E LE SUE CARATTERISTICHE. 6 alunne Classe 4I Liceo Scientifico Leonardo da Vinci A.S

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "E LE SUE CARATTERISTICHE. 6 alunne Classe 4I Liceo Scientifico Leonardo da Vinci A.S"

Transcript

1 E LE SUE CARATTERISTICHE 6 alunne Classe 4I Liceo Scientifico Leonardo da Vinci A.S

2 A partire dal XVII secolo sono state date due risposte diverse a questa domanda come conseguenza allo sviluppo di due modelli antagonisti: -modello corpuscolare: la luce è un flusso di particelle miscoscopiche dette corpuscoli emesse da sorgenti luminose -modello ondulatorio: la luce è un onda

3 MODELLO CORPUSCOLARE e ONDULATORIO (confronto)

4 La rifrazione è un fenomeno fisico che si verifica quando un onda si trova a dover superare la superficie di separazione tra due mezzi tra due mezzi con proprietà diverse

5 RIFRAZIONE

6 VELOCITA DELLA LUCE: esperimenti Galileo Galilei: due lanterne a distanza di un miglio Ole Romer: moto di io

7 I VALORI DELLA VELOCITA DELLA LUCE - Valore velocità nel VUOTO: c =3,00 x 10 8 m/s. - Valore velocità nei MEZZI TRASPARENTI: v =c/n Dove n è : -indice di rifrazione -numero puro>1

8 LA VELOCITA DELLA LUCE:

9 Il modello ondulatorio si affermò del tutto alla fine del XIX secolo grazie alla conferma di Maxwell secondo il quale: la luce è un onda elettromagnetica che si propaga anche nel vuoto e come grandezze variabili in funzione del tempo e della posizione, ha il campo elettrico e quello magnetico.

10 MODELLO ONDULATORIO:

11 La frequenza per la luce indica il colore la luce è caratterizzata da una somma di colori Esperimento: un fascio di luce solare bianca viene fatta passare attraverso un prisma di vetro che provoca il cambiamento della direzione di propagazione del raggio luminoso.

12 LE ONDE LUMINOSE

13 In quanto onda, anche la luce ha la caratteristica di trasportare energia, ma non materia. Questo spiega perché un corpo lasciato al sole, dopo un po di tempo, si riscalda. L irradiamento può essere calcolato con una formula simile a quella dell intensità sonora; E R =E /A Δt

14 ENERGIA DELLA LUCE:

15 Flusso luminoso:: Quantità di energia luminosa emessa da una determinata sorgente nell'unità di tempo: Q v /s. LE GRANDEZZE FOTOMETRICHE Illuminamento: Rapporto tra il flusso luminoso ricevuto da una superficie e l'area della superficie stessa Intensità luminosa : Flusso luminoso emesso all'interno dell'angolo solido unitario (steradiante) in una direzione data.

16 Flusso luminoso e illuminamento Intensità luminosa

17 Principio di Huygens (dal nome del fisico olandese C. Huygens) metodo di analisi applicato ai problemi di propagazione delle onde Data una sorgente (S) generante un'onda sferica nello spazio, ogni punto del fronte d'onda primario si comporta come sorgente secondaria generando altre onde con le stesse caratteristiche dell'onda primaria (lunghezza d'onda, frequenza, velocità) se non vi è un cambio di mezzo (in tal caso la lunghezza d'onda e la velocità si adatteranno al cambio di mezzo); la sovrapposizione di queste onde secondarie genera altri fronti d'onda, detti secondari che a loro volta ne produrranno degli altri determinando l'espansione dell'onda

18 Per spiegare la riflessione e la rifrazione si suppone che la luce si propaghi sotto forma di raggi rettilinei (ottica geometrica). Quando un raggio di luce che viaggia in un mezzo materiale trasparente (es. aria) incontra una superficie di separazione con un altro mezzo trasparente (es. acqua) si divide normalmente in due raggi: - uno viene riflesso dalla superficie - l'altro entra nel secondo mezzo variando la sua direzione di propagazione, cioè viene rifratto. Quando la superficie incontrata è perfettamente riflettente, non si ha rifrazione e la luce viene completamente riflessa, seguendo le leggi della riflessione caratteristiche delle onde: l'angolo di incidenza, i, è uguale all'angolo di riflessione, r, e i due angoli giacciono sullo stesso piano, perpendicolare alla superficie riflettente.

19 Una superficie riflettente piana è detta specchio piano. Si ha una sorgente luminosa puntiforme S di fronte a uno specchio piano: i raggi luminosi emessi dalla sorgente vengono riflessi dallo specchio, seguendo le leggi della riflessione (l'angolo di incidenza è uguale all'angolo di riflessione).

20 Applicando la legge della riflessione a ogni singolo punto di un oggetto non puntiforme, è possibile costruirne l'immagine virtuale, avente le seguenti caratteristiche: ha le stesse dimensioni dell'oggetto reale si trova alla stessa distanza dallo specchio dell'oggetto reale è perfettamente simmetrica rispetto all'oggetto reale.

21 Gli specchi sferici sono superfici riflettenti aventi la forma di calotte sferiche. Possono essere: concavi o convessi, a seconda che la riflessione avvenga sulla superficie concava (la parte interna della calotta sferica) o sulla superficie convessa (la parte esterna della calotta sferica) dello specchio.

22 La costruzione di un'immagine su uno specchio sferico si basa sulle seguenti regole: - i raggi riflessi dai raggi incidenti paralleli all'asse ottico passano tutti per il fuoco e - i raggi che passano per il fuoco vengono riflessi parallelamente all'asse ottico. Nel caso dello specchio concavo l'immagine che si forma può essere reale (ricavata dai raggi riflessi e non dai loro prolungamenti) o virtuale, rimpicciolita o ingrandita, diritta o capovolta, a seconda della posizione dell'oggetto rispetto ai punti caratteristici dello specchio: se l'oggetto si trova fra il centro C e l'infinito, l'immagine sarà reale, capovolta e rimpicciolita se l'oggetto si trova fra C e F, l'immagine sarà reale, capovolta e ingrandita se l'oggetto si trova a una distanza dallo specchio minore di F, l'immagine sarà virtuale, diritta e ingrandita.

23 Se lo specchio concavo è grande, i raggi riflessi dai raggi paralleli all'asse ottico più lontani dall'asse stesso passano per un punto che non coincide con il fuoco, ma gli è solo vicino: di conseguenza l'immagine di una sorgente puntiforme è un disco, anziché un punto. Questo fenomeno è detto aberrazione sferica.

24 Per avere specchi senza aberrazione sferica, per esempio per i grandi telescopi, dove si ha necessità di far convergere la luce delle stelle nel fuoco dello specchio, si costruiscono specchi parabolici, ellittici o iperbolici, che non presentano questo fenomeno.

25 L'immagine su uno specchio convesso, costruita prolungando oltre lo specchio i raggi riflessi, è sempre virtuale, rimpicciolita e diritta.

26 Facendo passare un fascio di luce bianca (per esempio la luce solare) attraverso un prisma di vetro di forma triangolare, all'uscita del prisma la luce, raccolta su uno schermo, risulta scomposta nei colori fondamentali dello spettro luminoso Questo fenomeno, detto dispersione della luce, viene spiegato attraverso la rifrazione.

27 Questo fenomeno fu studiato per la prima volta da I. Newton nel Famoso soprattutto per le sue scoperte nel campo della meccanica, ma grande studioso di ottica, Newton dimostrò con questo esperimento che la luce bianca è in realtà formata da tutti i colori, secondo uno spettro che va dal rosso al violetto. A sostegno di questa asserzione, Newton fece passare un raggio di luce colorata, ottenuta dalla scomposizione, in un secondo prisma: in questo caso la luce non subiva ulteriore scomposizione.

28 La scomposizione della luce è un fenomeno reversibile: se il ventaglio di luce colorata viene fatto passare attraverso un secondo prisma, capovolto rispetto al primo, la luce bianca riappare, perché il secondo prisma inverte la situazione stabilitasi con il primo. La scomposizione della luce nei colori dello spettro è all'origine del fenomeno dell'arcobaleno: passando attraverso le goccioline d'acqua presenti Nell'atmosfera e attraverso quelle di pioggia, che fungono da minuscoli prismi, la luce del Sole si scompone nei colori dello spettro e forma l'arco colorato nel cielo.

29 In genere, lo spettro formato dalla luce bianca proveniente dal Sole è uno spettro continuo, nel senso che appare come una striscia continua composta dai vari colori. Anche la luce di una lampadina a incandescenza produce uno spettro continuo. Le sostanze gassose fortemente riscaldate producono invece uno spettro di emissione a righe colorate, separate tra loro, su fondo scuro. Attraverso l'analisi del tipo di spettro prodotto da una certa sostanza, portata per riscaldamento allo stato gassoso, è possibile risalire alla composizione chimica della sostanza: lo spettro di emissione funge da firma per ciascun elemento.

30 La rifrazione è la deviazione che un raggio luminoso subisce nel passare da un mezzo trasparente a un altro, per la differenza della velocità di propagazione nei due mezzi Se il primo è meno denso del secondo (per esempio l'aria rispetto all'acqua), il raggio di luce devia avvicinandosi alla perpendicolare alla superficie di separazione, mentre se il primo mezzo è più denso del secondo (l'acqua rispetto all'aria) il raggio devia allontanandosi dalla perpendicolare. Per questo motivo un bastoncino immerso nell'acqua sembra spezzato.

31 La rifrazione della luce è il caso più comunemente osservato, ma ogni tipo di onda può essere rifratta; quindi, per esempio, si ha il fenomeno della rifrazione anche quando onde sonore passano da un mezzo ad un altro o quando le onde dell acqua si spostano a zone con diversa profondità. La legge di Snell descrive quanto i raggi sono deviati quando passano da un mezzo ad un altro. Se il raggio proviene da una regione con indice di rifrazione n 1 ed entra in un mezzo ad indice di rifrazione n 2, gli angoli di incidenza θi e di rifrazione θr sono legati dall espressione:

32 Quando, nel passaggio da un mezzo più denso a uno meno denso (per esempio dal vetro all'aria), la luce raggiunge la superficie di separazione con un angolo di incidenza superiore a un valore (caratteristico di ogni sostanza) detto angolo limite, si verifica il fenomeno della riflessione totale, nel quale il raggio viene completamente riflesso e non vi è rifrazione. Nel passare da un mezzo all'altro, la luce si allontana dalla perpendicolare alla superficie di separazione, quindi l'angolo di rifrazione è superiore all'angolo di incidenza: se l'angolo di incidenza è superiore al valore limite, il raggio non esce dal primo mezzo materiale, ma viene riflesso all'interno dello stesso mezzo.

33 Per angoli esattamente pari all'angolo limite, l'angolo di rifrazione sarà di 90, parallelo alla superficie di separazione. L'angolo limite per il vetro è di circa 42. Questo permette di utilizzare dei prismi con angoli di per ottenere la riflessione totale della luce anziché utilizzare degli specchi, per esempio nei periscopi. Sulla riflessione totale si basa anche l'impiego delle fibre ottiche, sottili fili di vetro che fungono da guide d'onda per la luce, che vengono usate per la trasmissione a distanza di informazioni codificate sotto forma di segnali luminosi.

34 Fu condotto per la prima volta dal medico e fisico inglese Thomas Young e fornisce non solo la dimostrazione della natura ondulatoria della luce, ma anche il calcolo della sua lunghezza d onda λ. L esperimento consiste nel far passare attraverso una singola fenditura un fascio di luce monocromatico e poi di nuovo attraverso una doppia fenditura: la luce viene infine proiettata su uno schermo distante. Quello che Young osservo fu una serie di frange luminose alternate a frange scure che interpreto appunto come zone di interferenza costruttiva le frange luminose e zone di interferenza distruttiva le fasce scure. Ovviamente questo non accadrebbe se la luce si propagasse in linea retta.

35 Per spiegare il fenomeno della diffrazione, ossia la deviazione della traiettoria di propagazione delle onde che compare quando esse devono aggirare un ostacolo, dobbiamo ricorrere al principio di Huygens che afferma appunto questo: ogni fenditura agisce come se fosse una nuova sorgente di onde luminose, che si diramano verso l esterno in tutte le direzioni. Il fenomeno e analogo alle onde dell acqua che vengono diffratte quando passano attraverso una stretta fenditura tra gli scogli.

36 Per determinare le condizioni per le frange luminose e le frange scura prendiamo in esame lo schema seguente - per il principio di Huygens si possono considerare entrambe le fenditure come nuove sorgenti di onde - si prende poi in considerazione una coppia di onde con la stessa direzione e siccome lo schermo e distante si può assumere che le onde interferiscano nello stesso punto.

37 Dal disegno geometrico si vede chiaramente la differenza di cammino delle due onde, dove d e la distanza tra le due fenditura e θ la direzione delle due onde. Come per l interferenza di due sorgenti se la differenza di cammino e pari a un multiplo della lunghezza d onda l interferenza e totalmente costruttiva

38 E condotto sullo schema classico di Young, in cui tra una sorgente di luce e una lastra fotografica si dispone una barriera opaca con due fenditure parallele di larghezza opportuna. Nell'esperimento della doppia fenditura si adottano pero lastre rilevatrici moderne, molto più sensibili di quelle disponibili nell'ottocento, e una sorgente estremamente debole di luce o elettroni, fino all'emissione di un unico fotone o elettrone per volta. In questo modo si verifica che in entrambi i casi la lastra non viene impressionata in maniera continua, ma si formano singoli punti luminosi indicativi di un comportamento corpuscolare.

39 I punti pero non rispettano la distribuzione corpuscolare classica che li vorrebbe localizzati in corrispondenza delle fenditure, ma risultano inizialmente diradati e dall'apparente distribuzione caotica, per poi, aumentando man mano di numero, evidenziare le frange di interferenza tipiche del comportamento ondulatorio

40 Analogo risultato si ottiene anche utilizzando particelle di maggiori dimensioni. Ciò dimostra inequivocabilmente l'esistenza del dualismo ondacorpuscolo, sia della materia che della radiazione elettromagnetica. In particolare si può notare come la posizione della particella sullo schermo risenta della presenza delle due fenditure "come se" essa, comportandosi come un'onda e attraversandole entrambe, venisse scissa in due nuove onde che interferiscono fra loro, mentre nel momento in cui viene "osservata" tramite la rilevazione sullo schermo appare solamente come corpuscolo. La dimostrazione del fenomeno d'interferenza risulta quindi possibile solo attraverso l'osservazione di più particelle.

41 Una delle proprietà della luce e quella di propagarsi in linea retta; tuttavia, vi sono delle condizioni che fanno si che questa proprietà venga a cadere. Quando un fascio di luce e proiettato all interno di una fenditura, se lo spazio e molto largo, sullo schermo di proiezione appare una striscia di luce ben definita; il confine tra di essa e la zona d ombra e netto e ben marcato. Mano a mano, pero, che si restringe lo spazio della fenditura, ed essa diventa sempre più sottile, la luce proiettata sullo schermo si allarga sempre di più, invadendo lo spazio della zona d ombra; si può notare, infatti, che ai lati della fascia luminosa centrale si formano altre frange luminose che si alternano a piccole zone di ombra.

42 Questo fenomeno viene definito diffrazione della luce, ed e un fenomeno proprio delle onde; il fascio di luce originario viene quindi allargato sullo schermo di proiezione, e l effetto delle bande luminose e dovuto a fenomeni di interferenza caratterizzati da una serie di massimi di intensità luminosa decrescente. In particolare, la banda centrale, quella più luminosa, si ha in prossimità di quello che si definisce massimo principale, mentre le altre bande laterali sono originate dai massimi secondari. La sua scoperta di questo fenomeno determino un punto a favore della teoria ondulatoria su quella corpuscolare.

43 Esaminiamo il caso della diffrazione nel caso in cui il fascio di luce passi attraverso una singola fenditura di lunghezza a. Possiamo considerare la fenditura in questione come se essa fosse formata da tante fenditure piu piccole, ognuna delle quali puo essere considerata la sorgente di onde luminose sferiche. La fascia centrale luminosa che si forma sullo schermo e generata da un raggio di luce che si proietta in direzione perpendicolare al piano. Si nota, infatti, che tutti i punti che partono dalla fenditura hanno, all incirca, la stessa distanza dal punto di contatto; di conseguenza, le onde generate da essi giungono sullo schermo in fase, dando luogo a interferenza costruttiva.

44

LA RIFRAZIONE E LA RIFLESSIONE DELLA LUCE. IV^C 2016/2017 Lepore Gianluca Ianniciello Antonio

LA RIFRAZIONE E LA RIFLESSIONE DELLA LUCE. IV^C 2016/2017 Lepore Gianluca Ianniciello Antonio LA RIFRAZIONE E LA RIFLESSIONE DELLA LUCE IV^C 2016/2017 Lepore Gianluca Ianniciello Antonio INTRODUZIONE La riflessione e la rifrazione della luce si possono spiegare utilmente supponendo che la luce

Dettagli

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione LA LUCE Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione Perché vediamo gli oggetti? Perché vediamo gli oggetti? Noi vediamo gli oggetti perché da essi

Dettagli

I raggi luminosi. Per secoli si sono contrapposti due modelli della luce. il modello ondulatorio (Christiaan Huygens)

I raggi luminosi. Per secoli si sono contrapposti due modelli della luce. il modello ondulatorio (Christiaan Huygens) I raggi luminosi Per secoli si sono contrapposti due modelli della luce il modello corpuscolare (Newton) * la luce è un flusso di particelle microscopiche il modello ondulatorio (Christiaan Huygens) *

Dettagli

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica

09/10/15. 1 I raggi luminosi. 1 I raggi luminosi. L ottica geometrica 1 I raggi luminosi 1 I raggi luminosi Per secoli si sono contrapposti due modelli della luce il modello corpuscolare (Newton) la luce è un flusso di particelle microscopiche il modello ondulatorio (Christiaan

Dettagli

La luce. Quale modello: raggi, onde, corpuscoli (fotoni)

La luce. Quale modello: raggi, onde, corpuscoli (fotoni) La luce Quale modello: raggi, onde, corpuscoli (fotoni) Le onde luminose onde elettromagnetiche con frequenza compresa tra 4. 10 14 e 8. 10 la lunghezza d onda e compresa fra 400nm e 750nm 10 14 Hz 14

Dettagli

LUCE E OSSERVAZIONE DEL COSMO

LUCE E OSSERVAZIONE DEL COSMO LUCE E OSSERVAZIONE DEL COSMO ALUNNI CLASSI QUINTE SAN BERARDO Ins. DE REMIGIS OSVALDO Ins.SANTONE M. RITA CHE COS E LA LUCE? Perché vediamo gli oggetti? Che cos è la luce? La propagazione della luce

Dettagli

Unità 9. I raggi luminosi

Unità 9. I raggi luminosi Unità 9 I raggi luminosi 1. La luce La luce è un'onda elettromagnetica, ma per studiare alcuni fenomeni ottici basta considerarla un insieme di raggi luminosi. Un raggio luminoso è un fascio di luce molto

Dettagli

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore Capitolo 15 L interferenza e la natura ondulatoria della luce 15.2 Il principio di sovrapposizione e l interferenza della luce Quando due onde luminose passano per uno stesso punto, i loro effetti si sommano

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE B B o E o E v z y x B E o B o E T λ t x E = E(x,t) v = B = B(x,t) λ T = λf VELOCITA DELLA LUCE NEL VUOTO nel vuoto (unità S.I.) v c c = 3 10 8 m s 1 velocità

Dettagli

Ottica fisica - Interferenza

Ottica fisica - Interferenza Ottica fisica - Interferenza 1. Principi di sovrapposizione e di Huygens 2. Interferenza 3. Riflessione e trasmissione della luce VIII - 0 Principio di sovrapposizione In un sistema meccanico in cui si

Dettagli

Ottica (1/2) Ottica geometrica Lezione 17, 3/12/2018, JW ,

Ottica (1/2) Ottica geometrica Lezione 17, 3/12/2018, JW , Ottica (1/2) Ottica geometrica Lezione 17, 3/12/2018, JW 19.1-19.2, 19.5-19.7 1 1. Fronti d'onda e raggi Se lasciamo cadere un sasso in una pozza, dal punto di impatto partono onde circolari. Le circonferenze

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Alunno di quarta - A.S NATURA ONDULATORIA E CORPUSCOLARE DELLA LUCE

Liceo Scientifico Statale Leonardo da Vinci Alunno di quarta - A.S NATURA ONDULATORIA E CORPUSCOLARE DELLA LUCE Liceo Scientifico Statale Leonardo da Vinci Alunno di quarta - A.S. 2018-19 NATURA ONDULATORIA E CORPUSCOLARE DELLA LUCE Gli studi riguardo la natura della luce hanno visto nel corso dei secoli l affermarsi

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

Unità 17. Le onde luminose

Unità 17. Le onde luminose Unità 17 Le onde luminose 1. Onde e corpuscoli Dal Seicento due modelli rivali descrivono la luce: corpuscolare (Newton) e ondulatorio (Huygens). L'affermazione del modello ondulatorio Differenza principale

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

La rifrazione della luce

La rifrazione della luce La rifrazione della luce E. Modica erasmo@galois.it Istituto Provinciale di Cultura e Lingue Ninni Cassarà A.S. 2010/2011 Il bastone spezzato La rifrazione e le sue leggi Il bastone spezzato Definizione

Dettagli

Lezione 22 - Ottica geometrica

Lezione 22 - Ottica geometrica Lezione 22 - Ottica geometrica E possibile, in certe condizioni particolari, prescindere dal carattere ondulatorio della radiazione luminosa e descrivere la propagazione della luce usando linee rette e

Dettagli

ONDE ELETTROMAGNETICE NATURA DELLA LUCE LEZIONE 29

ONDE ELETTROMAGNETICE NATURA DELLA LUCE LEZIONE 29 ONDE ELETTROMAGNETICE NATURA DELLA LUCE LEZIONE 29 NATURA DELLA LUCE SULLA NATURA DELLA LUCE ESISTE UNA DOPPIA TEORIA: ONDULATORIA CORPUSCOLARE Teoria corpuscolare (Newton 1643-1727) La luce è costituita

Dettagli

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione L'identificazione della luce come fenomeno ondulatorio è dovuta principalmente a Fresnel e Huyghens ed è basata

Dettagli

ONDE ELETTROMAGNETICE OTTICA LEZIONE 33

ONDE ELETTROMAGNETICE OTTICA LEZIONE 33 ONDE ELETTROMAGNETICE OTTICA LEZIONE 33 L'Ottica Geometrica è la più antica branca dell'ottica: essa studia i fenomeni ottici assumendo che la luce si propaghi mediante raggi rettilinei. Dal punto di vista

Dettagli

Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW

Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW 21.1-21.5 1 1. Sovrapposizione e interferenza Quando due onde occupano la stessa regione di spazio, le loro ampiezze si sommano in ogni

Dettagli

Interferenza Interferenza.

Interferenza Interferenza. Interferenza 01 - Interferenza. Attorno all'anno 1800, l'eclettico medico inglese Thomas Young compì un esperimento che mise in crisi il modello corpuscolare della luce, modello fino ad allora considerato

Dettagli

Cosa si intende per onda?

Cosa si intende per onda? Fenomeni Ondulatori Cosa si intende per onda? si definisce onda una perturbazione che si propaga non si ha propagazione di materia ma solo di energia onde meccaniche (mezzo) onde elettromagnetiche (vuoto,

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente OTTICA FISICA Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente gli effetti sperimentali non sono spiegabili

Dettagli

Le caratteristiche delle onde. perturbazione che si propaga nello spazio e nel tempo

Le caratteristiche delle onde. perturbazione che si propaga nello spazio e nel tempo Fenomeni ondulatori Un onda è costituita da una successione regolare di punti di massimo e di minimo, sia nello spazio che nel tempo, secondo una sequenza definita Può essere utile osservare la seguente

Dettagli

OTTICA GEOMETRICA. L ottica geometrica è valida quando la luce interagisce solo con oggetti di dimensioni molto maggiori della sua lunghezza d onda.

OTTICA GEOMETRICA. L ottica geometrica è valida quando la luce interagisce solo con oggetti di dimensioni molto maggiori della sua lunghezza d onda. Un raggio di luce si propaga rettilineamente in un mezzo omogeneo ed isotropo con velocità: c v =, n > 1 n OTTICA GEOMETRICA L ottica geometrica è valida quando la luce interagisce solo con oggetti di

Dettagli

Principio di Huygens (1678)

Principio di Huygens (1678) Principio di Huygens (1678) Tutti i punti di un fronte d onda possono essere considerati come sorgenti secondarie di onde sferiche; in un generico punto P l onda risultante si può ottenere come sovrapposizione

Dettagli

La luce Pagina 1 di 12. I raggi di luce

La luce Pagina 1 di 12. I raggi di luce La luce Pagina di I raggi di luce L ottica è quella parte della fisica che studia la propagazione della luce e la sua interazione con i corpi materiali. L esperienza comune ci consente di affermare che

Dettagli

Note di ottica geometrica.

Note di ottica geometrica. Note di ottica geometrica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, novembre 2012. Indice 1 ttica geometrica 1 2 Riflessione. 2 2.1 La legge della riflessione..............................

Dettagli

Formazione dell'immagine

Formazione dell'immagine Ottica geometrica Percepiamo la luce perché ci arriva direttamente dalla sorgente oppure riflessa dagli oggetti L'emissione della luce è complessa da capire, mentre la propagazione è, di solito, più semplice

Dettagli

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile)

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile) Ottica geometrica Propagazione per raggi luminosi (pennello di luce molto sottile) All interno di un mezzo omogeneo la propagazione e rettilinea: i raggi luminosi sono pertanto rappresentati da tratti

Dettagli

I prolungamenti di due raggi riflessi si incrociano in un punto che diventa l'immagine dell'oggetto.

I prolungamenti di due raggi riflessi si incrociano in un punto che diventa l'immagine dell'oggetto. Riflessione e specchi Immagini reali e immagini virtuali Abbiamo applicato le leggi della riflessione per studiare le immagini che si vengono a creare in presenza di uno specchio piano. L'immagine che

Dettagli

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO 1 INTERFERENZA Massimi di luminosità Onda incidente L onda prodotta alla fenditura S0, che funge da sorgente, genera due onde alle fenditure

Dettagli

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Ottica 1. Un fascio di luce di lunghezza λ passa attraverso una fenditura rettangolare di larghezza a. La sua immagine viene

Dettagli

OTTICA (1) RIFLESSIONE E SPECCHI Lezione17, 4/12/2017, JW

OTTICA (1) RIFLESSIONE E SPECCHI Lezione17, 4/12/2017, JW OTTICA (1) RIFLESSIONE E SPECCHI Lezione17, 4/12/2017, JW 19.1-19.4 1 1. Fronti d'onda e raggi Se lasciamo cadere un sasso in una pozza, dal punto di impatto partono onde circolari. Le circonferenze indicano

Dettagli

Unità didattica 9. Nona unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 9. Nona unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 9 La radiazione visibile.... 2 L ottica.... 3 Velocità della luce... 4 La riflessione.. 5 Riflessione negli specchi piani.. 6 Riflessione negli specchi curvi..... 7 Formazione dell immagine

Dettagli

Relazione del laboratorio di ottica a.a Ottica geometrica e ottica Fisica

Relazione del laboratorio di ottica a.a Ottica geometrica e ottica Fisica Relazione del laboratorio di ottica a.a. 2005-2006 Ottica geometrica e ottica Fisica Bina Michele Bina Nicola Capaci Luciano luciano.capaci@tiscali.it Mittica Patrizia pamit@libero.it Saliceti Simona simonasaliceti@libero.it

Dettagli

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro?

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro? QUESITI 1 FENOMENI ONDULATORI 1. (Da Medicina 2008) Perché un raggio di luce proveniente dal Sole e fatto passare attraverso un prisma ne emerge mostrando tutti i colori dell'arcobaleno? a) Perché riceve

Dettagli

Ottica Geometrica. (λà 0 trascuriamo i fenomeni di diffrazione )

Ottica Geometrica. (λà 0 trascuriamo i fenomeni di diffrazione ) Ottica Geometrica Ottica Geometrica Metodo approssimato che permette di studiare il comportamento della luce quando incontra discontinuità nello spazio in cui si propaga, nei casi in cui la lunghezza d

Dettagli

Riassunto lezione 14

Riassunto lezione 14 Riassunto lezione 14 Onde meccaniche perturbazioni che si propagano in un mezzo Trasversali Longitudinali Interferenza (principio di sovrapposizione) Onde elettromagnetiche (si propagano anche nel vuoto)

Dettagli

Laboratorio PLS di astrofisica_ Modulo 1 Attività teoriche e sperimentali preliminari svolte presso le singole scuole

Laboratorio PLS di astrofisica_ Modulo 1 Attività teoriche e sperimentali preliminari svolte presso le singole scuole Laboratorio PLS di astrofisica_ Modulo 1 Attività teoriche e sperimentali preliminari svolte presso le singole scuole Classe/i LICEO SCIENTIFICO CANNIZZARO IVA, IVL, IVC, IVD 11 ARTIACO LUIGIA ( Enrico

Dettagli

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione.

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione. FAM Serie 6: Fenomeni ondulatori VI C. Ferrari Esercizio 1 Equazione dell iperbole ed interferenza Considera due sorgenti S 1 e S 2 poste sull asse Ox in x = d 2 e x = d 2. 1. Nel piano Oxy determina le

Dettagli

La rifrazione della luce

La rifrazione della luce La rifrazione della luce E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro - Palermo A.S. 2017/2018 Il bastone spezzato Definizione di rifrazione Dall aria all acqua... Dall acqua all

Dettagli

NATURA DELLA LUCE. 1/4 - NATURA DELLA LUCE - C. Calì - DIEET-UNIPA (2007-rev_10/11) Pubblicato in

NATURA DELLA LUCE. 1/4 - NATURA DELLA LUCE - C. Calì - DIEET-UNIPA (2007-rev_10/11) Pubblicato in NATURA DELLA LUCE Nel corso del tempo diverse sono state le teorie formulate per spiegare la luce ed il suo comportamento. La teoria corpuscolare, messa a punto da Newton, è basata sull'ipotesi che la

Dettagli

LA LUCE. La luce visibile rappresenta una piccola parte dello spettro elettromagnetico

LA LUCE. La luce visibile rappresenta una piccola parte dello spettro elettromagnetico LA LUCE Teoria corpuscolare Formulata da Isaac Newton nel XVII secolo. La luce veniva vista come composta da piccole particelle di materia (corpuscoli) emesse in tutte le direzioni. Oltre che essere matematicamente

Dettagli

Spettro delle onde elettromagnetiche. Ottica: luce visibile leggi della riflessione e rifrazione

Spettro delle onde elettromagnetiche. Ottica: luce visibile leggi della riflessione e rifrazione Spettro delle onde elettromagnetiche Ottica: luce visibile leggi della riflessione e rifrazione Introduzione Abbiamo visto che la propagazione della radiazione elettromagnetica nel vuoto è regolata dalle

Dettagli

Ottica geometrica. Spettro elettromagnetico

Ottica geometrica. Spettro elettromagnetico Nome file d:\scuola\corsi\corso fisica\ottica\riflessione e rifrazione.doc Creato il 09/05/003 0.3 Dimensione file: 48640 byte Andrea Zucchini Elaborato il 8/05/003 alle ore.3, salvato il 8/05/03 0.3 stampato

Dettagli

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa.

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa. SPECCHI SPECCHI PIANI Per specchio si intende un dispositivo la cui superficie è in grado di riflettere immagini di oggetti posti davanti a essa. Uno specchio è piano se la superficie riflettente è piana.

Dettagli

nasce la spettroscopia come tecnica di analisi chimica

nasce la spettroscopia come tecnica di analisi chimica sviluppo storico della spettroscopia: il reticolo di diffrazione *1810 Fraunhofer sviluppa il diffrattometro a reticolo e misura ben 700 righe, fra righe chiare (di emissione) e righe scure (di assorbimento);

Dettagli

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2 Corso di Laurea in Astronomia Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA A.A. 01-013 Indice 1 Introduzione 5 1.1 Indice di rifrazione.............................. 5 1. Riflessione e rifrazione............................

Dettagli

La diffrazione della luce CNR-INOA

La diffrazione della luce CNR-INOA La diffrazione della luce La luce: onde o particelle? C.Huygens (169-1695) Costruisce il più potente telescopio dell epoca Scopre l anello di Saturno Sostiene la natura ondulatoria della luce Basi sperimentali:

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE

ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE Università degli Studi di Padova Facoltà di Scienze MM.FF.NN Corso di Laurea in Ottica e Optometria TESI DI LAUREA ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE Monochromatic aberrations and tear

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

LUCE E ONDE ELETTROMAGNETICHE

LUCE E ONDE ELETTROMAGNETICHE LUCE E ONDE ELETTROMAGNETICHE QUASI TUTTO QUELLO CHE SAPPIAMO SULLA STRUTTURA DELL ATOMO DERIVA DALL ANALISI DELLA LUCE EMESSA O ASSORBITA DALLE SOSTANZE CHI FU IL PRIMO AD ACCORGERSI CHE I SINGOLI ELEMENTI

Dettagli

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2)

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Un percorso di ottica

Un percorso di ottica Un percorso di ottica Isabella Soletta Liceo Fermi Alghero Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare anche a casa con materiali di facile reperibilità

Dettagli

Esperienza 6: riflessione e rifrazione della luce

Esperienza 6: riflessione e rifrazione della luce Esperienza 6: riflessione e rifrazione della luce L ottica è la branca della fisica che si occupa di studiare le proprietà della luce, il suo comportamento, la sua propagazione attraverso i materiali.

Dettagli

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Ottica fisica La natura ondulatoria della luce è stata evidenziata da Young ai primi dell 800 usando l interferenza e confutando l idea corpuscolare di Newton Le onde elettromagnetiche sono state previste

Dettagli

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date ESPERIMENTO SULL OTTICA Introduzione L ottica geometrica può essere considerata un metodo per la costruzione di immagini date da sistemi ottici quali lenti e specchi. Essa costituisce una teoria approssimata,

Dettagli

L'interferenza. Lezioni d'autore

L'interferenza. Lezioni d'autore L'interferenza Lezioni d'autore L'esperimento di Young (I) VIDEO L'esperimento di Young (II) Una luce monocromatica illumina due piccole aperture su una lastra opaca. La stessa onda quindi è suddivisa

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 1C Appunti di Ottica Geometrica II La Riflessione della Luce Riccardo Fabbri 1 (Dispense ed esercizi su www.riccardofabbri.eu)

Dettagli

Come vediamo. La luce: aspetti fisici. Cos è la luce? Concetti fondamentali:

Come vediamo. La luce: aspetti fisici. Cos è la luce? Concetti fondamentali: La luce in fisica La luce: aspetti fisici Cos è la luce? Concetti fondamentali: - velocità, ampiezza, lunghezza d onda - assorbimento - riflessione -rifrazione - diffrazione - indice di rifrazione - temperatura

Dettagli

Onde elettromagnetiche. Propagazione delle onde Riflessione e rifrazione

Onde elettromagnetiche. Propagazione delle onde Riflessione e rifrazione Onde elettromagnetiche Propagazione delle onde Riflessione e rifrazione Arcobaleno di Maxwell La luce visibile è solo una piccola regione dello spettro elettromagnetico. Alcune radiazioni si producono

Dettagli

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Ottica fisica La natura ondulatoria della luce è stata evidenziata da Young ai primi dell 800 usando l interferenza e confutando l idea corpuscolare di Newton Le onde elettromagnetiche sono state previste

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Quinta lezione Occhio agli spettri! (Laboratorio III) Antonio Maggio Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Prima parte Sommario 5 a

Dettagli

Prerequisiti Lezione 1. Ripasso

Prerequisiti Lezione 1. Ripasso Prerequisiti Lezione 1 Ripasso Misura di angoli Nel sistema sessagesimale l'angolo completo o angolo giro è suddiviso in 360 spicchi, equivalenti all'unità di misura convenzionale denominata grado sessagesimale,

Dettagli

OTTICA GEOMETRICA. L'Ottica Geometrica studia le leggi dei raggi, schematizzandoli in rette geometriche

OTTICA GEOMETRICA. L'Ottica Geometrica studia le leggi dei raggi, schematizzandoli in rette geometriche OTTICA GEOMETRICA L'Ottica Geometrica studia le leggi dei raggi, schematizzandoli in rette geometriche Le leggi dell'ottica geometrica Tutti i fenomeni luminosi trovano rigorosa spiegazione nella teoria

Dettagli

OTTICA E LABORATORIO

OTTICA E LABORATORIO PROGRAMMA DI OTTICA E LABORATORIO Anno Scolastico 2014-2015 Classe IV P indirizzo OTTICO Prof. Giuseppe CORSINO Programma di OTTICA E LABORATORIO Anno Scolastico 2013-2014 Classe IV P indirizzo OTTICO

Dettagli

Diffrazione. configurazione che fornisce uno sfasamento di nel passaggio. dal bordo della fenditura al centro. = λ per il primo minimo.

Diffrazione. configurazione che fornisce uno sfasamento di nel passaggio. dal bordo della fenditura al centro. = λ per il primo minimo. Diffrazione Mentre l interferenza può essere analizzata con i principi dell ottica geometrica, la diffrazione può essere spiegata solo con l ipotesi ondulatoria della luce. Ipotesi corpuscolare Corpuscoli

Dettagli

ESPERIMENTO DI YOUNG DOPPIA FENDITURA

ESPERIMENTO DI YOUNG DOPPIA FENDITURA ESPERIMENTO DI YOUNG DOPPIA FENDITURA Larghezza fenditure a > d (L = distanza fenditure - schermo; d = distanza tra le fenditure) Evidenza della natura ondulatoria della luce Luce monocromatica

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

Luce e onde elettromagnetiche

Luce e onde elettromagnetiche Luce e onde elettromagnetiche Rappresentazione classica Rappresentazione quantistica dualità onda/particella. La rappresentazione classica è sufficiente per descrivere la maggior parte dei fenomeni che

Dettagli

Ottica fisica - Diffrazione

Ottica fisica - Diffrazione Ottica fisica - Diffrazione 1. Diffrazione di Fraunhofer 2. Risoluzione di una lente 3. Reticoli di diffrazione IX - 0 Diffrazione Interferenza di un onda con se stessa, in presenza di aperture od ostacoli

Dettagli

I Esonero di Elementi di Ottica del 13/06/2011

I Esonero di Elementi di Ottica del 13/06/2011 I Esonero di Elementi di Ottica del 13/06/2011 1) L onda elettromagnetica piana sinusoidale di frequenza f= 100 khz emessa da un sottomarino in superficie, si propaga orizzontalmente sia nell aria che

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Terza lezione Dai raggi di luce al modello a onde (Introduzione alla spettroscopia) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

d >> λ rettilinea raggio luminoso riflessione rifrazione

d >> λ rettilinea raggio luminoso riflessione rifrazione Ottica geometrica Proprietà più macroscopiche della luce d >> λ Propagazione rettilinea della luce (no diffrazione) Fondamentale concetto di raggio luminoso il cui percorso è determinato dalle leggi della

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

L utilizzazione degli antichi strumenti per la comprensione dei fenomeni ottici

L utilizzazione degli antichi strumenti per la comprensione dei fenomeni ottici L utilizzazione degli antichi strumenti per la comprensione dei fenomeni ottici Perché vediamo gli oggetti? Le sorgenti di luce Qualsiasi corpo in grado di emettere luce è detto sorgente luminosa o corpo

Dettagli

Onde ele'romagne-che. Propagazione delle onde Riflessione e rifrazione

Onde ele'romagne-che. Propagazione delle onde Riflessione e rifrazione Onde ele'romagne-che Propagazione delle onde Riflessione e rifrazione Propagazione delle onde EM L antenna si comporta come il binario su cui si muovono le cariche di un dipolo elettrico che generano un

Dettagli

Fisica Generale B. Interferenza. Fallimento dell ipotesi corpuscolare. L esperimento di Young. 14. Interferenza

Fisica Generale B. Interferenza. Fallimento dell ipotesi corpuscolare. L esperimento di Young. 14. Interferenza Interferenza Fisica Generale 14. Interferenza Generalmente, sovrapponendo due onde di uguale intensità, si ottiene un onda di intensità doppia. e la frequenza delle due onde è la stessa, il piano di oscillazione

Dettagli

Cos è la luce? Fascio di Particelle. Onda. (I. Newton Optiks 1704 ) (R. Hooke; C.Huygens -1678) 1. Si propaga in linea retta 2. Contorni netti delle

Cos è la luce? Fascio di Particelle. Onda. (I. Newton Optiks 1704 ) (R. Hooke; C.Huygens -1678) 1. Si propaga in linea retta 2. Contorni netti delle Cos è la luce? Onda (R. Hooke; C.Huygens -1678) Fascio di Particelle (I. Newton Optiks 1704 ) 1. Fenomeno oscillatorio dove non c è propagazione di materia ma solo di energia 2. Aggira gli ostacoli 3.

Dettagli

Un percorso di ottica parte III. Ottica ondulatoria

Un percorso di ottica parte III. Ottica ondulatoria Un percorso di ottica parte III Ottica ondulatoria Isabella Soletta Liceo Fermi Alghero Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

INDICE OSCILLAZIONI CAPITOLO 1

INDICE OSCILLAZIONI CAPITOLO 1 INDICE CAPITOLO 1 OSCILLAZIONI Compendio 1 1-1 Introduzione 2 1-2 Moti periodici e moti armonici 3 1-2-1 Moto oscillatorio armonico 4 1-3 Dinamica dell oscillatore armonico 6 1-3-1 Forze elastiche 7 1-3-2

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE Scopo dell esperimento: studiare l ottica geometrica e i fenomeni di diffrazione MATERIALE A DISPOSIZIONE: 1 banco ottico 1 blocco di plexiglass 2 lenti con

Dettagli

I.I..S. A. MORO - Rivarolo C.se Sez. scientifica. Anno scolastico 2014/15

I.I..S. A. MORO - Rivarolo C.se Sez. scientifica. Anno scolastico 2014/15 I.I..S. A. MORO - Rivarolo C.se Sez. scientifica Anno scolastico 2014/15 PROGRAMMA CON OBIETTIVI MINIMI DI FISICA CLASSE 4A Docente: Giovanni Berta Gas Perfetti La temperatura assoluta. I gas perfetti;

Dettagli

Lezione 33: La luce è fatta di corpuscoli

Lezione 33: La luce è fatta di corpuscoli Lezione 33 - pag.1 Lezione 33: La luce è fatta di corpuscoli 33.1. La riflessione della luce Nella scorsa lezione abbiamo descritto la luce partendo dal presupposto che si tratti di un'onda. In questa

Dettagli

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo Università degli Studi di Milano Dipartimento di Fisica Corso di laurea triennale in FISICA Anno accademico 2013/14 Figure utili da libri di testo Onde & Oscillazioni Corso A Studenti con il cognome che

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Quarta lezione Applicazione di tecniche di diffrazione (Laboratorio II) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico di

Dettagli

Lezione 2 Modello a raggi Riflessione specchi piani Indice di rifrazione e legge di Snell Riflessione totale e sua applicazione alle fibre ottiche

Lezione 2 Modello a raggi Riflessione specchi piani Indice di rifrazione e legge di Snell Riflessione totale e sua applicazione alle fibre ottiche Dr. Andrea Malizia Lezione 2 Modello a raggi Riflessione specchi piani Indice di rifrazione e legge di Snell Riflessione totale e sua applicazione alle fibre ottiche Modello a raggi La luce è come se si

Dettagli

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione Interferenza Coerenza Diffrazione Polarizzazione Fenomeni interferenziali Interferenza: combinazione di onde identiche provenienti da diverse sorgenti che si sovrappongono in un punto dello spazio costruttiva

Dettagli

- hanno bisogno di un mezzo elastico per propagarsi

- hanno bisogno di un mezzo elastico per propagarsi Tratteremo principalmente di ONDE MECCANICHE: propagazioni di vibrazioni meccaniche del mezzo considerato - hanno bisogno di un mezzo elastico per propagarsi - propagazione di una perturbazione di natura

Dettagli

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2 OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura

Dettagli

LA NATURA DELLA LUCE DA NEWTON A EINSTEIN. Marco Clementi 16 Febbraio UNITRE Tirano

LA NATURA DELLA LUCE DA NEWTON A EINSTEIN. Marco Clementi 16 Febbraio UNITRE Tirano LA NATURA DELLA LUCE DA NEWTON A EINSTEIN Marco Clementi 16 Febbraio 2018 UNITRE Tirano PARTE I QUAL È LA NATURA DELLA LUCE? UNA PROSPETTIVA STORICA FILOSOFIA ARISTOTELICA Aristotele (IV sec. a.c.), identifica

Dettagli

4 Fondamenti di Ottica

4 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 4 Fondamenti di Ottica La natura della luce Ottica geometrica Velocità della luce Riflessione e Rifrazione Dispersione Prisma Fibre ottiche Teoria corpuscolare (Newton) La

Dettagli