ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1. f(x) = arcsin 1 2 log 2 x.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x."

Transcript

1 ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità e la derivabilità di f. Calcolare f, determiare gli itervalli di mootoia ed evetuali puti di estremo. 4 Calcolare i limiti sigificativi di f. 5 Disegare u grafico di f (o si richiedoo il calcolo della derivata secoda e lo studio della cocavità e della covessità. Svolgimeto. L argometo x di f deve soddisfare le segueti codizioi: x > 0 (domiio del logaritmo, e 0 log x (domiio della radice e dell arcoseo. La codizioe log x 0 dà log x, cioè il domiio di f è l itervallo [e /, e / ]. f è visibilmete cotiua el suo domiio. Le regole di derivazioe si possoo applicare dove le fuzioi elemetari di cui f è composizioe soo derivabili, cioè dove l argometo della radice o si aulla (x e /, e / e dove l argometo dell arcoseo è diverso da ± (x. La fuzioe risulta perciò di classe C egli itervalli ]e /, [ e ], e / [. Si ha f (x = 4 log x x log x ( log x = sig(log x x log x. Il sego di f dipede perciò solo dal sego di log x, quidi f è strettamete crescete i [e /, ] e strettamete decrescete i [, e / ]. Gli estremi del domiio soo perciò puti di miimo assoluto (i cui f vale 0, metre x = è il puto di massimo assoluto (i cui f vale π/. 4 lim x e / + f (x = +, lim x e / f (x =, cioè agli estremi del domiio la tagete al grafico di f è verticale. Ioltre si ha lim x f (x = = lim x + f (x, cioè x = è u puto agoloso. 5 La derivata secoda o era richiesta, ma per completezza viee calcolcta e studiata. Per x ]e /, [ si ha f (x = ( log 4 log x x + x x log x x ( log = log x + log x x x ( log x, / metre per x ], e / [ è l opposto. Il sego di f dipede perciò solo dal sego di log x+ log x. Le soluzioi della disequazioe log x+ log x 0 soo: x e (+ / e x e ( + /. Teedo coto

2 Figura : Il grafico di f (Tema. del fatto che e (+ / < e / < < e ( + / < e /, f risulta cocava i [e /, ], covessa i [, e ( + /, cocava i [e ( + /, e / ], co u flesso a tagete obliqua i e ( + /. Il grafico è perciò come i Figura. Esercizio Al variare di x R, studiare la covergeza semplice ed assoluta della serie ( 4x + + x. = Svolgimeto. Usiamo il criterio della radice, dal quale ricaviamo iformazioi sia sulla covergeza assoluta che sull adameto del termie geerale, che chiamiamo a (x. Si ha lim a (x = lim 4x + + x = 4x + x. Perciò se 4x +x < la serie coverge assolutamete e quidi semplicemete, metre se 4x +x > la serie o coverge é assolutamete é semplicemete perché il suo termie geerale o è ifiitesimo. La disequazioe 4x +x <, è equivalete al sistema di disequazioi { 4x +x < 4x +x >. La prima disequazioe ha per soluzioi ], [ ]+, + [. Per disparità le soluzioi del sistema, cioè i valori di x i cui la serie coverge assolutamete, soo ], [ ] +, [ ] +, + [, metre il termie geerale o è ifiitesimo per i valori di x apparteeti all isieme ], + [ ], + [. Resta da studiare la covergeza della serie ei puti x :=, x := +, x :=, x 4 := +, ei quali a (x e quidi il criterio della radice o dà iformazioi. Per x = x, x il

3 termie geerale della serie risulta essere ( /( + e quidi la serie coverge per il criterio di Leibiz, ma o coverge assolutamete perché il termie geerale, i modulo, è asitotico al termie geerale della serie armoica, /, che diverge. Per x = x, x 4 il termie geerale è /( + e quidi la serie o coverge. Esercizio Calcolare l itegrale + log 8 e x + e x Svolgimeto. Detta f l itegrada, essa è defiita (e cotiua per e x. Duque f C(R\{log }. I particolare f C([log 8, + [ e quidi è itegrabile secodo Riema i [log 8, + [. Per il calcolo dell itegrale calcoliamo azitutto ua primitiva di f(x = e x + e x. Sembra aturale il cambio di variabile y = e x +, cioè e x = y, x = log(y, dx = dy da cui e x + e x dx = y y y 4 y dy = y y dx. y ( + (y 4(y dy = y 4 dy + (y 4(y dy. Evidetemete y 4 dy = (y (y + dy = ( 4 y y + dy = 4 log y y +, metre (y 4(y dy = ( y 4 y dy = log y y + 6 log y y + e quidi, i coclusioe e x + e x dx = log e x + e x + + e log x + e x + + =: F (x. Ora lim x + F (x = 0 come facilmete si verifica, per cui + log 8 e x + e x ( dx = F (log 8 = log 5 log = log 5 log. Esercizio 4 Calcolare tutte le soluzioi z C dell equazioe ( z + =, z scriverle i forma algebrica e rappresetarle el piao complesso. Svolgimeto. Le tre radici cubiche di soo, e πi, e πi. L equazioe è equivalete alle tre equazioi z + z + =, z z = e πi = + z + i, z = e πi = i. La prima equazioe o ha soluzioi. La secoda è equivalete all equazioe z + = (z ( + i,

4 che ha per soluzioi La terza equazioe è equivalete all equazioe z = i i = i 6. che ha per soluzioi z + = (z ( i, z = + i + i = i 6. Esercizio 5 [facoltativo] Sia f C([0, ] ua fuzioe cotiua. Calcolare il limite lim f(xdx. Svolgimeto. Fissiamo N e osserviamo che f C( [, ]. Duque possiamo applicare il teorema della media itegrale alla fuzioe f ell itervallo [, ] : esiste ξ [, ] tale che f(xdx = f(ξ (. Dato che ξ [, ] per ogi, otteiamo che lim ξ = 0 e dato che f è cotiua i 0, si ha che lim f(ξ = f(0. Quidi lim f(xdx = lim [ ( f(ξ ] = f(0. TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità e la derivabilità di f. Calcolare f, determiare gli itervalli di mootoia ed evetuali puti di estremo. 4 Calcolare i limiti sigificativi di f. 5 Disegare u grafico di f (o si richiedoo il calcolo della derivata secoda e lo studio della cocavità e della covessità. 4

5 Figura : Il grafico di f (Tema. Svolgimeto. Per la preseza del log dobbiamo porre x > 0, ioltre per la radice dobbiamo porre log x 0 e per l arcsi abbiamo log x. Risolvedo otteiamo che il domiio è dato da D = { x [ e, e Poiché l argometo di arcsi è o egativo ache la fuzioe è o egativa el suo domiio. Essedo la fuzioe ua composizioe di fuzioi cotiue( è cotiua el suo domiio. Per la derivabilità possiamo solo affermare che la fuzioe è derivabile i D = e, e \{}. Il puto deve essere tolto per la preseza dell arcsi, gli estremi del domiio per la radice. Per ogi x D u calcolo diretto porge f sego(log x (x = x log x [ ] Il sego è quidi deciso dalla fuzioe sego(log x. La fuzioe è crescete i e, ed è decrescete [ i, e ]. Il puto x = è u puto di massimo (assoluto, i puti x = e e x = e soo puti di miimo (assoluto. 4 come descritto el puto i limiti sigificativi di f soo: lim x x + lim x x lim x x + lim x x ]} f (x = f (x = f (x = + f (x = Quidi il puto x è u puto agoloso, i puti x e x soo puti di cuspide. Il grafico è perciò come i Figura. 5

6 Esercizio Al variare di x R, studiare la covergeza semplice ed assoluta della serie ( 8x 4 + x. = Usiamo il criterio della radice, dal quale ricaviamo iformazioi sia sulla covergeza assoluta che sull adameto del termie geerale. Abbiamo lim 8x ( 4 + x = 8x 4 + x lim 8x = 4 + x Per il criterio della radice abbiamo covergeza assoluta (e quidi ache semplice per ogi x per cui 8x 4+x < cioè 8x < 4+x 8x > 4+x Risolvedo il semplice sistema otteiamo covergeza assoluta (e quidi ache semplice i ( C =, 4 ( 4 +, 4 ( 4 +, + Il termie geerale della serie o è ifiitesimo e quidi la serie o coverge i ( R\C = 4, 4 + ( 4, 4 + Rimae da studiare il comportameto della serie ei puti x = 4, x = 4 +, x = 4 e x 4 = 4 +. Per x = x o x = x abbiamo che 8x = e quidi il termie geerico della serie 4+x diveta cioè la serie diverge a + i questi puti, metre i x = x o x = x 4 abbiamo che 8x = e 4+x quidi il termie geerico della serie diveta (. I tali puti abbiamo covergeza semplice (criterio di Leibiz, ma o assoluta. Esercizio Calcolare l itegrale + 0 e x e x + Svolgimeto. Detta f l itegrada, essa è defiita (e cotiua per ogi x 0. I particolare f C([0, + [ e quidi è itegrabile secodo Riema i [0, + [. Per il calcolo dell itegrale calcoliamo azitutto ua primitiva di f(x = e x e x +5. Sembra aturale il cambio di variabile y = e x, cioè e x = y +, x = log(y +, dx = dy da cui e x e x + dx = Evidetemete metre y y + y y y + 4 y + dy = (y + 4(y + dy = ( = dx. y ( (y + 4(y + dy = y + y + y + 4 dy = arcta y, ( arcta y arcta y =. y + dy 4 ( arcta y 4 (y + 4(y + dy. + (y/ dy 6

7 Pertato e x e x + Ora F (0 = 0 come facilmete si verifica, per cui dx = arcta e x + 4 e arcta x =: F (x. + 0 e x + e x dx = lim x + F (x = π. Esercizio 4 Calcolare tutte le soluzioi z C dell equazioe ( z + =, z scriverle i forma algebrica e rappresetarle el piao complesso. Svolgimeto. Le tre radici cubiche di soo w =, w = +i e w = i. L equazioe è equivalete alle tre equazioi z + z =, z + z = + i, La prima o ha soluzioi, la secoda ha come soluzioe z = Il grafico segue: z + z = i 6 i, la terza ha come soluzioe z = 6 i. Im z Re z Figura : Le soluzioi di ( z+ z = (Tema. 7

8 Figura 4: Il grafico di f (Tema. Esercizio Si cosideri la fuzioe TEMA f(x = π arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità e la derivabilità di f. Calcolare f, determiare gli itervalli di mootoia ed evetuali puti di estremo. 4 Calcolare i limiti sigificativi di f. 5 Disegare u grafico di f (o si richiedoo il calcolo della derivata secoda e lo studio della cocavità e della covessità. Svolgimeto. V. fogli a parte. Il grafico è come i Figura. Esercizio Al variare di x R, studiare la covergeza semplice ed assoluta della serie Svolgimeto. V. fogli a parte. = + ( x 9 + x. Esercizio Calcolare l itegrale Svolgimeto. V. fogli a parte. + log 5 e x + 4 e x + 5 dx. Esercizio 4 Calcolare tutte le soluzioi z C dell equazioe ( z + =, z 8

9 scriverle i forma algebrica e rappresetarle el piao complesso. Svolgimeto. V. fogli a parte. Esercizio [0 puti] Si cosideri la fuzioe TEMA 4 f(x = π arcsi Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità e la derivabilità di f. log x. Calcolare f, determiare gli itervalli di mootoia ed evetuali puti di estremo. 4 Calcolare i limiti sigificativi di f. 5 Disegare u grafico di f (o si richiedoo il calcolo della derivata secoda e lo studio della cocavità e della covessità. Svolgimeto. Chiaramete D(f = {x R : x > 0, log x 0, log x }. Ora Ioltre log x 0, (log x, log x, e x e. log x, log x, log x 0, palesemete vera. Mettedo tutto assieme D(f = [e, e ]. Passiamo al sego: f(x 0, arcsi log x π. Ma ricordato che arcsi : [, ] [ π, π ] si ottiee che f 0 sempre. Ioltre f(x = 0, arcsi log x = π, log x =, log x = 0, x =.,4 Cotiuità: le fuzioi elemetari soo cotiue dove defiite, quidi f, essedo composizioe di fuzioi elemetari, è cotiua sul proprio domiio. Derivabilità: le fuzioi elemetari soo derivabili ove defiite eccetto, per quelle i cosiderazioe ell esercizio, la quado il suo argometo si aulla, l arcsi quado l argometo vale ±. I tutti gli altri puti sicuramete f, come composizioe di fuzioi derivabili, è derivabile. Tali puti soo log x = 0, x = e, e. log x = ±, x =. 9

10 Figura 5: Il grafico di f (Tema 4. Duque sicuramete f è derivabile su [e, e ]\{e ±, } =]e, [ ], e [. Quato ai puti x = e ±, le regole o si possoo applicare e quidi occorre procedere diversamete. Calcoliamo ( f log x (x = ( x = x log x sg (log x =. log x log x log x log x x log x Ora possiamo vedere i limiti di f ei puti dubbi: e ioltre f (e + = ( e 0+ =, f (e = e 0+ = +. f ( = = (, f (+ = =. Da questo deduciamo che f o è effettivamete derivabile i essuo dei puti dubbi, che x = e ± soo cuspidi, che ivece f è derivabile da destra e siistra i x = che quidi è u puto agoloso. Su D(f abbiamo f (x 0, sg (log x 0, log x 0, x. Ne segue che f su [e, ] metre f su [, e ]. I x = f è cotiua: si deduce che è u puto di massimo globale per f co f( = arcsi = π. I miimi si trovao ei due estremi e siccome f(e ± = arcsi (± = arcsi 0 = 0, abbiamo che etrambi soo miimi globali. Esercizio [0 puti] Al variare di x R, studiare la covergeza semplice ed assoluta della serie = ( 4x + x. 0

11 Svolgimeto. Partiamo dalla covergeza assoluta, cioè dalla serie = 4x +x =: a. Applichiamo il test della radice. Abbiamo a / = 4 x 4 x / + x + x =: q Studiamo la disequazioe 4 x, cioè x 4 x + 0. Per x 0 equivale a x 4x+ 0 che produce +x come soluzioi x 4 = oppure x 4+ = + e quidi x [0, ] [ +, + [. Per x < 0 equivale a x + 4x + 0 che produce x oppure x +, cioè ], ] [ +, 0[. Morale q, x ], ] [ +, ] [ +, + [ ed il valore q = è assuto per x =, +,, +. I accordo col test della radice allora avremo che se q < la serie a coverge, quidi la serie iiziale coverge assolutamete; se q > la serie a diverge e a +, quidi o è verificata la codizioe ecessaria e quidi la serie o è covergete (é semplicemete é assolutamete; se q = il test o dà idicazioi. Rimagoo duque i casi dove q =. Per semplificare la discussioe ricordiamo che i tali puti 4 x = + x per cui 4x +x = ± co sego opposto a quello di x. Pertato x =, + : la serie è ( = o coverge (assolutamete é semplicemete essedo la serie armoica; x =, + : la serie è ( che coverge semplicemete per il test di Leibiz ma o assolutamete. Esercizio [6 puti] Calcolare l itegrale + log 8 e x 4 e x 5 Svolgimeto. Detta f l itegrada, essa è defiita (e cotiua per e x 5, cioè per x log 5. Duque f C(R\{log 5}. I particolare f C([log 8, + [ R loc [log 8, + [. Per il calcolo dell itegrale calcoliamo azitutto ua primitiva di f(x = e x 4 e x 5. Sembra aturale il cambio di variabile y = e x 4, cioè e x = y + 4, x = log(y + 4, dx = y dy da cui y +4 e x 4 e x 5 dx = y y y y + 4 dy y ( + (y (y + 4 dy = y + 4 dy + (y (y + 4 dy. Evidetemete metre (y (y + 4 dy = 5 y + 4 dy = 4 ( y y + 4 = 0 arcta y + 0 log y y +. dx. + (y/ dy = arcta y. dy = 0 arcta y + 0 ( y y + dy

12 e quidi, i coclusioe e x + e x dx = 4 5 arcta e x log e x 4 e x 4 + =: F (x. Ora F (+ = 4 π 5 = π 5 come facilmete si verifica, per cui + log 8 e x 4 e x 5 dx = π 5 F (log 8 = π 5 4 arcta. 5 Esercizio 4 [6 puti] Calcolare tutte le soluzioi z C dell equazioe ( z + =, z scriverle i forma algebrica e rappresetarle el piao complesso. Svolgimeto. Poiamo w = z+ z. Allora w =, cioè w soo le tre radici complesse di : Pertato Ora, w =, ± i. z + z =, ± i. z + z = ζ, z + = ζ( z, z( + ζ = ζ, z = ζ ζ +. Duque z = 0 oppure z = ± i ± i = ± i ± i = ± i ± i i i = + ± i4 4 = ±i. Tempo a disposizioe: tre ore. Il cadidato deve cosegare questo foglio assieme al foglio itestato. Viee corretto solo ciò che è scritto sul foglio itestato. È vietato usare libri, apputi, telefoi e calcolatrici di qualsiasi tipo. Ogi affermazioe deve essere adeguatamete giustificata.

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3.

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3. Corsi di Laurea i Igegeria Edile e Architettura Prova scritta di Aalisi Matematica del 6// ) Mostrare che + si( ) cos () si( ) log(( + ) / ) = 3. Possibile soluzioe: Cosiderado dapprima il deomiatore otiamo

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n SERIE NUMERICHE Esercizi risolti. Applicado la defiizioe di covergeza di ua serie stabilire il carattere delle segueti serie, e, i caso di covergeza, trovare la somma: = + b) = + +. Verificare utilizzado

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Facoltà di Ingegneria CdL Ingegneria Informatica. Prova scritta di Analisi Matematica I COMPITO A. Lecce, 11.12.2006

Facoltà di Ingegneria CdL Ingegneria Informatica. Prova scritta di Analisi Matematica I COMPITO A. Lecce, 11.12.2006 Prova scritta di Aalisi Matematica I COMPITO A Lecce, 11.1.006 1. Dopo aver determiato il domiio aturale della fuzioe defiita dalla seguete espressioe aalitica: f(x) = 1 x x 9 calcolare la derivata e descrivere

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1 SOLUZIONI COMPITO del /0/07 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio i Osserviamo che effettuado la divisioe si ottiee w = 9+4α iα +iα +iα = i α Poiché 9+4α 9+4α w = 9+4α + α 9+4α =, si

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 18.9.17 TEMA 1 Esercizio 1 Si cosideri la fuzioe fx) := 3x log x. i) Determiare il domiio D e studiare le evetuali simmetrie ed il sego

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

ESERCIZI SULLE SERIE NUMERICHE

ESERCIZI SULLE SERIE NUMERICHE ESERCIZI SULLE SERIE NUMERICHE a cura di Michele Scaglia RICHIAMI TEORICI Richiamiamo brevemete i pricipali risultati riguardati le serie umeriche. Teorema (Codizioe Necessaria per la Covergeza) Sia a

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza (Viee dato u ceo di soluzioe del Tema. I Temi, 3 e 4 possoo essere svolti i modo del tutto simile) TEMA cos(3x) + π cos(3x) + 3. (a) Determiare il domiio di f, evetuali simmetrie, periodicità e sego. (b)

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Dispense di Analisi Matematica II

Dispense di Analisi Matematica II Dispese di Aalisi Matematica II Domeico Cadeloro (Prima Parte) Itroduzioe Queste dispese trattao la prima parte del corso di Aalisi Matematica II. Nel primo capitolo si discutoo gli itegrali geeralizzati

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A SOLUZIONI COMPITO del 0/0/06 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1. {e x 1. x 2 f(x) = 0 per x = 2.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1. {e x 1. x 2 f(x) = 0 per x = 2. ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 16.0.018 TEMA 1 Esercizio 1 [7 puti] Si cosideri la fuzioe {e x 1 x per x f(x = 0 per x =. i Determiare il domiio D di f, le sue evetuali

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

SOLUZIONI COMPITO del 10/01/2014 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 10/01/2014 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del //4 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Poedo z = x + iy, otteiamo iz + z = ix y + x xy y, da cui si ricava e iz +z = 3 e xy y = 3 xy y = log 3 Pertato, avremo

Dettagli

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente

ARGOMENTO: SERIE NUMERICHE 1. Dott.ssa Sandra Lucente Corso di Laurea i Matematica LEZIONI PER IL CORSO DI ANALISI MATEMATICA..2 A.A. 2007-2008 ARGOMENTO: SERIE NUMERICHE Dott.ssa Sadra Lucete Idice :. Prime geeralità sulle serie. 2. Serie a termii o egativi:

Dettagli

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3 SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1 Igegeria per l Ambiete e il Territorio - III appello, 11 luglio 212 Riportiamo lo svolgimeto dei temi 3 e 4 e le sole soluzioi dei temi 1 e 2. I temi pari

Dettagli

SOLUZIONI COMPITO del 5/06/2014 ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A

SOLUZIONI COMPITO del 5/06/2014 ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A SOLUZIONI COMPITO del 5/6/ ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è a termii di sego arbitrario (i fuzioe del parametro reale

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 5 Settembre 2019

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 5 Settembre 2019 Uiversità di Roma Tor Vergata - Corso di Laurea i Igegeria Aalisi Matematica I - Prova scritta del 5 Settembre 019 Esercizio 1. [5 puti] Calcolare lo sviluppo di Taylor dell ordie = 6 co cetro x 0 = 0

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n ANALISI VETTORIALE COMPITO IN CLASSE DEL 22//23 Esercizio Calcolare la 2esima derivata del logaritmo el puto. Risposta Si tratta di calcolare d 2 dx 2 log( + x) x= = a 2 2! dove a 2 è il termie di idice

Dettagli

ANALISI MATEMATICA 1-15/07/2019 Corso di Laurea in Ingegneria Meccanica. Terzo Appello - Test 1

ANALISI MATEMATICA 1-15/07/2019 Corso di Laurea in Ingegneria Meccanica. Terzo Appello - Test 1 ANALISI MATEMATICA - 5/07/209 Corso di Laurea i Igegeria Meccaica Il cadidato deve riportare ella griglia le risposte che ritiee corrette. Al termie della prova il cadidato deve ricosegare questo foglio.

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

Serie numeriche. Lorenzo Pisani Facoltà di Scienze Mm.Ff.Nn. A.A. 2007/08

Serie numeriche. Lorenzo Pisani Facoltà di Scienze Mm.Ff.Nn. A.A. 2007/08 Serie umeriche Lorezo Pisai Facoltà di Scieze Mm.Ff.N. A.A. 2007/08 Il problema di sommare i iti addedi è uo dei problemi classici dell aalisi matematica. Azi si tratta di u problema che ell atichità ha

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

4 - Le serie Soluzioni. n + 3. n + 3. n + 2

4 - Le serie Soluzioni. n + 3. n + 3. n + 2 4 - Le serie Soluzioi Esercizio. Studiare la covergeza delle serie: + + 2 + cos!) 2 cosπ). Per la prima serie si ha 0 + + 2 + = 2. Dal mometo che la serie di termie geerico 2 è covergete serie armoica

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott.

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott. e Uiversità di Trieste Facoltà d Igegeria. Esercizi sulle serie umeriche e sulle successioi e serie di fuzioi Dott. Fraco Obersel Esercizio Rispodere alle segueti questioi: a) Siao a 0 + a + a +... b 0

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1 Sapieza Uiversità di Roma - Corso di Laurea i Igegeria Eergetica Aalisi Matematica II - A.A. 06-07 prof. Cigliola Foglio. Serie di fuzioi Esercizio. Calcolare, se possibile, la somma delle segueti serie

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE:

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE: Prova scritta di Aalisi Matematica 1 Prima parte, Tema A Igegeria dell Eergia, Uiv. di Pisa 19 giugo 2013 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima parte,

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

(x log x) n2. (14) n + log n

(x log x) n2. (14) n + log n Facoltà di Scieze Matematiche Fisiche e Naturali- Aalisi Matematica A (c.l.t. i Fisica) Prova parziale del 8 Novembre 20 Svolgere gli esercizi segueti. Studiare il domiio ed il comportameto della serie

Dettagli

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero Lezioe 9- - Problema del trasporto Prof. Cerulli Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, ) A o violi

Dettagli