Esercitazione N.3 Dinamica del corpo rigido

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione N.3 Dinamica del corpo rigido"

Transcript

1 Esercitazione N.3 Dinamica del corpo rigido

2 Questi esercizi sono sulle lezioni dalla 12 alla 18

3 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso

4 Esercizio 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento d'inerzia. Al disco, che può ruotare attorno ad un asse orizzontale passante per il suo centro, sono appesi due corpi di massa m 1 ed m 2 mediante due funi ideali arrotolate come in figura. Il sistema, inizialmente in quiete, viene lasciato libero di muoversi. Scrivere le equazioni del moto del sistema, determinando le accelerazioni lineari dei due corpi, l'accelerazione angolare della carrucola, il valore delle tensioni nelle due funi, con i seguenti valori numerici: M = 1 kg, r = 10 cm, R = 20 cm, m 1 = 100g, m 2 = 200g. m 1 r R m 2

5 Esercizio 1 - soluzioni Scegliamo il verso della rotazione della carrucola in modo che il corpo più pesante scenda. Individuiamo le forze in gioco e decidiamo che le accelerazioni positive sono verso il basso T 1 r O T 2 R In base a ciò scriviamo le equazioni del moto con gli opportuni segni: m 2 g T 2 = m 2 a 2 m 1 g T 1 = m 1 a 1 M = I 0 α RT 2 rt 1 = Iα T 1 P 1 m 1 T 2 P 2 m 2

6 Esercizio 1 - soluzione Il momenti di inerzia del disco per un asse passante per il suo centro, coincidente con il centro di massa è: I CM = 1 2 MR2 Dalle prime due equazioni del sistema precedente, valutiamo il modulo delle due tensioni: T 2 = m 2 g a 2 T 1 = m 1 g + a 1 Poiché i cavi sono inestensibili, la relazione tra le accelerazioni lineari e l accelerazione angolare risulta: a 1 = αr a 2 = αr

7 Per come abbiamo scelto il verso delle accelerazione il corpo uno sale ed il corpo due scende. Esercizio 1 - soluzione Sostituiamo nell ultima equazione del sistema i valori delle tensioni ed i valori delle accelerazioni ed otteniamo: RT 2 rt 1 = Rm 2 g a 2 rm 1 g + a 1 = = Rm 2 g αr rm 1 g + αr = Iα = 1 2 MR2 α m 2 R m 1 r α = g = 10,14 1 rad/s2 2 MR2 + m 2 R 2 + m 1 r 2 Le accelerazioni dei due corpi risultano in modulo: a 1 = αr = 1,01 m s 2 a 2 = αr = 2,03 m s 2

8 Esercizio 1 - soluzione Le tensioni dei due cavi risultano: T 1 = m 1 g + a 1 = 1,08 N T 2 = m 2 g a 2 = 1,55 N

9 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso Momento delle forze ed energia cinetica

10 Esercizio 2 Un disco di raggio R = 0,3 m può ruotare senza attrito attorno ad un asse verticale passante per il suo centro e fissato ad un piano. Sul disco è avvolto un filo ideale che passa nella gola di una carrucola priva di massa e alla cui estremità è appeso un corpo di massa m = 0,1 Kg. Inizialmente il sistema è in quiete; ad un certo punto viene lasciato libero e il corpo scende di 40 cm in 0,5 s. Calcolare: la tensione del filo; il momento di inerzia del disco; l energia cinetica del disco dopo 0,5s. m

11 Esercizio 2 - soluzione Poiché la carrucola è ideale ed ha massa nulla, le tensioni coincidono in modulo: T = T Sul corpo in caduta agiscono le forze: P + T = ma Assumendo positiva la direzione verso il basso, essa diviene: mg T = ma T = m g a Il corpo avrà un moto uniformemente accelerato. T T T T m P

12 Esercizio 2 - soluzione Valutiamo l accelerazione del corpo dalla traccia: x t = 1 2 at2 a = 2x t 2 = 3,2 m s 2 La tensione del cavo risulta: T = m g a = 0,66N Poiché il filo è solidale al disco la relazione tra accelerazione del corpo e accelerazione angolare è: a = αr Il momento applicato al disco è: M = RT R j i T

13 Esercizio 2 - soluzione Dal teorema del momento angolare si ha: M = TR = Iα = I a R I = TR2 a = 1, kg m 2 Il corpo parte da fermo, la sua velocità angolare risulta: ω = αt = a R t L energia cinetica del disco risulta: E k = 1 2 Iω2 = 1 2 I a R t 1 2 = 0,264 J

14 Relativo alle lezioni: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso Momento delle forze ed energia cinetica Teorema di Huygens-Steiner Momenti d inerzia e pendolo composto Pendolo composto

15 Esercizio 3 Due punti materiali di uguale massa m = 0,5 kg sono fissati agli estremi di un asta rigida di massa trascurabile lunga l = 40 cm. L asta è libera di ruotare in un piano verticale attorno ad un asse fisso orizzontale passante per un punto O distante d = 10 cm dal suo estremo superiore. Scrivere l equazione del moto del sistema e calcolare il periodo nel caso di piccole oscillazioni, dopo aver determinato la posizione del C.M. e il momento d inerzia del sistema. Se invece non vale l ipotesi di piccole oscillazioni, determinare l angolo θ che l asta forma con la verticale quando viene lasciata andare, sapendo che l energia cinetica dell asta quando passa per la verticale vale E k = 0,98 J. l d O

16 Esercizio 3 - soluzione Il centro di massa è posto al centro dell asta poiché i due corpi hanno la stessa massa, la sua posizione rispetto ad O risulta: l d m d m x CM = = l d = 0,1 m 2m 2 Il momento di inerzia del sistema rispetto al polo O risulta per il teorema di H.S.: 2 I O = I CM + m tot x CM = = 2m l m l2 d 2 = 0,05 kg m 2 O CM x CM

17 Esercizio 3 - soluzione Poiché possiamo considerare la forza peso applicata nel centro di massa, il momento delle forze rispetto al polo O risulta ortogonale al disegno e pari a: M O = x CM P = x cm 2mgsenθk Il segno è negativo poiché abbiamo assunto che l asse z sia uscente dal piano del disegno L equazione della dinamica risulta: M O = I O α = I O αk Lungo l asse z l equazione diviene: x CM 2mgsenθ = I O α = I O d 2 θ dt 2 x CM P k O CM θ

18 Esercizio 3 - soluzione Per un angolo θ piccolo, possiamo applicare l approssimazione: senθ θ L equazione diviene: d 2 θ dt 2 = 2mg x CM θ I O Essa è l equazione di secondo grado di un moto armonico con pulsazione e periodo: ω = 2mg x CM I O T = 2π I O 2mgx CM = 1,42 s

19 Esercizio 3 - soluzione Valutiamo ora l angolo θ di partenza affinché quando il corpo è verticale, esso abbia la data energia cinetica. Poiché l unica forza agente sul corpo che svolge lavoro è la forza peso (conservativa) l energia totale si conserva. Quando il corpo è fermo ad un angolo θ con la verticale, l energia totale coincide con l energia potenziale del CM: E i = E P = m TOT gh CM = = 2mgx CM (1 cosθ) x CM cosθ h CM θ O x CM CM

20 Esercizio 3 - soluzione Per il valore dell energia potenziale scelto precedentemente, quando il corpo è verticale la sua energia totale coincide con l energia cinetica: E f = E k = 1 2 mv CM 2 Per la conservazione dell energia totale: E f = E k = E i = 2mgx CM 1 cosθ E k cosθ = 1 = 0 θ = 90 2mgx CM

21 Relativo alla lezione: Moto di puro rotolamento Moto di puro rotolamento

22 Esercizio 4 Un disco di massa m e raggio R è posto su un piano inclinato scabro con coefficiente di attrito statico µ s. Si determinino i valori dell angolo di inclinazione θ del piano per i quali il disco rotola senza strisciare. f as N P θ

23 Esercizio 4 - soluzione L equazione del moto risulta: P + N + f as = ma In componenti lungo gli assi indicati in figura: N mgcosθ = 0 mgsenθ f as = ma CM Per il teorema del momento angolare applicato al centro di massa del disco, si ha: M = R f as = I CM α In componenti, lungo l asse z entrante diviene Rf as = I CM α f as P N θ

24 Esercizio 4 - soluzione Affinché il moto sia di puro rotolamento il punto di contatto del disco con il piano deve essere fermo, pertanto devono valere le relazioni: v CM = ωr e a CM = αr Con tale relazioni e sostituendo il valore dell accelerazione ottenuto nel sistema, l equazione precedente diviene: Rf as = I CM α = I CM a CM R f as R + I CM Rm = I CM Rm mgsenθ f as = I CM Rm mgsenθ f as = mgsenθ R 2 m I CM + 1

25 Esercizio 4 - soluzione La forza di attrito statico ha il valore massimo pari a: f as μ s N = μ s mgcosθ Pertanto il valore massimo dell angolo di inclinazione del piano è: f as = mgsenθ R 2 m R 2 μ m s mgcosθ tgθ μ s + 1 I + 1 CM I CM Il momento d inerzia del disco per un asse passante per il centro di massa è pari a: I CM = 1 2 mr2 La condizione di puro rotolamento diviene: tgθ μ s = 3μ s

26 Relativo alle lezioni: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso Momento delle forze ed energia cinetica Momenti d inerzia e pendolo composto Pendolo composto

27 Esercizio 5 Una piccola massa m = 200 g è poggiata vicino al bordo di un disco di raggio R = 30 cm e massa M = 3,6 Kg. Il coefficiente di attrito statico fra la massa ed il disco è µ s = 0,38. Al sistema disco massa, inizialmente fermo, è applicato un momento costante τ = 0,486 N m. Il sistema si mette in rotazione e ad al tempo t s la massa, istantaneamente, si stacca dal disco. Il disco ruota in orizzontale. Calcolare: l'accelerazione del disco ad un tempo t < t s ; l'accelerazione del disco ad un tempo t > t s ; il tempo t s.

28 Esercizio 5 soluzione Per t < t s il momento di inerzia del sistema risulta: I 1 = 1 2 MR2 + mr 2 = 0,18 kg m 2 L accelerazione del sistema per t < t s, risulta: τ = I 1 α 1 α 1 = τ I 1 = 2,7 rad s 2 Per t > t s il momento di inerzia del sistema risulta: I 2 = 1 2 MR2 = 0,162 kg m 2 L accelerazione del sistema per t > t s, risulta: τ = I 2 α 2 α 2 = τ I 2 = 3 rad s 2

29 Esercizio 5 - soluzione Il corpo posto sul disco resta su di esso e ruota se la forza di attrito statico gli fornisce la necessaria forza centripeta. Il punto si stacca quando la forza di attrito statico diviene inferiore alla forza centripeta necessaria. Il caso limite si ha quando la forza di attrito è massima: f as μ s N = μ s mg Prima che il distacco avvenga il punto di massa m compie un moto circolare uniformemente accelerato con una accelerazione pari a α 1. Poiché il corpo parte da fermo la velocità angolare ad un tempo t risulta: ω = α 1 t

30 Esercizio 5 - soluzione Il corpo si distacca all istante t s che verifica la condizione: μ s mg = mω 2 t s R = mα 1 2 t s 2 R t s = μ sg α 1 2 R = 1,30 s

31 Relativo alle lezioni: Dinamica dei sistemi: Sistema del CM, teoremi di König e dell energia cinetica Teorema di König per E K Urti Distinzione tra tipologie di urti e urti completamente anelastici Urti anelastici ed urti con corpi rigidi

32 Esercizio 6 Un disco di massa M = 1 Kg e raggio R = 20 cm è inizialmente fermo su un piano orizzontale liscio. Un punto materiale di massa m = M in moto con una velocità v = 4 m/s, diretta come in figura, urta il bordo del disco, rimanendovi attaccato. Determinare: il centro di massa del sistema costituito dal disco e dal punto materiale; la velocità del centro di massa del sistema dopo l urto; la velocità angolare del sistema; l energia dissipata nell urto. v

33 Esercizio 6 - soluzione Il centro di massa del sistema risulta, considerando il centro del disco come il centro di riferimento del sistema: x CM = 0 y CM = Rm m + M = R = 10 cm 2 Il sistema dopo l urto trasla e ruota. Il sistema è isolato, pertanto l accelerazione del centro di massa è nulla. Il centro di massa si muove di moto rettilineo uniforme (non ruota). Il sistema ruota attorno ad un asse passante per il centro di massa ed x y CM ortogonale al piano del disegno.

34 Esercizio 6 -soluzione Poiché il sistema è isolato, si conserva la quantità di moto: R E = 0 Δp = 0 Lungo l asse y non vi è moto, lungo l asse x si ha: mv = m + M v CM v CM = m v = 2 m/s m + M Poiché il sistema è isolato si conserva il momento angolare rispetto qualunque polo. Valutiamolo rispetto al centro di massa: L i = R y CM mv = L f = I z ω

35 Esercizio 6 - soluzione Valutiamo il momento di inerzia del sistema dopo l urto rispetto al centro di massa utilizzando anche il teorema di H.S.: I z = I z,disco + I z,punto = 1 2 MR2 2 + My CM + m R y 2 CM = = 1 2 MR2 + M R2 R2 + m 4 4 = MR2 Per la conservazione del momento angolare: R y CM v = MR 2 ω ω = R y CM m mr 2 v = 1 v = 10 rad/s 2R

36 Esercizio 6 - soluzione Poiché l urto è totalmente anelastico l energia cinetica del sistema non si conserva. L energia cinetica finale è la somma dell energia cinetica rotazionale e dell energia cinetica del centro di massa: E kf = 1 2 I zω mv CM 2 L energia cinetica iniziale coincide con quella del punto materiale: E kf = 1 2 mv2 La variazione di energia cinetica risulta: ΔE k = 1 2 I zω mv CM 1 2 mv2 = 2J

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento d'inerzia. Al disco, che può ruotare attorno ad un asse orizzontale passante

Dettagli

Seminario didattico. Lezione 2: Dinamica del Corpo Rigido

Seminario didattico. Lezione 2: Dinamica del Corpo Rigido Seinario didattico Lezione 2: Dinaica del Corpo Rigido Esercizio n 1 Su un disco di assa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo oento d'inerzia. Al disco, che

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido Seminario didattico Ingegneria Elettronica Lezione 3: Dinamica del Corpo Rigido Esercizio n 1 Un cilindro di raggio R e massa M = 2 Kg è posto su un piano orizzontale. Attorno al cilindro è avvolto un

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 6: Dinamica del Corpo Rigido

Seminario didattico Ingegneria Elettronica. Lezione 6: Dinamica del Corpo Rigido Seminario didattico Ingegneria Elettronica Lezione 6: Dinamica del Corpo Rigido 1 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura: Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m

ESERCIZIO 1. Diagramma delle forze. , da cui si ricava: v 2 1 L. a) T = m ESERCIZIO 1 Un corpo di massa m = 100 g è collegato a uno degli estremi di un filo ideale (inestensibile e di massa trascurabile) di lunghezza L = 30 cm. L altro capo del filo è vincolato ad un perno liscio.

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Esercitazioni del 09/06/2010

Esercitazioni del 09/06/2010 Esercitazioni del 09/06/2010 Problema 1) Un anello di massa m e di raggio r rotola, senza strisciare, partendo da fermo, lungo un piano inclinato di un angolo α=30 0. a) Determinare la legge del moto.

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m Esercizio 1 Un corpo di massa, assimilabile ad un punto materiale, viene lanciato con velocità ~v 0 incognita, non parallela agli assi cartesiani. Quando il suo spostamento in direzione x rispetto alla

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Anno Accademico 2016-2017 Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Anno Accademico 2015-2016 Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0.

ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0. ESERCIZIO 1 Due blocchi di massa m 1 e m sono connessi da un filo ideale libero di scorrere attorno ad una carrucola di massa trascurabile. I due blocchi si muovono su un piano inclinato di un angolo rispetto

Dettagli

Dinamica del Corpo Rigido

Dinamica del Corpo Rigido Dinamica del Corpo Rigido ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 7.1 Si determini il numero di atomi contenuti in un blocchetto di rame

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accademico 006-007 Esercizio n.: Un punto materiale di massa m e vincolato a muoversi lungo un binario orizzontale scabro. Siano µ s e µ d i coefficienti

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

ESERCIZIO 1 SOLUZIONI

ESERCIZIO 1 SOLUZIONI - ESERCIZIO - Un corpo di massa m = 00 g si trova su un tavolo liscio. Il corpo m è mantenuto inizialmente fermo, appoggiato ad una molla di costante elastica k = 00 N/m, inizialmente compressa. Ad un

Dettagli

m v F 1 I = N.1 Condizione di equilibrio R E = 0 M E = 0 F 1 F A = 0 F 1 = 2 r F 2 r F 1 r F A R = 0 N + F 2 Mg = 0 N = 33.2 N

m v F 1 I = N.1 Condizione di equilibrio R E = 0 M E = 0 F 1 F A = 0 F 1 = 2 r F 2 r F 1 r F A R = 0 N + F 2 Mg = 0 N = 33.2 N N. = mr Condizione di equilibrio R E = 0 M E = 0 F F A = 0 F = r RF + r F r F r F A R = 0 N + F Mg = 0 N = 33. N F A r R F F F A = Ma a = F A / M F r F A R = α r α = a / R F A = F 3 R F A μ S N μ S N F

Dettagli

Nome Cognome Numero di matricola Coordinata posizione

Nome Cognome Numero di matricola Coordinata posizione Nome Cognome Numero di matricola Coordinata posizione Secondo compito di Fisica Generale 1 + Esercitazioni, a.a. 2017-2018 3 Luglio 2018 =====================================================================

Dettagli

SOLUZIONI Diagramma delle forze

SOLUZIONI Diagramma delle forze - ESERCIZIO 1 - Un'autovettura di massa m percorre una curva di raggio R e angolo θ a velocità costante in modulo. Se il coefficiente di attrito statico tra pneumatici e asfalto è pari a µs, si determini:

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

Soluzione degli esercizi della seconda prova in itinere di Meccanica del 13/01/2017

Soluzione degli esercizi della seconda prova in itinere di Meccanica del 13/01/2017 Soluione degli esercii della seconda prova in itinere di eccanica del 13/01/017 Eserciio 1 Un punto materiale di massa m 1 si muove con velocità di modulo v 1,i in direione 1,i rispetto alla direione x,

Dettagli

Esercizi sul corpo rigido.

Esercizi sul corpo rigido. Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

ESERCIZI FISICA I Lezione

ESERCIZI FISICA I Lezione ESERCIZI FISICA I Lezione 04 2017-04-05 Tutor: Alessandro Ursi alessandro.ursi@iaps.inaf.it ESERCIZIO 1 Una carrucola che pesa Ms = 1 kg ed attaccata ad un dinamometro, vengono appesi due carichi, rispettivamente

Dettagli

69.8/3 = 23.2 = 23 automobili

69.8/3 = 23.2 = 23 automobili Meccanica 19 Aprile 2017 Problema 1 (1 punto) Una moto salta una fila di automobili di altezza h= 1.5 m e lunghezza l=3m ciascuna. La moto percorre una rampa che forma con l orizzontale un angolo = 30

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio: Meccanica 24 Aprile 2018 Problema 1 (1 punto) Un blocco di mass M=90 kg è attaccato tramite una molla di costante elastiìca K= 2 10 3 N/m, massa trascurabile e lunghezza a riposo nulla, a una fune inestensibile

Dettagli

[Costanti fisiche: g = m/s 2, γ = m 3 kg 1 s 2.] Esercizio n. 1 Esercizio n ξ) cm l uno dall altro. I rulli ruotano con

[Costanti fisiche: g = m/s 2, γ = m 3 kg 1 s 2.] Esercizio n. 1 Esercizio n ξ) cm l uno dall altro. I rulli ruotano con Numero progressivo: 6 ξ = 27 Turno: Fila: Posto: Matricola: 000069526 Cognome e nome: (dati nascosti per tutela privacy). Una scala a pioli, il cui peso è distribuito uniformemente lungo tutta la sua lunghezza,

Dettagli

Esercizio (tratto dal problema 7.52 del Mazzoldi 2)

Esercizio (tratto dal problema 7.52 del Mazzoldi 2) 1 Esercizio (tratto dal problema 7.5 del Mazzoldi ) Un doppio piano è costituito da due rampe contrapposte, di materiali diversi, inclinate ciascuna di un angolo rispetto all orizzontale. Sulla rampa di

Dettagli

Lezione 09: Sistemi di corpi

Lezione 09: Sistemi di corpi Esercizio 1 [Urti elastici] Lezione 09: Sistemi di corpi Una biglia P 1 di massa m 1 = 100 g e velocità v 0,1 di modulo 2 m/s urta elasticamente contro una biglia P 2 inizialmente ferma di massa m 1 =

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Meccanica 17 giugno 2013

Meccanica 17 giugno 2013 Meccanica 17 giugno 2013 Problema 1 (1 punto) Un punto si muove nel piano y-x con legge oraria: Con x,y misurati in metri, t in secondi. a) Determinare i valori di y quando x=1 m; b) Determinare il modulo

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata) Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 14 febbraio 2011 Versione A

Fisica Generale I (primo e secondo modulo) A.A , 14 febbraio 2011 Versione A Fisica Generale I (primo e secondo modulo) A.A. 2010-11, 14 febbraio 2011 Versione A Esercizi di meccanica relativi al primo modulo del corso di Fis. Gen. I: Esercizio I.1 Si consideri un carrello di massa

Dettagli

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d.

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d. Esercizio 1 Due blocchi di ugual massa m 1 = m sono collegati ad un filo ideale lungo l. Inizialmente, i due corpi sono mantenuti fermi e in contatto tra loro su un piano inclinato di θ con il quale i

Dettagli

FISICA GENERALE T-A 8 Luglio 2013 prof. Spighi (CdL ingegneria Energetica)

FISICA GENERALE T-A 8 Luglio 2013 prof. Spighi (CdL ingegneria Energetica) FISICA GENEALE T-A 8 Luglio 013 prof. Spighi (CdL ingegneria Energetica) 1) La posizione di un punto materiale è r(t) = 3 t3 î + 3t + 3t ˆk con r in metri e t in secondi. Calcolare: a) la velocità vettoriale

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Martedì 02 maggio 2017 Corso di Fisica Generale ing. Civile - prof. P. Lenisa

Martedì 02 maggio 2017 Corso di Fisica Generale ing. Civile - prof. P. Lenisa Martedì 02 maggio 2017 Corso di Fisica Generale ing. Civile - prof. P. Lenisa Si calcoli il momento di inerzia di un asta sottile e omogenea rispetto all asse passante per il suo centro di massa e perpendicolare

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 19/02/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 19/02/2013. Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 19/02/2013. Tempo a disposizione: 2h30. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 9 Gennaio 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

FISICA GENERALE Ingegneria edile/architettura

FISICA GENERALE Ingegneria edile/architettura FISICA GENERALE Ingegneria edile/architettura Tutor: Enrico Arnone Dipartimento di Chimica Fisica e Inorganica arnone@fci.unibo.it http://www2.fci.unibo.it/~arnone/teaching/teaching.html Bologna 3 Giugno

Dettagli

Fisica Generale 1 - Dinamica degli urti

Fisica Generale 1 - Dinamica degli urti Fisica Generale 1 - Dinamica degli urti Matteo Ferraretto 10 maggio 2018 Esercizio 1 Un pendolo balistico è costituito da un sacco di sabbia di massa 10kg appeso tramite una fune ideale a un perno rispetto

Dettagli

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 1 Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 2 28 aprile 2006 Esercizio 2 Nella

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 26 Marzo 2008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Fisica Generale A 8. Esercizi sui Princìpi di Conservazione

Fisica Generale A 8. Esercizi sui Princìpi di Conservazione Fisica Generale A 8. Esercizi sui Princìpi di Conservazione http://campus.cib.unibo.it/2462/ May 29, 2015 Esercizio 1 Un punto materiale di massa m = 0.1 kg è appoggiato su di un cuneo liscio, di massa

Dettagli

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Dinamica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 3.1 Si consideri un punto materiale di massa m = 50 g che si muove con velocità

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 9 Aprile 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Sistemi di corpi La prossima lezione faremo esercizi con volontari alla lavagna

Sistemi di corpi La prossima lezione faremo esercizi con volontari alla lavagna Sistemi di corpi La prossima lezione faremo esercizi con volontari alla lavagna Esercizio 1 [Urti elastici] Una biglia P 1 di massa m 1 = 100 g e velocità v 0,1 di modulo 2 m/s urta elasticamente contro

Dettagli

Esercizi. =μ S. [ v 2 > gr h > 7.5m ]

Esercizi. =μ S. [ v 2 > gr h > 7.5m ] Una molla ideale di costante k=400 N/m è inizialmente compressa di 10 cm. Al suo estremo libero è appoggiato un corpo di 1 kg e il tutto su un piano orizzontale scabro, con coefficiente di attrito μ D

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Nome Cognome Numero di matricola Coordinata posizione

Nome Cognome Numero di matricola Coordinata posizione Nome Cognome Numero di matricola Coordinata posizione Terzo compito di Fisica Generale + Esercitazioni, a.a. 07-08 4 Settembre 08 ===================================================================== Premesse

Dettagli

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz:

