici. a.tognetti@centropiaggio.unipi.it

Sensori Fisici. a.tognetti@centropiaggio.unipi.it Sensori Fisici a.tognetti@centropiaggio.unipi.it Sensori FISICI per misure biomediche Un sensore è quella parte della catena di misura che converte il misurando in un segnale elettrico. Ambiente Sorgente

Dettagli

Modulo Biosensori Sensori Fisici. a.tognetti@centropiaggio.unipi.it

Modulo Biosensori Sensori Fisici. a.tognetti@centropiaggio.unipi.it Modulo Biosensori Sensori Fisici a.tognetti@centropiaggio.unipi.it Sensori FISICI per misure biomediche Un sensore è quella parte della catena di misura che converte il misurando in un segnale elettrico.

Dettagli

Modulo Biosensori Sensori Fisici. mazzei@di.unipi.it

Modulo Biosensori Sensori Fisici. mazzei@di.unipi.it Modulo Biosensori Sensori Fisici mazzei@di.unipi.it Sensori FISICI per misure biomediche Un sensore è quella parte della catena di misura che converte il misurando in un segnale elettrico. Ambiente Sorgente

Dettagli

Sensori Fisici. nicola.carbonaro@centropiaggio.unipi.it

Sensori Fisici. nicola.carbonaro@centropiaggio.unipi.it Sensori Fisici nicola.carbonaro@centropiaggio.unipi.it Sensori FISICI per misure biomediche Un sensore è quella parte della catena di misura che converte il misurando in un segnale elettrico. Ambiente

Dettagli

Estensimetri Strain gage

Estensimetri Strain gage Estensimetri Strain gage L'estensimetro (Strain gage) è un sensore in cui la deformazione elastica subita da un elemento metallico oppure da un semiconduttore si riflette nella variazione della resistenza

Dettagli

Estensimetri o Strain Gauges

Estensimetri o Strain Gauges Estensimetri o Strain Gauges Sforzi e deformazioni in un corpo elastico Consideriamo un parallelepipedo di materiale W H F dove è la lunghezza e S = W H è la sezione. Definiamo sforzo (stress) il rapporto

Dettagli

Estensimetro. in variazioni di resistenza.

Estensimetro. in variazioni di resistenza. Estensimetro La misura di una forza incidente su di un oggetto può essere ottenuta misurando la deformazione o la variazione di geometria che l oggetto in questione subisce. L estensimetro estensimetro,

Dettagli

3 PROVE MECCANICHE DEI MATERIALI METALLICI

3 PROVE MECCANICHE DEI MATERIALI METALLICI 3 PROVE MECCANICHE DEI MATERIALI METALLICI 3.1 Prova di trazione 3.1.3 Estensimetri La precisione e la sensibilità dello strumento variano a seconda dello scopo cui esso è destinato. Nella prova di trazione

Dettagli

Strumentazione Biomedica

Strumentazione Biomedica Sensori di posizione ed estensimetri Univ. degli studi Federico II di Napoli ing. Paolo Bifulco Trasduttori di posizione La conoscenza diretta della posizione e degli spostamenti è generalmente utilizzata

Dettagli

TRASDUTTORI di FORZA E PRESSIONE

TRASDUTTORI di FORZA E PRESSIONE Fra i trasduttori di forza, gli estensimetri, o stain gage, si basano sull aumento di resistenza che si produce in un filo metallico sottoposto a trazione a causa dell aumento di lunghezza e della contemporanea

Dettagli

Classificazione dei Sensori. (raccolta di lucidi)

Classificazione dei Sensori. (raccolta di lucidi) Classificazione dei Sensori (raccolta di lucidi) 1 Le grandezze fisiche da rilevare nei processi industriali possono essere di varia natura; generalmente queste quantità sono difficili da trasmettere e

Dettagli

Prova Parziale 1 Corso di Biosensori - Ing. Mazzei (22 Aprile 2013)

Prova Parziale 1 Corso di Biosensori - Ing. Mazzei (22 Aprile 2013) Prova Parziale 1 Corso di Biosensori - Ing. Mazzei (22 Aprile 2013) Esercizio 1 Considerando la seguente tabella riportante i dati raccolti per la taratura di un sensore di temperatura. Si determini: -

Dettagli

TRASDUTTORI di TEMPERATURA

TRASDUTTORI di TEMPERATURA TASDUTTOI di TEMPEATUA Sono dispositivi in grado di trasformare la variazione di una temperatura nella variazione di un altra grandezza fisica (tensione, corrente,ecc.) I più utilizzati sono: Termoresistenze

Dettagli

Si classifica come una grandezza intensiva

Si classifica come una grandezza intensiva CAP 13: MISURE DI TEMPERATURA La temperatura È osservata attraverso gli effetti che provoca nelle sostanze e negli oggetti Si classifica come una grandezza intensiva Può essere considerata una stima del

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

SENSORI E TRASDUTTORI

SENSORI E TRASDUTTORI SENSORI E TRASDUTTORI Il controllo di processo moderno utilizza tecnologie sempre più sofisticate, per minimizzare i costi e contenere le dimensioni dei dispositivi utilizzati. Qualsiasi controllo di processo

Dettagli

Circuito di pilotaggio ON OFF con operazionale

Circuito di pilotaggio ON OFF con operazionale PREMESSA Circuito di pilotaggio ON OFF con operazionale A cura del Prof. Marco Chirizzi www.marcochirizzi.it Si supponga di dovere progettare un circuito di pilotaggio ON OFF in grado di mantenere un fluido

Dettagli

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche PREMESSA In questa lezione verranno illustrate la classificazione delle diverse tipologie di trasduttori utilizzati nei sistemi di controllo industriali ed i loro parametri caratteristici. CLASSIFICAZIONE

Dettagli

Sistemi Elettrici. Debora Botturi ALTAIR. http://metropolis.sci.univr.it. Debora Botturi. Laboratorio di Sistemi e Segnali

Sistemi Elettrici. Debora Botturi ALTAIR. http://metropolis.sci.univr.it. Debora Botturi. Laboratorio di Sistemi e Segnali Sistemi Elettrici ALTAIR http://metropolis.sci.univr.it Argomenti Osservazioni generali Argomenti Argomenti Osservazioni generali Componenti di base: resistori, sorgenti elettriche, capacitori, induttori

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Circuiti di condizionamento per sensori resistivi

Circuiti di condizionamento per sensori resistivi Perché non è possibile utilizzare direttamente un partitore di tensione per condizionare uno strain gage? isposta: Per problemi di risoluzione: una d piccola provocherebbe una dout difficile da misurare;

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

APPUNTI DI ESTENSIMETRIA. F. Cosmi M. Hoglievina

APPUNTI DI ESTENSIMETRIA. F. Cosmi M. Hoglievina APPUNTI DI ESTENSIMETRIA F. Cosmi M. Hoglievina ESTENSIMETRIA ESTENSIMETRI A RESISTENZA ELETTRICA Gli estensimetri a resistenza elettrica (in inglese strain gages ) sono sensori meccanici utilizzati per

Dettagli

TERMOMETRI A RESISTENZA

TERMOMETRI A RESISTENZA PRINCIPIO DI FUNZIONAMENTO TERMOMETRI A RESISTENZA Il principio di funzionamento dei termometri a resistenza metallici, più comunemente chiamati termoresistenze, si basa sulla variazione della resistenza

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

TECNOLOGIA DELLE RESISTENZE

TECNOLOGIA DELLE RESISTENZE I RESISTORI (Resistenze) TECNOLOGIA DELLE RESISTENZE Si definiscono i Resistori (o Resistenze) i componenti di un circuito che presentano fra i loro terminali una resistenza elettrica. Le Resistenze servono

Dettagli

CONTROLLO IN TENSIONE DI LED

CONTROLLO IN TENSIONE DI LED Applicazioni Ver. 1.1 INTRODUZIONE CONTROLLO IN TENSIONE DI LED In questo documento vengono fornite delle informazioni circa la possibilità di pilotare diodi led tramite una sorgente in tensione. La trattazione

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

Sensori di temperatura

Sensori di temperatura Sensori di temperatura La variazione di temperatura è tra le principali cause di cambiamento delle caratteristiche fisiche dei materiali, pertanto, si possono realizzare elementi sensibili alle variazioni

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

IL TRASFORMATORE Prof. S. Giannitto Il trasformatore è una macchina in grado di operare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo legati ai flussi variabili. Il trasformatore

Dettagli

Cenni sui trasduttori. Con particolare attenzione al settore marittimo

Cenni sui trasduttori. Con particolare attenzione al settore marittimo Cenni sui trasduttori Con particolare attenzione al settore marittimo DEFINIZIONI Un Trasduttore è un dispositivo che converte una grandezza fisica in un segnale di natura elettrica Un Sensore è l elemento

Dettagli

Modello generale di trasduttore Come leggere la scheda tecnica di un trasduttore

Modello generale di trasduttore Come leggere la scheda tecnica di un trasduttore Modello generale di trasduttore Come leggere la scheda tecnica di un trasduttore Modello generale di trasduttore Informazioni sulle caratteristiche fisiche Sistema di misura Catena di misura Dati numerici

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

REATTANZE INDUTTIVE DI LINEA Filtri elettrici di potenza per l automazione industriale

REATTANZE INDUTTIVE DI LINEA Filtri elettrici di potenza per l automazione industriale INDUCTIVE COMPONENTS Tensione di rete Corrente di linea Tensione di rete Corrente di linea REATTANZE INDUTTIVE DI LINEA Filtri elettrici di potenza per l automazione industriale Reattanze induttive per

Dettagli

Limiti d'uso e precisioni delle termoresistenze al platino conformi a EN 60751: 2008

Limiti d'uso e precisioni delle termoresistenze al platino conformi a EN 60751: 2008 Informazioni tecniche Limiti d'uso e precisioni delle termoresistenze al platino conformi a EN 60751: 2008 Scheda tecnica WIKA IN 00.17 Informazioni generali La temperatura è la misurazione dello stato

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

Componenti elettronici. Condensatori

Componenti elettronici. Condensatori Componenti elettronici Condensatori Condensatori DIELETTRICO La proprietà fondamentale del condensatore, di accogliere e di conservare cariche elettriche, prende il nome di capacità. d S C = Q V Q è la

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC.

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC. Gestione dei segnali analogici nei sistemi di automazione industriale con PLC. Nelle automazioni e nell industria di processo si presenta spesso il problema di gestire segnali analogici come temperature,

Dettagli

Sensori di Sensori di spost spos am ent ent a cont cont t at o Pot P enziom etri enziom

Sensori di Sensori di spost spos am ent ent a cont cont t at o Pot P enziom etri enziom Cap 8: SENSORI PER MISURE DI MOTO Per misure di moto intendiamo le misure di spostamenti, velocità ed accelerazioni di oggetti, di grandezze cinematiche sia lineari che angolari. Sensori di spostamento

Dettagli

Generatore radiologico

Generatore radiologico Generatore radiologico Radiazioni artificiali alimentazione: corrente elettrica www.med.unipg.it/ac/rad/ www.etsrm.it oscar fiorucci. laurea.tecn.radiol@ospedale.perugia.it Impianto radiologico trasformatore

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE 1 PERDITE DI CARICO LOCALIZZATE Sono le perdite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

NTC E MISURA DELLA TEMPERATURA CON ARDUINO

NTC E MISURA DELLA TEMPERATURA CON ARDUINO NTC E MISURA DELLA TEMPERATURA CON ARDUINO Una NTC (Negative Temperature Coefficient resistenza a coefficiente di temperatura negativo) è una resistenza che cambia il suo valore con il variare della temperatura.

Dettagli

CONVERTITORI DIGITALE/ANALOGICO (DAC)

CONVERTITORI DIGITALE/ANALOGICO (DAC) CONVERTITORI DIGITALE/ANALOGICO (DAC) Un convertitore digitale/analogico (DAC: digital to analog converter) è un circuito che fornisce in uscita una grandezza analogica proporzionale alla parola di n bit

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Tecnologie dei Sistemi di Automazione e Controllo

Tecnologie dei Sistemi di Automazione e Controllo Tecnologie dei Sistemi di Automazione e Controllo Prof. Gianmaria De Tommasi Lezione 3 Sensori di temperatura, pressione e forza Corso di Laurea Codice insegnamento Email docente Anno accademico N39 N46

Dettagli

Sensori di grandezze Fisiche e Meccaniche

Sensori di grandezze Fisiche e Meccaniche Sensori di grandezze Fisiche e Meccaniche FISICHE Pressione Portata Livello Temperatura MECCANICHE Posizione e spostamento Velocità e accelerazione Vibrazioni e suono/rumore (per approfondimenti) 1 Sensori

Dettagli

PRINCIPI DI TRASMISSIONE DEL CALORE

PRINCIPI DI TRASMISSIONE DEL CALORE PRINCIPI DI TRASMISSIONE DEL CALORE La trasmissione del calore può avvenire attraverso tre meccanismi: - Conduzione; - Convezione; - Irraggiamento; Nella conduzione la trasmissione del calore è riconducibile

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

PRINCIPI DI TRASDUZIONE

PRINCIPI DI TRASDUZIONE PRINCIPI DI TRASDUZIONE Passiva Trasduzione resistiva Trasduzione capacitiva Trasduzione induttiva Attiva Trasduzione fotovoltaica Trasduzione piezoelettrica Trasduzione elettromagnetica Trasduzione fotoconduttiva

Dettagli

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo Generatori di segnale Generatore sinusoidale BF Generatori di funzione Generatori sinusoidali a RF Generatori a battimenti Generatori di segnale sintetizzati Generatori per sintesi indiretta 2 2006 Politecnico

Dettagli

Esercitazione n 1: Circuiti di polarizzazione (1/2)

Esercitazione n 1: Circuiti di polarizzazione (1/2) Esercitazione n 1: Circuiti di polarizzazione (1/2) 1) Per il circuito in Fig. 1 determinare il valore delle resistenze R B ed R C affinché: = 3 ma - V CE = 7 V. Siano noti: = 15 V; β = 120; V BE = 0,7

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

Giornata di studio Problematiche di misura della pressione: Sensori e trasduttori di misura della pressione

Giornata di studio Problematiche di misura della pressione: Sensori e trasduttori di misura della pressione Giornata di studio Problematiche di misura della pressione: Sensori e trasduttori di misura della pressione Prof. Marco Dell Isola Dipartimento di Meccanica Strutture Ambiente e Territorio Università degli

Dettagli

CALCOLO DELLA TRASMITTANZA DI UN PANNELLO IN EPS CON GRAFITE CLASSE DI RIFERIMENTO 100/150

CALCOLO DELLA TRASMITTANZA DI UN PANNELLO IN EPS CON GRAFITE CLASSE DI RIFERIMENTO 100/150 CALCOLO DELLA TRASMITTANZA DI UN PANNELLO IN EPS CON GRAFITE CLASSE DI RIFERIMENTO 100/150 V2.0 del 10-05-2011 1 Riferimenti normativi Il calcolo della trasmittanza è eseguito in conformità della EN ISO

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE Per un corretto dimensionamento del martinetto a ricircolo di sfere è necessario operare come segue: definizione dei dati del dell applicazione (A)

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

13.1 (a) La quantità di calore dissipata dal resistore in un intervallo di tempo di 24 h è

13.1 (a) La quantità di calore dissipata dal resistore in un intervallo di tempo di 24 h è 1 RISOLUZIONI cap.13 13.1 (a) La quantità di calore dissipata dal resistore in un intervallo di tempo di 24 h è (b) Il flusso termico è 13.2 (a) Il flusso termico sulla superficie del cocomero è (b) La

Dettagli

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo diverse metodologie. 1 La tempra termica (o fisica) si basa

Dettagli

26/08/2010. del sistema tecnico) al cm² o al m² l atmosfera tecnica pari a 1 kg p. /cm², di poco inferiore all'atmosfera (1 atm= 1,033227 at).

26/08/2010. del sistema tecnico) al cm² o al m² l atmosfera tecnica pari a 1 kg p. /cm², di poco inferiore all'atmosfera (1 atm= 1,033227 at). Capitolo 10 - Misure di pressione L'unità di pressione nel S.I. che prende il nome di Pascal, cioè 1 Pa = 1 N / 1 m 2. Comunemente sono utilizzate altre unità di misura: il bar, che è una unità SI pari

Dettagli

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE

CALCOLO ELETTRICO DELLE LINEE ELETTRICHE CALCOLO ELETTRICO DELLE LINEE ELETTRICHE Appunti a cura dell Ing. Stefano Usai Tutore del corso di ELETTROTECNICA per meccanici e chimici A. A. 2001/ 2002 e 2002/2003 Calcolo elettrico delle linee elettriche

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

CAPACITÀ DI PROCESSO (PROCESS CAPABILITY)

CAPACITÀ DI PROCESSO (PROCESS CAPABILITY) CICLO DI LEZIONI per Progetto e Gestione della Qualità Facoltà di Ingegneria CAPACITÀ DI PROCESSO (PROCESS CAPABILITY) Carlo Noè Università Carlo Cattaneo e-mail: cnoe@liuc.it 1 CAPACITÀ DI PROCESSO Il

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

MISURE DIMENSIONALI MISURE DIMENSIONALI: - Sistemi a contatto. - Sistemi senza contatto.

MISURE DIMENSIONALI MISURE DIMENSIONALI: - Sistemi a contatto. - Sistemi senza contatto. MISURE DIMENSIONALI Modello: tubo cilindrico misurato con forcelle del calibro caratterizzate da superfici piane e parallele fra loro. MISURE DIMENSIONALI: D Diametro del tubo misurato con calibro. Ripetendo

Dettagli

misura e sensori Parametri fondamentali sono: Scelta del dispositivo (caratteristica intrinseca) Localizzazione nel processo Modalità di installazione

misura e sensori Parametri fondamentali sono: Scelta del dispositivo (caratteristica intrinseca) Localizzazione nel processo Modalità di installazione misura e sensori Introduzione I dispositivi di misura rivestono un ruolo fondamentale nei sistemi di controllo di processo Vanno limitati i ritardi e il rumore di misura Elementi particolarmente critici

Dettagli

LE VALVOLE TERMOSTATICHE

LE VALVOLE TERMOSTATICHE LE VALVOLE TERMOSTATICHE Per classificare ed individuare le valvole termostatiche si deve valutare che cosa si vuole ottenere dal loro funzionamento. Per raggiungere un risparmio energetico (cosa per la

Dettagli

APPUNTI DI OPTOELETTRONICA FOTORIVELATORI

APPUNTI DI OPTOELETTRONICA FOTORIVELATORI APPUNTI DI OPTOELETTRONICA (ad uso libero ed esclusivo degli studenti) FOTORIVELATORI Autore: Massimo Brenci IROE-CNR Firenze Termopile Sfruttano il principio della termocoppia, nella quale il riscaldamento

Dettagli

Sensori, Segnali e Rumore Prof. Sergio Cova A B + - V AB. Metalli a contatto V A Φ Φ B = Φ B (T) dφ A dt V AB = V AB (T) V B = Φ B.

Sensori, Segnali e Rumore Prof. Sergio Cova A B + - V AB. Metalli a contatto V A Φ Φ B = Φ B (T) dφ A dt V AB = V AB (T) V B = Φ B. ermocoppie Differenza di potenziale di contatto tra metalli B - Livelli energetici: V B Metalli separati Metalli a contatto V Φ B Φ Φ B Φ B B B Ma le funzioni lavoro Φ dipendono dalla temperatura: VB =

Dettagli

RESISTENZA DEI MATERIALI TEST

RESISTENZA DEI MATERIALI TEST RESISTENZA DEI MATERIALI TEST 1. Nello studio della resistenza dei materiali, i corpi: a) sono tali per cui esiste sempre una proporzionalità diretta tra sollecitazione e deformazione b) sono considerati

Dettagli

I sistemi di controllo possono essere distinti in due categorie: sistemi ad anello aperto e sistemi ad anello chiuso:

I sistemi di controllo possono essere distinti in due categorie: sistemi ad anello aperto e sistemi ad anello chiuso: 3.1 GENERALITÀ Per sistema di controllo si intende un qualsiasi sistema in grado di fare assumere alla grandezza duscita un prefissato andamento in funzione della grandezza di ingresso, anche in presenza

Dettagli

Trasduttori di Temperatura

Trasduttori di Temperatura Trasduttori di Temperatura Il controllo della temperatura è di fondamentale importanza in moltissimi processi industriali. Per la misura della temperatura sono disponibili diversi tipi di trasduttori,

Dettagli

Misure Elettroniche, Sensori e Trasduttori 1

Misure Elettroniche, Sensori e Trasduttori 1 Università degli Studi di Genova Corso di Laurea in Ingegneria Elettronica (CL) Misure Elettroniche, Sensori e Trasduttori Docente: Prof. Giacomo Mario Bisio Esempi di domande d esame. Struttura e principi

Dettagli

PROGETTAZIONE DI UN CONTROLLO ON-OFF CON CRITERI E METODOLOGIA

PROGETTAZIONE DI UN CONTROLLO ON-OFF CON CRITERI E METODOLOGIA TECNICO DELLE INDUSTRIE ELETTRONICHE Misura n.3 A.s. 2012-13 PROGETTAZIONE DI UN CONTROLLO ON-OFF CON CRITERI E METODOLOGIA Ipsia E. Fermi Catania Laboratorio di Sistemi 2012-13 mis.lab. n.2 Pag. 0 Controllo

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo Gli attuatori Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo ATTUATORI Definizione: in una catena di controllo automatico l attuatore è il dispositivo che riceve

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Amplificatori Audio di Potenza

Amplificatori Audio di Potenza Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso

Dettagli

LA TERMOGRAFIA SPETTRO ONDE ELETTROMAGNETICHE

LA TERMOGRAFIA SPETTRO ONDE ELETTROMAGNETICHE SPETTRO ONDE ELETTROMAGNETICHE La radiazione elettromagnetica è un mezzo di trasmissione dell energia sotto forma di onde aventi entrambe le componenti elettriche e magnetiche. La sequenza ordinata delle

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. Negli ultimi anni, il concetto di risparmio energetico sta diventando di fondamentale

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

BILANCI DI ENERGIA. Capitolo 2 pag 70

BILANCI DI ENERGIA. Capitolo 2 pag 70 BILANCI DI ENERGIA Capitolo 2 pag 70 BILANCI DI ENERGIA Le energie in gioco sono di vario tipo: energia associata ai flussi entranti e uscenti (potenziale, cinetica, interna), Calore scambiato con l ambiente,

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli