Prova scritta finale 9 giugno 2005

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prova scritta finale 9 giugno 2005"

Transcript

1 Prova scritta finale 9 giugno 5 Istituzioni di Fisica della Materia Prof. orenzo Marrucci anno accademico 4-5 Tempo a disposizione: 3 ore Uso degli appunti o di libri: NON AMMESSO uso della calcolatrice: AMMESSO Nota: per lasciare un margine di recupero, il totale dei punti a disposizione è fissato a 3 invece che a 3. ) Considerate un sistema D dato da una buca di energia potenziale rettangolare finita di profondità U = 6 ev e lunghezza molto piccola. Sulla buca incide un elettrone proveniente da sinistra, di energia E = ev. Calcolate (a) la lunghezza d onda di de Broglie dell elettrone fuori la buca (regione I) e quella dentro la buca (regione II). Ad un certo istante, l elettrone, passando sopra la buca, emette un fotone UV di lunghezza d onda pari a 3.6 nm. Calcolate (b) l energia E (espressa in ev) assunta dall elettrone dopo l emissione del fotone, deducendo da questa se l elettrone alla fine risulti legato o meno alla buca. Scrivete poi (c) l espressione della funzione d onda (relativa all energia E ) dell elettrone nelle tre regioni I, II e III (senza determinare il valore delle costanti che vi compaiono). Dato che la buca è molto piccola, è possibile fare l approssimazione e trascurare del tutto la probabilità di trovare l elettrone all interno della buca. In questa approssimazione, determinare (d) la regione I lunghezza d tale che l elettrone abbia il 99% di probabilità di trovarsi entro una distanza d dal centro della buca, ossia, posizionando l origine dell asse x al centro della buca, nell intervallo x < d. Infine, assumiamo che l elettrone ad un certo punto assorba un altro fotone UV della medesima lunghezza d onda di quello emesso prima e si ritrovi quindi nuovamente libero nella regione III, viaggiando verso destra. Supponiamo inoltre che nella regione III si trovi anche un altro elettrone che viaggia verso destra e che possiede l energia E =.4 ev. Assumendo che i due elettroni abbiano il medesimo spin, calcolare (e) quali sono le distanze più probabili tra le posizioni dei due elettroni. [punti: a = ; b = ; c = ; d = ; e = ] E U(x) / / U regione II regione III x ) Considerate un sistema D dato da una buca di energia potenziale infinita quadrata di lato = 5 Å, come rappresentato in figura. Assumendo che la buca contenga 5 elettroni, calcolate (a) l energia totale e la configurazione elettronica dello stato fondamentale del sistema (considerate anche lo spin). Considerate ora un singolo elettrone nella stessa buca, che al tempo t = occupi uno stato quantistico non stazionario dato dalla seguente U = U = espressione: ψ ( x, y) = [ φ( x, y) + φ( x, y) + iφ( x, y) ], dove φ (, ) 3 nn x y sono le autofunzioni normalizzate della buca quadrata corrispondenti ai numeri quantici n e n. Calcolate (b) i valori che possono risultare da una misura di energia sull elettrone e le corrispondenti probabilità di ciascun valore. Infine, determinate (c) la legge oraria che descrive il moto della posizione media r (t) dell elettrone all interno della buca, specificando anche di che tipo di moto si tratta. [punti: a = 3; b = 3; c = ] Alcune formule matematiche utili per questo esercizio: α β = ( α β) ( α + β) ( nπx ) dx= 8 xsin ( nπx ) dx = ; xsin ( πx ) sin ( πx ) dx 4 = 9π sin sin cos cos ; sin ; 3) In non più di una pagina trattate uno dei seguenti due argomenti, a scelta (MA NON PIÙ DI UNO) [punti: 8]: a. Spiegate l idea di de Broglie delle onde di materia, e in quale modo questa fornì una prima giustificazione della particolare regola di quantizzazione proposta da Bohr per l atomo di idrogeno. b. Osservabili e operatori in meccanica quantistica. Carica dell elettrone e =,6 9 C Costante di Planck ridotta ħ =,55 34 J s Massa dell elettrone m = 9, 3 kg ATTENZIONE: la prova continua alla pagina seguente...

2 seconda pagina - Prova scritta finale 9/6/5 - Istituzioni di Fisica della Materia - Prof. orenzo Marrucci 4) TEST (vale punto per ogni domanda, 8 punti in totale) COGNOME: NOME: MATRICOA: a) Citare uno qualsiasi dei (numerosi) problemi che rendevano non soddisfacente il modello atomico di Rutherford (modello a sistema-solare) secondo la fisica classica: b) In un sistema D, misurando la posizione di una particella la cui funzione d onda (normalizzata) è ψ(x), quale formula fornisce la probabilità che tale posizione ricada nell intervallo [x, x ]? c) Enunciate la relazione di indeterminazione di Heisenberg (D): d) Quale energia possiede una particella la cui funzione d onda sia ψ(x,t) = N exp[ ax ibt], dove N, a e b sono parametri reali? e) Della radiazione elettromagnetica incide su un oscillatore armonico quantistico, di frequenza caratteristica (angolare) ω. Quali frequenze deve avere la radiazione elettromagnetica per essere assorbita dall oscillatore? f) Quali valori può assumere la componente z del momento angolare (orbitale) di una particella, se il modulo dello stesso ha il valore =? g) Scrivete la configurazione elettronica dello stato fondamentale dell atomo di boro (simbolo B, numero atomico Z = 5): h) Sempre nell atomo di boro (simbolo B, numero atomico Z = 5), determinate anche la configurazione elettronica del primo stato eccitato (in approssimazione di campo medio autoconsistente a simmetria sferica):

3 Soluzioni degli esercizi Esercizio Nella regione I, l energia E dell elettrone è solo cinetica perché U =. Perciò si ha E p k = = m m da cui otteniamo k = me () Nella regione II, invece, si ha p k E = + U = + U m m da cui k = m E U () dove va tenuto presente che U è negativo e pari a 6 ev, per cui E U = 8 ev (ovviamente questi risultati si possono ottenere anche risolvendo l equazione di Schroedinger nelle due regioni). Dai numeri d onde k e k otteniamo immediatamente le corrispondenti lunghezze d onda di de Broglie: risposta a: π h λ = = = 8.7 Å k me π h λ = = =. Å k m E U Il fotone UV emesso ha una lunghezza d onda λ f = 3.6 nm, per cui possiede un energia E f = hν f = hc/λ f = ev che è stata sottratta all elettrone. Quindi l energia dell elettrone dopo l emissione è risposta b: E = E E f = E hc/λ f = ev Essendo questa un energia negativa ed essendo l energia potenziale nulla all infinito nel sistema considerato, ne deduciamo che l elettrone dopo l emissione risulta legato alla buca di potenziale. espressione della funzione d onda φ(x) dell elettrone nelle tre regioni si ottiene risolvendo l equazione di Schroedinger indipendente dal tempo con energia E = E. Nelle regioni I e III, dove U(x) =, si ha la seguente equazione: d φ = E φ mdx le cui soluzioni sono gli esponenziali reali φ = exp(±χx) con χ = m E ( ) (3)

4 a soluzione exp( χx) è però non valida fisicamente e quindi va esclusa nella regione I, perché diverge per x, mentre la soluzione exp(+χx) va esclusa nella regione III, perché divergente per x +. Nella regione II l equazione di Schroedinger è invece la seguente: d φ + U φ = Eφ mdx e le soluzioni sono gli esponenziali complessi exp(±ik x) dove k = m E U (4), entrambi fisicamente validi. Quindi l espressione complessiva per la funzione d onda dell elettrone è la seguente χ x Ae x / (regione I) ikx ikx risposta c: φ( x) = Be + Ce / x / (regione II) χ x De x / (regione III) dove χ e k sono date dalle (3) e (4) mentre le ampiezze A, B, C e D sono da determinare con le condizioni di raccordo e quella di normalizzazione (ma il testo non richiede questo lavoro). a probabilità di trovare l elettrone entro la distanza d dal centro della buca si calcola con la seguente espressione: d P x < d = φ( x) dx (5) d valida purché φ sia normalizzata. Ponendo e trascurando del tutto il contributo della regione II interna alla buca di potenziale, nonché sfruttando il fatto che la funzione d onda deve necessariamente essere simmetrica o antisimmetrica rispetto al centro della buca (per la simmetria del problema), per cui si ha necessariamente A = ±D, l integrale (5) si riscrive come segue: d χx χx d χd ( < ) φ = = = ( ) (6) d A A P x d x dx A e dx e e χ χ Per determinare A basta normalizzare la funzione d onda. In pratica bisogna eseguire lo stesso integrale (5) con la sostituzione d, e imporre che il risultato sia uguale a uno. Cioè si ha A P( x < ) φ( x) dx= = χ che inserito nella (6) fornisce il nostro risultato finale: ( < ) P x d e χd Per avere la probabilità P = 99% =.99, quindi, si deve avere risposta d: ( P) ln d = =.4 Å χ

5 Dopo l assorbimento del fotone UV, l elettrone si ritrova nuovamente ad avere l energia iniziale E. I due elettroni presenti nella regione III, quindi, occupano due stati di particella libera corrispondenti alle energie E e E con propagazione verso destra. I due stati stazionari occupati sono quindi dati dalle seguenti funzioni d onda (non normalizzabili): φa ( x) = Ne φ ( x) = Ne b ikax ikbx dove k a = k è dato dalla () e kb = me = k.. k o stato complessivo dei due elettroni è quindi dato dalla seguente funzione d onda: N ψ ( x, x) = [ φa( x) φb( x) φa( x) φb( x) ] = e e ( + ) ( + ) ikx a kx b ikx a kx b Il modulo quadro di questa funzione d onda fornisce la probabilità congiunta di trovare i due elettroni nelle posizioni x e x : { } 4 = ψ = ρ( x, x ) ( x, x ) N cos ka kb x x Si vede quindi che la probabilità dipende solo dalla distanza tra le due posizioni x = x x, ed esibisce oscillazioni sinusoidali. e distanze cui corrisponde un massimo di probabilità sono quelle per le quali il coseno vale, ossia risposta e: ( n + ) π x= ( n+ ) λ con n=,,, k k b a dove λ è la lunghezza d onda di de Broglie già data per la risposta (a). E interessante notare che vi sono anche distanze cui corrisponde una densità di probabilità nulla, ossia impossibili per i due elettroni, che sono quelle per le quali il coseno vale, ossia nπ x= k k b a nλ Esercizio Risolvendo il problema per separazione di variabili, lo si scompone in due problemi D per le due coordinate x e y. Ciascuno dei due problemi corrisponde ad una buca di potenziale rettangolare infinita, le cui soluzioni sono note. Perciò otteniamo la seguente soluzione complessiva: nπx nπy φnn ( xy, ) = φ ( x) φ( y) = sin sin π E = E+ E = E( n + n) con E = =.5 ev m dove i due numeri quantici n e n iniziano da e assumono solo valori positivi.

6 I livelli di energia più bassi sono i seguenti: (,) E = E (,) e (,) E = 5E (,) E = 8E e così via. Se ci sono 5 elettroni, lo stato fondamentale del sistema complessivo si ottiene riempendo dal basso questi livelli di energia. Tenendo conto dello spin, un singolo orbitale può ospitare due elettroni, per cui si ha la seguente configurazione elettronica: risposta (a): Configurazione stato fondamentale (SF): (,) [(,)+(,)] 3 energia corrispondente è la somma delle energie di tutti gli elettroni, ossia: E SF = E + 3 5E = 9 E 8.5 ev Per la risposta (b), possiamo sfruttare il fatto che lo stato quantistico dell elettrone è scritto esplicitamente come combinazione lineare di stati stazionari. Perciò, in caso di misura dell energia, i risultati possibili sono proprio le energie degli stati stazionari coinvolti nella combinazione lineare e le probabilità sono date dai moduli quadri dei rispettivi coefficienti. Nel caso nostro gli stati coinvolti nella combinazione lineare sono tre, corrispondenti alle coppie di numeri quantici (,), (,) e (,). Il primo stato ha energia E = 3 ev e gli altri due 5E = 7.5 ev e questi due valori sono quindi gli unici possibili risultati di una misura di energia sull elettrone. e probabilità sono pari a c nm = / 3 = /3 per ciascuno stato (perché i = ), per cui la prima energia ha una probabilità di /3 33% e la seconda energia ha una probabilità complessiva di /3 67%. In sintesi: risposta b: energie possibili in caso di misura: E = E = 3 ev con probabilità P = /3 33% E = 5E = 7.5 ev con probabilità P = /3 67% Per determinare la posizione media in funzione del tempo è necessario scrivere innanzitutto la funzione d onda in funzione del tempo, che si ottiene da quella iniziale data nel testo inserendo gli esponenziali complessi exp( iet/ħ) a fattore di ciascun termine della combinazione lineare: ψ ( xyt,, ) = φ ( xye, ) + φ ( xye, ) + iφ ( xye, ) 3 i Et/ i5 Et/ i5 Et/ (7) Da questa troviamo la seguente distribuzione di probabilità in funzione del tempo per la posizione dell elettrone: ρ( xyt,, ) = ψ( xyt,, ) = ψψ = 3 φ( xy, ) + φ( xy, ) + φ( xy, ) + + φ ( xy, ) φ ( xy, )cos(3 Et/ ) + φ ( xy, ) φ ( xy, )sin(3 Et/ ) dove nello svolgere i calcoli abbiamo sfruttato il fatto che le autofunzioni φ (, ) nn x y sono reali. Con questa distribuzione di probabilità, andiamo adesso a calcolare il valore medio della coordinata x. Per risparmiare calcoli, sfruttiamo il fatto che il valore medio delle coordinate in ciascuna autofunzione φ (, ) nn x y è esattamente al centro della buca, ossia in /. Otteniamo quindi 3 cos(3 / ) sin(3 / ) x = I Et + I Et dove gli integrali I e I sono i seguenti: ]

7 πx πx πy πx πx πy I = xsin sin sin dxdy xsin sin dx sin dy = = πx πx 6 = xsin sin dx = 9π πx πy πy πx πy πy I = xsin sin sin dxdy xsin dx sin sin dy = = π x = x dx φ y φ y = sin, Allo stesso modo calcoliamo il valore medio della coordinata y: 3 cos(3 / ) sin(3 / ) y = I3 Et + I4 Et dove gli integrali sono ora I 3 = I = e I 4 = I, come si vede subito, ad esempio scambiando le variabili di integrazione x e y. Mettendo insieme questi risultati si trova la seguente legge oraria: risposta c: r 3 cos(3 Et / ) x 7π () t = = y 3 sin(3 Et / ) 7π che può essere agevolmente riconosciuta come la legge oraria di un moto circolare uniforme con verso antiorario, con un orbita centrata nel centro della buca (/, /) con raggio pari a r = 3/(7π ) =.6 Å. Il periodo di rotazione è T = h/(3e ) =.9 fs.

Prova scritta finale 19 giugno 2013

Prova scritta finale 19 giugno 2013 Prova scritta finale 19 giugno 13 Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico 1-13 Tempo a disposizione: 3 ore Uso degli appunti o libri: NON AMMESSO uso della calcolatrice:

Dettagli

Prova scritta finale 19 giugno 2009

Prova scritta finale 19 giugno 2009 Prova scritta finale 9 giugno 9 Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico 8-9 Tempo a disposizione: 3 ore Uso degli appunti o di libri: NON AMMSSO uso della calcolatrice:

Dettagli

Prova scritta finale 19 giugno 2014

Prova scritta finale 19 giugno 2014 Prova scritta finale 19 giugno 14 Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico 13-14 - Tempo a disposizione: 3 ore - Uso degli appunti o libri: NON AMMESSO uso della calcolatrice:

Dettagli

Prova scritta finale 18 giugno 2003

Prova scritta finale 18 giugno 2003 Prova scritta finale 8 giugno 003 Laurea in Scienza e Ingegneria dei Materiali anno accademico 00-003 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione: ore e 45 minuti

Dettagli

Prova scritta finale del 2002 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci

Prova scritta finale del 2002 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Prova scritta finale del Istituzioni di Fisica della Materia - Prof. orenzo Marrucci Tempo a disposizione ore e 55 minuti 1) Un elettrone si trova in una buca di potenziale 1D come quella in figura, che

Dettagli

Prova scritta finale 15 giugno 2010

Prova scritta finale 15 giugno 2010 Prova scritta finale 15 giugno 1 Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico 9-1 Tempo a disposizione: 3 ore Uso degli appunti o di libri: NON AMMESSO uso della calcolatrice:

Dettagli

Prova scritta finale 11 giugno 2004

Prova scritta finale 11 giugno 2004 Prova scritta finale giugno 4 Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico 3-4 Tempo a disposizione: 3 ore Uso degli appunti o di libri: NON AMMESSO uso della calcolatrice:

Dettagli

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2 1 Teoria Una particella di massa m = 1 g e carica elettrica q = 1 c viene accelerata per un tratto pari a l = m da una differenza di potenziale pari av = 0 volt Determinare la lunghezza d onda di De Broglie

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

Prova scritta finale 16 giugno 2015

Prova scritta finale 16 giugno 2015 Prova scritta finale 6 giugno 5 Istituzioni di Fisica della Materia Prof. orenzo Marrucci anno accademico 4-5 Tempo a disposizione: 3 ore Uso degli appunti o libri: NON AMMESSO uso della calcolatrice:

Dettagli

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico Tema d esame di Elementi di MQ. Prova I Dato il potenziale monodimensionale V (x) = 2 γδ(x), con γ positivo, trovare l energia dello stato fondamentale la probabilità che una particella nello stato fondamentale

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

Compito di recupero del giorno 27/11/2015

Compito di recupero del giorno 27/11/2015 Compito di recupero del giorno 27/11/2015 Esercizio n. 1 Una particella di massa m e spin 1/2 si muove in due dimensioni nel piano xy ed è soggetta alla seguente Hamiltoniana: H = 1 2m (p2 x + p 2 y) +

Dettagli

- Dati sperimentali: interazione luce / materia spettri caratteristici

- Dati sperimentali: interazione luce / materia spettri caratteristici - Thomson: evidenza sperimentale per elettrone misura e/m e - Millikan: misura la carica dell elettrone e ne ricava la massa e = 1,60 x 10-19 C - Rutherford: stima le dimensioni atomiche struttura vuota

Dettagli

Comune ordine di riempimento degli orbitali di un atomo

Comune ordine di riempimento degli orbitali di un atomo Comune ordine di riempimento degli orbitali di un atomo Le energie relative sono diverse per differenti elementi ma si possono notare le seguenti caratteristiche: (1) La maggior differenza di energia si

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti interi

Dettagli

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LO SPETTRO ELETTROMAGNETICO LA QUANTIZZAZIONE DELL

Dettagli

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio Stato quantistico Funzione d onda 1D, rappresentazione delle coordinate + ( x) dx 1 Densità di probabilità Funzione normalizzata Osservabile F(X) Valore medio Osservabili Operatori lineari hermitiani sullo

Dettagli

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2 sorgenti di emissione di luce E = hν νλ = c E = mc 2 FIGURA 9-9 Spettro atomico, o a righe, dell elio Spettri Atomici: emissione, assorbimento FIGURA 9-10 La serie di Balmer per gli atomi di idrogeno

Dettagli

1 3 STRUTTURA ATOMICA

1 3 STRUTTURA ATOMICA 1 3 STRUTTURA ATOMICA COME SI SPIEGA LA STRUTTURA DELL ATOMO? Secondo il modello atomico di Rutherford e sulla base della fisica classica, gli elettroni dovrebbero collassare sul nucleo per effetto delle

Dettagli

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno:

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: Vedi documento Atomo di Bohr.pdf sul materiale didattico per la derivazione di queste equazioni Livelli Energetici dell Atomo di Idrogeno

Dettagli

Elementi di struttura della materia

Elementi di struttura della materia Elementi di struttura della materia Luigi Sangaletti Università Cattolica del Sacro Cuore Dipartimento di Matematica e Fisica a.a. 2004-2005 Quantizzazione delle energie Tracciare ed identificare i primi

Dettagli

Modelli atomici Modello atomico di Rutheford Per t s d u i diare la t s rutt ttura t a omica Ruth th f or (

Modelli atomici Modello atomico di Rutheford Per t s d u i diare la t s rutt ttura t a omica Ruth th f or ( Modello atomico di Rutheford Per studiare la struttura tt atomica Rutherford (1871-1937) 1937) nel 1910 bombardòb una lamina d oro con particelle a (cioè atomi di elio) Rutherford suppose che gli atomi

Dettagli

mvr = n h e 2 r = m v 2 e m r v = La configurazione elettronica r = e 2 m v 2 (1) Quantizzazione del momento angolare (2) 4 πε.

mvr = n h e 2 r = m v 2 e m r v = La configurazione elettronica r = e 2 m v 2 (1) Quantizzazione del momento angolare (2) 4 πε. La configurazione elettronica Modello atomico di Bohr-Sommerfeld (1913) Legge fondamentale della meccanica classica F = m a. F Coulomb = 1 4 πε. q q ' F r centrifuga = m v r ε =8.85*10-1 Fm-1 (costante

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Rappresentazione dell atomo. Rutherford (1911) : modello planetario con il nucleo al centro e gli elettroni che ruotano.

Rappresentazione dell atomo. Rutherford (1911) : modello planetario con il nucleo al centro e gli elettroni che ruotano. Rappresentazione dell atomo Rutherford (1911) : modello planetario con il nucleo al centro e gli elettroni che ruotano. Informazioni importanti circa la dimensione dell atomo e la distribuzione della massa

Dettagli

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI LAUREA IN OTTICA E OPTOMETRIA Anno Accademico 007-008 CORSO di FISCA ED APPLICAZIONE DEI LASERS Questionario del Primo appello della Sessione Estiva NOME: COGNOME: MATRICOLA: VOTO: /30 COSTANTI

Dettagli

Generalità delle onde elettromagnetiche

Generalità delle onde elettromagnetiche Generalità delle onde elettromagnetiche Ampiezza massima: E max (B max ) Lunghezza d onda: (m) E max (B max ) Periodo: (s) Frequenza: = 1 (s-1 ) Numero d onda: = 1 (m-1 ) = v Velocità della luce nel vuoto

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (1808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti

Dettagli

Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica

Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica ATOMO Democrito IV secolo A.C. Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica E=mc 2 Avogadro (1811) Volumi uguali di gas diversi

Dettagli

Esame scritto di fisica moderna

Esame scritto di fisica moderna Esame scritto di fisica moderna Traccia di soluzione 4 luglio 01 Esercizio 1. hamiltoniana data è quella di una buca di potenziale infinita, le cui autofunzioni sono date da due famiglie, dispari ψ n x

Dettagli

ATOMI E PARTICELLE SUBATOMICHE

ATOMI E PARTICELLE SUBATOMICHE ATOMI E PARTICELLE SUBATOMICHE ELETTRICITÀ DELL ATOMO ESISTONO DUE TIPI DI CARICHE ELETTRICHE, DENOMINATE CONVENZIONALMENTE NEGATIVA E POSITIVA CARICHE DI SEGNO UGUALE SI RESPINGONO, MENTRE CARICHE DI

Dettagli

Campo elettromagnetico

Campo elettromagnetico Campo elettromagnetico z y Classicamente, è formato da un campo elettrico E e da un campo magnetico B oscillanti B E λ E = E 0 cos 2π(νt x/λ) B = B 0 cos 2π(νt x/λ) νλ = c ν, frequenza x λ, lunghezza d

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LO SPETTRO ELETTROMAGNETICO LA QUANTIZZAZIONE DELL

Dettagli

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) Atomi 16 Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) 17 Teoria atomica di Dalton Si basa sui seguenti postulati: 1. La materia è formata

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

Struttura Elettronica degli Atomi Meccanica quantistica

Struttura Elettronica degli Atomi Meccanica quantistica Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione

Dettagli

Metalli come gas di elettroni liberi

Metalli come gas di elettroni liberi Metalli come gas di elettroni liberi I metalli sono caratterizzati da elevata conducibilità elettrica e termica. La conducibilità elettrica in particolare (o il suo inverso, la resistività) è una delle

Dettagli

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda Compito I di MQ. Febbraio 0 Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda ψ( x = f(r (r + ix con Hamiltoniana H = µbl y determinare la funzione d onda al tempo

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. L atomo di Bohr 3. Il modello atomico

Dettagli

ATOMO. Avogadro (1811) Volumi uguali di gas diversi contengono un ugual numero di MOLECOLE (N A =6,022*10 23 )

ATOMO. Avogadro (1811) Volumi uguali di gas diversi contengono un ugual numero di MOLECOLE (N A =6,022*10 23 ) ATOMO Democrito IV secolo A.C. (atomos = indivisibile) Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica E=mc 2 Avogadro (1811)

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Elettronica dello Stato Solido Lezione 5: L equazione di. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 5: L equazione di. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 5: L equazione di Schrödinger Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Argomenti qualitativi per dedurre l equazione di Schrödinger

Dettagli

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec,

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec, Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 8 Giugno 7 - (tre ore a disposizione) Soluzione 1.) Una stazione radio trasmette emettendo una potenza di un kilowatt alla frequenza di 9

Dettagli

p e c = ev Å

p e c = ev Å Corso di Introduzione alla Fisica Quantistica (f) Soluzioni Esercizi: Giugno 006 * Quale la lunghezza d onda di de Broglie di un elettrone che ha energia cinetica E 1 = KeV e massa a riposo m 0 = 9.11

Dettagli

Le Caratteristiche della Luce

Le Caratteristiche della Luce 7. L Atomo Le Caratteristiche della Luce Quanti e Fotoni Spettri Atomici e Livelli Energetici L Atomo di Bohr I Modelli dell Atomo - Orbitali atomici - I numeri quantici e gli orbitali atomici - Lo spin

Dettagli

n(z) = n(0) e m gz/k B T ; (1)

n(z) = n(0) e m gz/k B T ; (1) Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 4 Luglio 008 - (tre ore a disposizione) [sufficienza con punti 8 circa di cui almeno 4 dagli esercizi nn. 3 e/o 4] [i bonus possono essere

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

A Z. L'atomo Entità subatomiche Carica elettrica Massa (u.m.a) Protone Neutrone elettrone. +1e e.

A Z. L'atomo Entità subatomiche Carica elettrica Massa (u.m.a) Protone Neutrone elettrone. +1e e. L'atomo Entità subatomiche Carica elettrica Massa (u.m.a) Protone Neutrone elettrone +1e 0-1e e = Carica elettrica elementare 1.60 10-19 u.m.a.= Unità di Massa Atomica 1.6605 10-4 Il Nuclide A Z Nu Coulomb

Dettagli

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione

CRISI DELLA FISICA CLASSICA e FISICA DEI QUANTI Esercitazione ! ISTITUTO LOMBARDO ACCADEMIA DI SCIENZE E LETTERE Ciclo formativo per Insegnanti di Scuola Superiore - anno scolastico 2017-2018 Prima lezione - Milano, 10 ottobre 2017 CRISI DELLA FISICA CLASSICA e FISICA

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

Prova scritta finale 15 giugno 2012

Prova scritta finale 15 giugno 2012 Prova scritta finale 15 giugno 1 Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico 11-1 Tempo a disposizione: 3 ore Uso degli appunti o libri: NON AMMESSO uso della calcolatrice:

Dettagli

Il modello di Bohr. Lezioni d'autore di Giorgio Benedetti

Il modello di Bohr. Lezioni d'autore di Giorgio Benedetti Il modello di Bohr Lezioni d'autore di Giorgio Benedetti VIDEO Gli spettri di emissione Nel 1859 il fisico G.R. Kirchoff scoprì che ogni elemento chimico presenta uno spettro di emissione caratteristico,

Dettagli

1.3 L effetto tunnel (trattazione semplificata)

1.3 L effetto tunnel (trattazione semplificata) 1.3 L effetto tunnel (trattazione semplificata) Se la parete di energia potenziale non ha altezza infinita e E < V, la funzione d onda non va rapidamente a zero all interno della parete stessa. Di conseguenza,

Dettagli

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica Chapter 3 L equazione di Schrödinger unidimensionale: soluzione analitica e numerica In questo capitolo verrà descritta una metodologia per risolvere sia analiticamente che numericamente l equazione di

Dettagli

Introduzione al corso. Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora...

Introduzione al corso. Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora... Introduzione al corso Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora... Legge di Boyle (1662)-> La pressione di un gas cresce quando decresce

Dettagli

LA FISICA QUANTISTICA

LA FISICA QUANTISTICA CAPITOLO 45 LA FISICA QUANTISTICA 1 LE PROPRIETÀ ONDULATORIE DELLA MATERIA 1 L onda è un fenomeno collettivo, che coinvolge un insieme di particelle (le molecole di una fune che oscilla, gli atomi dell

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

Prova scritta intercorso 2 31/5/2002

Prova scritta intercorso 2 31/5/2002 Prova scritta intercorso 3/5/ Diploma in Scienza e Ingegneria dei Materiali anno accademico - Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione ora e 45 minuti ) Un elettrone

Dettagli

raggio atomico: raggio del nucleo: cm cm

raggio atomico: raggio del nucleo: cm cm raggio atomico: raggio del nucleo: 10 10 8 1 cm cm Modello di Rutherford: contrasto con la fisica classica perché prima o poi l elettrone avrebbe dovuto cadere sul nucleo irradiando Energia. Le leggi valide

Dettagli

Interazione luce- atomo

Interazione luce- atomo Interazione luce- atomo Descrizione semiclassica L interazione predominante è quella tra il campo elettrico e le cariche ASSORBIMENTO: Elettrone e protone formano un dipolo che viene messo in oscillazione

Dettagli

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i.

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i. 1 Corso di Laurea in Chimica e Tecnologie Chimiche - A.A. 212-213 Chimica Fisica II Esame scritto del 25 Febbraio 213 Quesiti d esame: 1. Definire gli operatori componente del momento cinetico P x e del

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

STRUTTURA ATOMICA. Per lo studio della struttura dell atomo ci si avvale della Spettroscopia.

STRUTTURA ATOMICA. Per lo studio della struttura dell atomo ci si avvale della Spettroscopia. STRUTTURA ATOMICA Il modello planetario dell atomo secondo Rutherford si appoggia sulla meccanica classica. Il modello non può essere corretto visto che per descrivere il comportamento delle particelle

Dettagli

n l c = velocità di propagazione nel vuoto = m/s l = lunghezza d onda [cm]

n l c = velocità di propagazione nel vuoto = m/s l = lunghezza d onda [cm] Tavola Mendeleev Quando gli elementi vengono riportati secondo un ordine di peso atomico crescente, le proprietà degli elementi si ripetono ad intervalli regolari c l n n l c = velocità di propagazione

Dettagli

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore Particelle della presente identiche. opera. Principio di Pauli. 1 Particelle identiche: sommario Finora: proprietà di particella singola. Volendo ottenere il comportamento di più particelle, è necessario

Dettagli

Corso di CHIMICA LEZIONE 2

Corso di CHIMICA LEZIONE 2 Corso di CHIMICA LEZIONE 2 MODELLO ATOMICO DI THOMSON 1904 L atomo è formato da una sfera carica positivamente in cui gli elettroni con carica negativa, distribuiti uniformemente all interno, neutralizzano

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 17 Luglio Traccia di soluzione., e α una fase globale inosservabile. Per il secondo sistema

ESAME SCRITTO DI FISICA MODERNA. 17 Luglio Traccia di soluzione., e α una fase globale inosservabile. Per il secondo sistema ESAME SCRITTO DI FISICA MODERNA 7 Luglio 04 Traccia di soluzione ) Per il primo sistema la funzione d onda è x φ = x k = φ(x) = Ce iα e ik x () dove con k si è indicato l-autostato dell impulso, C è una

Dettagli

Programma della I parte

Programma della I parte Programma della I parte Cenni alla meccanica quantistica: il modello dell atomo Dall atomo ai cristalli: statistica di Fermi-Dirac il modello a bande di energia popolazione delle bande livello di Fermi

Dettagli

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010 Argomenti Spettri atomici Modelli atomici Effetto Zeeman Equazione di Schrödinger L atomo di Bohr Numeri quantici Atomi con più elettroni Al tempo di Bohr Lo spettroscopio è uno strumento utilizzato per

Dettagli

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore Indeterminazione Finora si sono considerate le proprietà ondulatorie, lavorando sulla fase di una (per ora non meglio specificata) funzione. Si sono ricavate o ipotizzate relazioni per: - lunghezza d onda

Dettagli

Programma della I parte

Programma della I parte Programma della I parte Cenni alla meccanica quantistica: il modello dell atomo Dall atomo ai cristalli: statistica di Fermi-Dirac, il modello a bande di energia, popolazione delle bande, livello di Fermi

Dettagli

Esame di Fisica Matematica 2, a.a (8/9/2014)

Esame di Fisica Matematica 2, a.a (8/9/2014) Esame di Fisica Matematica 2, a.a. 213-214 (8/9/214) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello

Dettagli

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale FISICA QUANTISTICA I PROVA SCRITTA DEL 0/9/013 1. Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale V (x) = V 0 θ(x) αδ(x), V 0, α > 0, (1) con la funzione a gradino

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 015-016 (1) Si consideri una particella che può colpire uno schermo diviso in tre zone, indicate dai ket 1,, 3, e si supponga

Dettagli

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA I PROBLEMI DEL MODELLO PLANETARIO F Secondo Rutherford l elettrone si muoverebbe sulla sua orbita in equilibrio tra la forza elettrica di attrazione del

Dettagli

Modello atomico ad orbitali e numeri quantici

Modello atomico ad orbitali e numeri quantici Modello atomico ad orbitali e numeri quantici Il modello atomico di Bohr permette di scrivere correttamente la configurazione elettronica di un atomo ma ha dei limiti che sono stati superati con l introduzione

Dettagli

Oscillatore Armonico in M.Q.

Oscillatore Armonico in M.Q. Oscillatore Armonico in M.Q. Oscillatore Armonico Unidimensionale Risoluzione in coordinate cartesiane L oscillatore armonico unidimensionale è un sistema che ha la seguente Hamiltoniana: H = P M + Mω

Dettagli

Esame di Fisica Matematica 2, a.a (8/7/2014)

Esame di Fisica Matematica 2, a.a (8/7/2014) Esame di Fisica Matematica 2, a.a. 23-24 (8/7/24) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello nome,

Dettagli

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La luce La LUCE è una forma di energia detta radiazione elettromagnetica che si propaga nello spazio

Dettagli

Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2014

Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2014 Fisica 2 per biotecnologie: Prova scritta 9 Settembre 2014 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

La buca di potenziale di altezza infinita.

La buca di potenziale di altezza infinita. La buca di potenziale di altezza infinita. Un caso semplice, ma interessante per le implicazioni, anche intuitive, che ne derivano, è quello della particella quantistica in una buca di potenziale. Consideriamo

Dettagli

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene Serie 42: Soluzioni FAM C. Ferrari Esercizio 1 Corpo nero 1. Abbiamo: Sole λ max = 500nm - spettro visibile (giallo); Sirio B λ max = 290nm - ultravioletto; corpo umano λ max = 9300nm - infrarosso. 2.

Dettagli

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale.

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale. Prova Scritta di di Meccanica Analitica 4 Luglio 7 Problema ) Si consideri un punto materiale di massa m soggetto al potenziale V x) ax 4 determinare la dipendenza del periodo dall energia. ) Si scriva

Dettagli

SOMMERFELD ORBITE ELLITTICHE NEL CASO DELL IDROGENO. e l energia potenziale diventa (indichiamo con E la carica del nucleo)

SOMMERFELD ORBITE ELLITTICHE NEL CASO DELL IDROGENO. e l energia potenziale diventa (indichiamo con E la carica del nucleo) SOMMERFELD ORBITE ELLITTICHE NEL CASO DELL IDROGENO Il nostro obbiettivo è di selezionare tra tutte le orbite ellittiche meccanicamente possibili quelle possibili anche secondo la teoria quantistica. Il

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye 1 / 5 Corso:Fisica moderna/calore specifico dei solidi/modello di Debye Debye riprende l intero modello di Planck per il corpo nero: non solo la quantizzazione dell energia ma anche l idea che vi siano

Dettagli

Equazioni differenziali - Applicazioni

Equazioni differenziali - Applicazioni Equazioni differenziali - Applicazioni Antonino Polimeno Università degli Studi di Padova Equazione di Schrödinger 1D - 1 Equazione di Schrödinger i ψ(x, t) = Ĥ ψ(x, t) t al tempo t = 0 la funzione è definita

Dettagli

Elettronica dello Stato Solido Lezione 7: Particelle confinate. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 7: Particelle confinate. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 7: Particelle confinate Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Buca a pareti infinite Buca a pareti finite Oscillatore armonico

Dettagli

Dipartimento di Fisica Anno Accademico 2016/17 Registro lezioni del docente SENATORE GAETANO

Dipartimento di Fisica Anno Accademico 2016/17 Registro lezioni del docente SENATORE GAETANO Attività didattica Dipartimento di Fisica Anno Accademico 2016/17 Registro lezioni del docente SENATORE GAETANO INTRODUZIONE ALLA FISICA TEORICA [051SM] Periodo di svolgimento: Secondo Semestre Docente

Dettagli