Esercitazione 6. Soluzione. Calcoliamo il momento di inerzia come l integrale di momenti di inerzia di dischi di raggio r e altezza infinitesima dz: Esercitazione 6 Esercizio 1 - omento d inerzia del cono Calcolare il momento di inerzia di un cono omogeneo, di altezza H, angolo al vertice α e massa, rispetto al suo asse di simmetria. Calcoliamo il

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 018/019 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (16 ore): Matteo Avolio Lezione del 5/03/019 h (10:30-1:30, Aula G10, Golgi) ESERCITAZIONI DINAMICA (SOLUZIONI)

Dettagli

Monaco Alfonso. Dinamica

Monaco Alfonso. Dinamica Monaco Alfonso Dinamica 1 Primo Principio (Principio di inerzia) Se la sommatoria delle forze F i agenti su un corpo è nulla allora il corpo manterrà il proprio stato di quiete o di moto rettilineo uniforme,

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

Esercizi leggi di conservazione 2

Esercizi leggi di conservazione 2 Esercizio 1 Esercizi leggi di conservazione 2 Esercitazioni di Fisica LA per ingegneri - A.A. 2002-2003 Esercizi Un uomo di massa m = 70 kg si trova al centro di un carrello rettangolare omogeneo di massa

Dettagli

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f Esercizio 1 Il corpo 1 e il corpo 2, entrambi considerabili come puntiformi, si trovano su un piano orizzontale xy privo di attrito. Inizialmente, rispetto al sistema di riferimento inerziale x y, il corpo

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Soluzione Compito di isica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Esercizio 1 1) Scriviamo le equazioni del moto della sfera sul piano inclinato. Le forze agenti sono il peso

Dettagli

MOTO DI PURO ROTOLAMENTO

MOTO DI PURO ROTOLAMENTO MOTO DI PURO ROTOLAMENTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOTO DI PURO ROTOLAMENTO

Dettagli

SOLUZIONI a) Tracciamo il diagramma delle forze in un generico punto sulla traiettoria:

SOLUZIONI a) Tracciamo il diagramma delle forze in un generico punto sulla traiettoria: - ESERCIZIO - Un corpo di massa m è attaccato ad un filo inestensibile di massa trascurabile e lunghezza L. Il corpo percorre una circonferenza sul piano verticale in senso orario, in modo che il filo

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

Sistema di punti materiali sistema esteso.

Sistema di punti materiali sistema esteso. Sistema di punti materiali sistema esteso. P n z P i P 2 O y P 1 x 1 Sistema di punti materiali sistema esteso. z P n z r n P i r i P 2 O r O r 2 y y r 1 P 1 x x 2 Sistema di punti materiali sistema esteso.

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2 Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A. 2004-2005 Soluzioni proposte per il Foglio di Esercizi n. 2 2.1. Il proiettile ed il sasso cadono lungo y per effetto della accelerazione di gravità

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Nello schema seguente sono riportate le forze che agiscono sul sistema:

Nello schema seguente sono riportate le forze che agiscono sul sistema: CORPI COLLEGATI 1) Due blocchi sono collegati tra di loro come in figura. La massa di m1 è 4,0 kg e quella di m è di 1,8 kg. Il coefficiente di attrito dinamico tra m1 e il tavolo è μ d = 0,. Determinare

Dettagli

Esercizi conservazione dell energia

Esercizi conservazione dell energia Esercizio 1 Esercizi conservazione dell energia Esercitazioni di Fisica LA per ingegneri - A.A. 2003-2004 Un uomo di massa m = 70 kg si trova al centro di un carrello rettangolare omogeneo di massa M =

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Prova Scritta del 24/02/2012

Prova Scritta del 24/02/2012 Prova Scritta del 4/0/01 Esame di FISICA (Compito A) Corso di Studi: Informatica Prof. A. Sgarlata Problema n.1 La bacchetta omogenea in figura, lunga L =.0m econmassam =1.5kg puó ruotare intorno a un

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 2004-2005 Esercizio 1 Una ruota di massa m =10kg e raggio R =1m viene tirata contro un gradino di altezza h =30cm con una velocità

Dettagli

Esercizi di dinamica

Esercizi di dinamica Esercizi di dinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2003-2004 M F1, m v0 α F2, M α F3 Esercizio 1 Un blocco di massa M = 1.20 kg (figura F1) si trova in equilibrio appoggiato su una molla

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli