ESAME DI AERODINAMICA 26/3/2008

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI AERODINAMICA 26/3/2008"

Transcript

1 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza per unità di lunghezza relativa a tale sezione è pari a, in N/m: (a) 2. (b) 6.4 (c) 2.8 (d) 7.8 (e) 28.2 w = V α i D i = ρwγ = ρv α i Γ = 6.4 (5.2 con ρ = ) Supponiamo che un flusso stazionario bidimensionale di aria intorno ( ad un cilindro circolare di raggio R produca la velocità il cui modulo vale v = V + R R r 2 r senθ). Il coefficiente di pressione sul corpo per θ = 3/2 π vale: (a) + (b) - (c) 0 (d) +3 (e) -3 per r = R V = V (2 + 2senθ) C P = p p /2 ρv 2 ( ) V 2 = = 4 ( + senθ) 2 V La funzione di corrente può essere introdotta, per un moto bidimensionale, se: (a) il moto è irrotazionale (b) il fluido è incomprimibile (c) il fluido è un gas perfetto (d) la viscosità è nulla (e) il moto è stazionario La densità in un campo fluidodinamico è espressa da ρ = 000 ( z/4) Kg/m 3 con z che indica la quota. In un punto del campo la velocità è V = 0 ī + 0 k m/s. La variazione temporale della densità di una particella che passa per quel punto è (Kg/(m 3 s)): (a) 0 (b) -000 (c) 500 (d) (e) 500 Dρ Dt = ρ t + V ρ = w ρ z = 0 ( 250) = 2500

2 Nel divergente di un ugello supersonico, alimentato da un serbatoio in cui p=200 kpa, si ha un urto nella sezione A A =.5. La pressione (in kpa) immediatamente a valle dell urto vale: (a) 32 (b) 23 (c) 774 (d) 02 (e) 9 A A =.5 M =.86 p p 0 =.59 p 2 p = 3.87 p 2 = p 0 Arrivando in vicinanza di un aeroporto un aeroplano percorre una rotta rettilinea inclinata rispetto all orizzonte di un angolo di 4. Quale valore del rapporto /C D è necessario affinchè l aeroplano possa atterrare con i motori in condizione di spinta nulla? (a) 9 (b) 4 (c) 9 (d) 24 (e) 29 C D = tan θ = C D tan θ = 9. Un cilindro circolare di lunghezza infinita e raggio 55 cm ruota intorno al proprio asse con velocità angolare 2 giri/s in verso orario. Esso viene investito da una corrente uniforme di aria con velocità 0 m/s diretta come le x positive. Assumendo il moto a potenziale, il coefficiente di pressione per θ = 80 vale: (a) 0.23 (b) 0.3 (c) 0.52 (d) 0.88 (e) -.35 C p = p p 2 ρu 2 ( ) U 2 = = ( 2senθ + U Γ 2πRU ) 2 = ( 2senθ + RΩ ) 2 = 0.52 U Si consideri un profilo alare sottile non simmetrico ad un incidenza geometrica di 6. I coefficienti A 0, A, A 2 della teoria di Glauert valgono rispettivamente 0.05, 0.2, L incidenza di portanza nulla vale, in gradi: (a) (b) -.2 (c) -4.3 (d) -5.7 (e) -7. 2π(α α 0 ) = 2π(A 0 + A 2 ) α 0 = α A 0 A 2 (corrisp. ad ε c = 0.05)

3 Nello strato limite laminare di un fluido incomprimibile intorno ad una lastra piana, la tensione di taglio alla parete τ w risulta proporzionale alla distanza dal bordo d attacco elevata ad un coefficiente pari a: (a) + (b) - (c) +/2 (d) -/2 (e) 0 In una galleria aerodinamica viene provato il modello in scala /0 di un auto da rally. La velocità dell aria è 70 m/s e la resistenza misurata sul modello è 240 N. I valori della temperatura e della pressione dell aria in galleria sono identici a quelli delle condizioni reali. Se la similitudine dinamica è verificata ed assumendo L come lunghezza caratteristica ed L 2 come area caratteristica, il valore della resistenza per l automobile vera è, in N: (a) 20 (b) 240 (c) 480 (d) 440 (e) 2400 Re V = Re M ν V = ν M U V L V = U M L M D V 2 ρ V U 2 V L 2 V = D M 2 ρ MU 2 ML 2 M D V = D M La velocità in un campo fluidodinamico bidimensionale è espressa da V = x y t ī 2 y 2 j m/s. La velocità angolare della particella che si trova nel punto (x= -2 m, y= m) al tempo t=2 s è, in s : (a) -2 (b) 0 (c) 2 (d) 4 (e) 6 ω z = 2 (v x u y ) = 2 xt = 2 Una lastra piana è investita da una corrente avente M = 3 ed un angolo d incidenza α = 7 o. Il coefficiente di pressione sul dorso vale: (a) (b) (c) 0.24 (d) (e) ( 2 c ps = dh + dt dx dx α) 2 = M ( α) 2 M 2

4 Consideriamo una galleria del vento subsonica a basse velocità con un rapporto di contrazione (A ingresso /A sez. prova ) del convergente pari a 0/. Se il moto del fluido nella sezione di prova (in condizioni normali al livello del mare) ha una velocità di 50 m/s, la differenza delle altezze delle colonne di mercurio (ρ = 3600 kg/m 3 ) di un manometro differenziale ad U che ha un ramo collegato all ingresso del convergente e l altro alla sezione di prova è, in mm: (a) 4 (b) 7 (c) 0 (d) 6 (e) 23 p = 2 ρ ARIAU 2 2 [ ( ) 2 ] A2 A h = p γ L ala di un aeroplano produce una portanza L quando si muove con velocità U a livello del mare. Quale deve essere il valore della velocità, rapportato ad U, affinchè l ala possa generare lo stesso valore della portanza quando vola ad un altitudine di 0000 m assumendo che il non cambi e che la densità dell aria a questa quota valga 0.4 Kg/m 3? (a).29 (b) 0.86 (c) 4.46 (d).73 (e) ρ V 2 S = 2 ρ 2V 2 2 S V 2 = V ρ ρ 2 =.73V (.56.73) Determinare il rapporto tra lo spessore di spostamento e lo spessore dello strato limite δ assumendo un profilo di velocità nello strato limite espresso da: u/u e = y/δ (con u = velocità in direzione x ad una distanza y dal corpo e U e valore della velocità all esterno dello strato limite). (a) 0.5 (b) (c) 0.66 (d) (e)

5 Domanda n. Descrivere il flusso all interno di un ugello convergente-divergente (ugello De Laval) al variare della pressione a valle. Domanda n. 2 Spiegare come si pu ottenere la soluzione dello strato limite intorno ad una lastra piana e come si procede al calcolo della resistenza. Illustrare il significato dello spessore di spostamento e scriverne la definizione. Domanda n. 3 Flusso intorno ad un ala finita: ) mettere in evidenza come varia il coefficiente di resistenza tra due ali simili ma con diverso allungamento; 2) mostrare come si modifica, al variare dell allungamento, la pendenza della retta in funzione dell incidenza; 3) disegnare il diagramma polare e spiegarne il significato.

ESAME DI AERODINAMICA 26/3/2008

ESAME DI AERODINAMICA 26/3/2008 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza

Dettagli

ESAME DI AERODINAMICA 15/1/2014

ESAME DI AERODINAMICA 15/1/2014 ESAME DI AERODINAMICA 5//04 Un aereo leggero dal peso a pieno carico di KN ha l apertura alare di m e la corda di.8 m.. Valutare la velocità di decollo (in m/s) corrispondente ad un incidenza di 8 (assumere

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 12 m. Quando si muove in aria alla velocità di 150 km/h e sviluppa un

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

ESAME DI AERODINAMICA 11/6/2012

ESAME DI AERODINAMICA 11/6/2012 ESAME DI AERODINAMICA /6/202 La velocità in un campo fluidodinamico bidimensionale è espressa, in m/s, da u = x y t,v = 2 y 2. La vorticità nel punto (x= -2 m, y= m) al tempo t=2 s è, in s : (a) -4 (b)

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

ESAME DI AERODINAMICA 16/4/2007

ESAME DI AERODINAMICA 16/4/2007 ESAME DI AERODINAMICA 6/4/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

ESAME DI AERODINAMICA 16/4/2007

ESAME DI AERODINAMICA 16/4/2007 ESAME DI AERODINAMICA 6/4/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

ESAME DI AERODINAMICA 13/7/2009

ESAME DI AERODINAMICA 13/7/2009 ESAME DI AERODINAMICA 3/7/2009 Una presa d aria supersonica è progettata per funzionare a M = 2.6. se la sezione d ingresso ha un area A i = 0.58m 2, la sezione di gola in m 2 è: (b).32 (c).2 (d).4 (e).078

Dettagli

ESAME DI AERODINAMICA 12/6/2009

ESAME DI AERODINAMICA 12/6/2009 ESAME DI AERODINAMICA 12/6/2009 Le misure effettuate in galleria del vento su un profilo alare danno Cd=0.012 e Cl=0.365. Considerando un ala finita non svergolata di allungamento 5 composta da profili

Dettagli

ESAME DI AERODINAMICA 14/06/2013

ESAME DI AERODINAMICA 14/06/2013 ESAME DI AERODINAMICA 14/06/2013 La derivata della retta C L in fuzione di α, per un ala finita di allungamento 8 composta da profili sottili simmetrici e lungo la quale si realizza una distribuzione di

Dettagli

ESAME DI AERODINAMICA 14/06/2013

ESAME DI AERODINAMICA 14/06/2013 ESAME DI AERODINAMICA 14/06/2013 La derivata della retta C L in fuzione di α, per un ala finita di allungamento 8 composta da profili sottili simmetrici e lungo la quale si realizza una distribuzione di

Dettagli

ESAME DI AERODINAMICA 10/9/2012

ESAME DI AERODINAMICA 10/9/2012 ESAME DI AERODINAMICA 10/9/2012 Se un aereo Boeing 727 sviluppa un C L pari a 16 volte il suo C D, quale distanza (in Km) può percorrere in volo planato partendo da un altezza di 7500 m se all improvviso

Dettagli

ESAME DI AERODINAMICA 11/02/2015

ESAME DI AERODINAMICA 11/02/2015 ESAME DI AERODINAMICA 11/02/2015 In un profilo alare non simmetrico, al diminuire dell angolo di incidenza, la coordinata del centro di pressione: (a) tende verso il bordo di attacco (b) tende verso il

Dettagli

Esercizi su similitudine ed analisi dimensionale

Esercizi su similitudine ed analisi dimensionale Esercizi su similitudine ed analisi dimensionale versione 0.3 1 Esercizio Il comportamento aerodinamico di una nuova vettura è caratterizzato dalla relazione fra due parametri adimensionali Π 1 = F Π 2

Dettagli

Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma

Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma Domanda: Perché un aeroplano dal peso di molte tonnellate riesce a volare? Ø L aerodinamica

Dettagli

Esercizio 1. Esercizio 2 (prova in itinere del 18/11/03)

Esercizio 1. Esercizio 2 (prova in itinere del 18/11/03) Eserciio 1 Si consideri la galleria del vento rappresentata nella Figura 1. In essa, quando la ventola è in funione, fluisce da sinistra verso destra una portata d aria (ρ =1.225 kg/m 3 ). All interno

Dettagli

Fluidodinamica applicata Esercizi Proposti (Da Risolvere)

Fluidodinamica applicata Esercizi Proposti (Da Risolvere) MARTEDÌ 1..000 ESERCIZI PROPOSTI 1) una parete verticale separa due invasi pieni d acqua. Noti i livelli dell acqua nei due invasi 1 ed, con 1 < e la densità ρ dell acqua, calcolare la forza per unità

Dettagli

Fondamenti di Aerospaziale

Fondamenti di Aerospaziale Fondamenti di Aerospaziale Prof. Renato Barboni FLUSSO Quantità di una certa grandezza che nell unità di tempo attraversa una superficie S: x y di Volume: di massa: z m V (z) S Volume dz V = = S = SV dt

Dettagli

Esercizio 1 (prova in itinere 22/11/02)

Esercizio 1 (prova in itinere 22/11/02) Eserciio 1 (prova in itinere 22/11/02) Un treno (Figura 1) di seione frontale massima S t =13 m 2 corre con velocità uniforme in una galleria di seione S g =90 m 2. Sul locomotore è posiionato un tubo

Dettagli

Fluidodinamica, Martedì 5 luglio

Fluidodinamica, Martedì 5 luglio Fluidodinamica, Martedì 5 luglio 0.1 Parte di Fluidodinamica I Domanda 1 L equazione di continuità è l espressione matematica della legge di conservazione della massa. Illustrare la sua forma matematica

Dettagli

Il vento in galleria

Il vento in galleria Modulo di formazione La Fisica del Volo: Un approccio didattico alla fluidodinamica A.A. 2010-2011 Il vento in galleria Progetto Lauree Scientifiche Nella scorsa puntata.. La portanza come reazione alla

Dettagli

Laboratorio Sperimentale di Aerodinamica

Laboratorio Sperimentale di Aerodinamica Dipartimento di Ingegneria Meccanica e Aerospaziale Laboratorio Sperimentale di Aerodinamica Giorgia Sinibaldi (giorgia.sinibaldi@uniroma1.it) A.A. 2018/2019 Info corso Idoneità Laboratorio (giovedì pomeriggio

Dettagli

Teoria dell ala finita

Teoria dell ala finita Il fatto che un ala sia dotata di apertura finita fa si che alle estremità si generi un flusso di aria che dall intradosso va verso l estradosso. Tale flusso è indotto dalla differenza di pressione presente

Dettagli

Fluidodinamica, venerdì 9 settembre 2011

Fluidodinamica, venerdì 9 settembre 2011 Fluidodinamica, venerdì 9 settembre 011 Parte di Fluidodinamica I Domanda 1 Le equazioni che governano le correnti incomprimibili devono essere completate con condizioni supplementari per potere determinare

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione n.2 Prof. D. P. Coiro coiro@unina.it www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni - Prof. D. Corio - Intro Il Velivolo 1

Dettagli

Laboratorio Sperimentale di Aerodinamica

Laboratorio Sperimentale di Aerodinamica Dipartimento di Ingegneria Meccanica e Aerospaziale Laboratorio Sperimentale di Aerodinamica Giorgia Sinibaldi (giorgia.sinibaldi@uniroma1.it) A.A. 2017/2018 Info corso Idoneità Laboratorio (mercoledì

Dettagli

la velocità della massa d aria in camera di prova; la portata in massa in camera di prova.

la velocità della massa d aria in camera di prova; la portata in massa in camera di prova. Fluidodinamica Esercizi 1. Determinare la pressione dinamica e la pressione di arresto di una particella d aria avente densità 1,10 Kg/m 3 e pressione statica 98 000 a, in movimento con una velocità V

Dettagli

CAP 2 Flussi viscosi e resistenza aerodinamica

CAP 2 Flussi viscosi e resistenza aerodinamica Corso di MECCANICA DEL VOLO Modulo Prestazioni CAP 2 Flussi viscosi e resistenza aerodinamica Prof. F. Nicolosi Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi 1 RESISTENZA AERODINAMICA

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 11 gennaio 2006

COMPITO DI MECCANICA DEI FLUIDI del 11 gennaio 2006 COMPITO DI MECCNIC DEI FLUIDI del gennaio 006 TEM ESERCIZIO. La valvola cilindrica di altezza H e diametro D (e di peso trascurabile) è incernierata in C ed ottura un foro di pari diametro praticato sulla

Dettagli

Oggetto: deposito per recuperi classe 3^ T.L.

Oggetto: deposito per recuperi classe 3^ T.L. Oggetto: deposito per recuperi classe 3^ T.L. 1. FF L alunno presenta lacune gravi e diffuse sull intero programma svolto nel corso dell anno scolastico. Tali lacune potranno essere colmate se l interessato

Dettagli

Flussi Di Fanno. 1 Definizione del flusso di Fanno

Flussi Di Fanno. 1 Definizione del flusso di Fanno Flussi Di Fanno 1 Definizione del flusso di Fanno Si consideri un flusso adiabatico all interno di un condotto a sezione costante, in presenza di attrito e senza scambio di lavoro con l esterno. Tale regime

Dettagli

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria?

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria? Esercizi 1) Il modulo della differenza dei due vettori indicati nella figura vale a) 10 b) 3 d) 2 1 1 2) Siano dati due vettori di modulo pari a 3 e 6. Se l angolo tra di essi è di π/3 rad, il loro prodotto

Dettagli

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: Statica Distribuzione delle pressioni La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: z+p/γ= cost LEE DI STEVIN Il valore della costante è

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione N. 3. Prof. D. P. Coiro

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione N. 3. Prof. D. P. Coiro Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione N. 3 Prof. D. P. Coiro coiro@unina.it www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni - Prof. D. Corio - Intro Il Velivolo

Dettagli

TUBO O D I I P I P T I OT O : A N A AL A IS I I S I DEL E

TUBO O D I I P I P T I OT O : A N A AL A IS I I S I DEL E MISUR DI LOCITA DI FLUIDI Il moto dei fluidi e un fenomeno complesso. La velocita dei fluidi e = f (x,y,z,t) CAMPO DI MOTO z P =(x,y,z,t) 1 y 2 Flusso turbolento: In un punto P(x,y,z) si puo scomporre

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

ATTRITO VISCOSO NEI FLUIDI

ATTRITO VISCOSO NEI FLUIDI ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

6.6 Soluzione numerica dell equazione del monoplano

6.6 Soluzione numerica dell equazione del monoplano Soluzione numerica dell equazione del monoplano 181 6.6 Soluzione numerica dell equazione del monoplano Nei paragrafi precedenti si è visto come il sistema di vortici prodotto da un ala di apertura finita

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

COMPITO DI MECCANICA DEI FLUIDI 7 giugno 2017 fila A

COMPITO DI MECCANICA DEI FLUIDI 7 giugno 2017 fila A COMPITO DI MECCANICA DEI FLUIDI 7 giugno 2017 fila A Esercizio 1: ANALISI DIMENSIONALE E SIMILITUDINE (4 punti). Si consideri un modello di sottomarino in scala 1:20. Il prototipo opera in mare ad una

Dettagli

Esercizio 1 Pompa 25/01/2008

Esercizio 1 Pompa 25/01/2008 Esercizio 1 Pompa 25/01/2008 Parte 1 Pompa con valvola parzialmente chiusa Dati: - le misure riportate sulla schema in Figura 1 espresse in metri - densità e viscosità dinamica dell acqua trasportata dalla

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Corso MS FLUSSI VISCOSI. Docente Fabrizio Nicolosi

Corso MS FLUSSI VISCOSI. Docente Fabrizio Nicolosi Corso MS FLUSSI VISCOSI Docente Fabrizio Nicolosi Dipartimento di Università di Napoli Federico II e.mail : fabrnico@unina.it OVERVIEW Flussi non viscosi Strato limite (Boundary Layer) Numero di Reynolds

Dettagli

Facoltà di Farmacia - Anno Accademico Giugno 2016 A

Facoltà di Farmacia - Anno Accademico Giugno 2016 A Facoltà di Farmacia - Anno Accademico 2015-2016 20 Giugno 2016 A Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio i risultati trovati per ciascun

Dettagli

MECCANICA DEI FLUIDI

MECCANICA DEI FLUIDI MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

Nome Cognome Matricola Esercitazione N. 1 Grandezza Simbolo Unità di Misura Nome dell unità di dimensionale misura

Nome Cognome Matricola Esercitazione N. 1 Grandezza Simbolo Unità di Misura Nome dell unità di dimensionale misura R. BARBONI FONDAMENTI DI AEROSPAZIALE 1 Nome : Cognome: Matricola: Esercitazione N. 1 1) Scrivere il simbolo dimensionale e l unità di misura, precisandone il nome, delle grandezze in tabella nei due sistemi

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 8 gennaio 2008

COMPITO DI MECCANICA DEI FLUIDI del 8 gennaio 2008 COMPITO DI MECCNIC DEI FLUIDI del 8 gennaio 008 Docente TEM m m γ=9.8 kn/m m m ESERCIZIO. Il serbatoio di figura è a tenuta e di profondità unit. Utilizzando l'indicazione del piezometro semplice, calcolare

Dettagli

Meccanica 13 Aprile 2015

Meccanica 13 Aprile 2015 Meccanica 3 Aprile 25 Problema (due punti) Due corpi di massa m = kg e m 2 =8 kg sono collegati da una molla di costante elastica K= N/m come in figura. Al corpo m è applicata una forza F=56 N. Trovare

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

I fluidi Approfondimento I

I fluidi Approfondimento I I fluidi Approfondimento I statica dei fluidi Legge di Stevino, Principio di Pascal, Principio di Archimede e applicazioni dinamica dei fluidi ideali Flusso di un fluido e continuità Equazione di Bernoulli

Dettagli

CAP 2 Flussi viscosi e resistenza aerodinamica

CAP 2 Flussi viscosi e resistenza aerodinamica Corso di MECCANICA DEL VOLO Modulo Prestazioni CAP 2 Flussi viscosi e resistenza aerodinamica Prof. F. Nicolosi Prof. D. Coiro Corso di Meccanica del Volo (Prestazioni) - Prof. F. Nicolosi / Prof. D. Coiro

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento angolare e delle forze Leggi

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Esame di Fluidodinamica delle Macchine (I modulo)

Esame di Fluidodinamica delle Macchine (I modulo) Esame di Fluidodinamica delle Macchine (I modulo Cognome/Nome Matricola N 5 Febbraio 014 1. Il flusso potenziale dovuto ad una sorgente posta a distanza a da una parete piana (si veda la Fig. 1 infinitamente

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

Laboratorio di Programmazione Esercitazione 1

Laboratorio di Programmazione Esercitazione 1 Laboratorio di Programmazione Esercitazione 1 Prof. Michele Scarpiniti Prof. Danilo Comminiello Dipartimento di Ingegneria dell Informazione, Elettronica e Telecomunicazioni Sapienza Università di Roma

Dettagli

FISICA (modulo 2) PROVA SCRITTA 07/09/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 2) PROVA SCRITTA 07/09/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/09/015 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Tre blocchi sono collegati come in figura e trascinati su un piano orizzontale privo di attrito

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

CALCOLO DELLA RESISTENZA DI UN PROFILO

CALCOLO DELLA RESISTENZA DI UN PROFILO CACOO DEA RESISTENZA DI UN PROFIO A cura di: Andrea Fogante Davide Gambarara Emanuel Gomez Antonio Grande Ivan Josipovic Anwar Koshakji allievi aerospaziali del anno, corso di Fluidodinamica I 1 Prefazione

Dettagli

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 6 dicembre 008 Fila A Cognome ome Matricola Completare le seguenti equivalenze: (a) 0, g = mg (b) 4,5 0 7 nm = mm

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizio 1 Esercizi di Cinematica Esercitazioni di Fisica LA per ingegneri - A.A. 2009-2010 Data la legge oraria: s(t) = a t 3 b t + c (con a = 3 ms 3, b = 2 ms 1, c = 1 m) calcolare la posizione e la

Dettagli

Esercizi di Esame.mcd (1/8)

Esercizi di Esame.mcd (1/8) Esercizi di Esame.mcd (/8) Un ugello convergente è collegato ad un condotto circolare (D : 3.99mm) nel quale è imposto un flusso di energia nel modo calore Q 2. All'uscita del condotto vi è un ugello divergente

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2005

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2005 COMPITO DI MECCNIC DEI FLUIDI del 12 gennaio 2005 ESERCIZIO 1. Il serbatoio di figura contiene acqua con sovrastante uno strato di olio di densità ρ=800kg/m 3. Sapendo che l indicazione del piezometro

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

Perdite di carico in tubi cilindrici (i.e. correnti in pressione)

Perdite di carico in tubi cilindrici (i.e. correnti in pressione) Perdite di carico in tubi cilindrici (i.e. correnti in pressione) Le perdite di carico in tubi cilindrici sono classificabili in due grosse categorie: - Perdite di carico distribuite: traggono origine

Dettagli

FAM. Determina la velocità e l accelerazione e confronta con quanto fatto nel primo biennio.

FAM. Determina la velocità e l accelerazione e confronta con quanto fatto nel primo biennio. Serie 8: Meccanica I FAM C. Ferrari Esercizio 1 Moto accelerato 1. Per un MRUA (problema 1D) generale l evoluzione temporale è data da x(t) = x(t 0 )+v(t 0 )(t t 0 )+ 1 2 a 0(t t 0 ) 2. Determina la velocità

Dettagli

Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Prova in Itinere Tema A 23 Novembre 2012

Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Prova in Itinere Tema A 23 Novembre 2012 Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Proa in Itinere Tema A 3 Noembre 01 Esercizio 1 Tubazione scabra in ghisa Si consideri la tubazione in ghisa (indice di scabrezza ε=0.10 mm) disegnata

Dettagli

FISICA (modulo 1) PROVA SCRITTA 21/02/2014

FISICA (modulo 1) PROVA SCRITTA 21/02/2014 ESERCIZI FISICA (modulo 1) PROVA SCRITTA 21/02/2014 E1. Due corpi di massa m 1 = 1000 Kg e m 2 = 1200 Kg collidono proveniendo da direzioni perpendicolari. L urto è perfettamente anelastico e i due corpi

Dettagli

COMPITO DI IDRAULICA (IAT) Nome

COMPITO DI IDRAULICA (IAT) Nome COMPITO DI IDRULIC (IT) del 16 giugno 2010 Matricola TEM 1 P 1 N 2 S 1 3 S 2 Ω Δ a Δ ORLE DI IDRULIC (IT) del 16 giugno 2010 Matricola TEM 1 In un liquido, al crescere della temperatura la viscosità 1.

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli esercizi Compito 1. Formula risolutiva: Peso = m g Peso = 0.213E+10 dyne Formula risolutiva: F = forza peso - spinta idrostatica = (ρ sfera - ρ liquido ) (4/3) π r 3 g con ρ sfera = densità

Dettagli

I D R O S T A T I C A

I D R O S T A T I C A I D R O S T A T I C A Caratteristiche stato liquido (descr.) FLUIDI Massa volumica (def. + formula) Volume massico (def. + formula) Peso volumico (def. + formula) Legame massa volumica - peso volumico

Dettagli

CAP 1 Atmosfera e Misura della Velocità

CAP 1 Atmosfera e Misura della Velocità Corso di MECCANICA DEL VOLO Modulo Prestazioni CAP 1 Atmosfera e Misura della Velocità Prof. F. Nicolosi 1 ARIA Proprietà del gas: - Pressione - Temperatura - Densità 2 ATMOSFERA DRY ATMOSHERE Atmosfera

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

Pillole di Fluidodinamica e breve introduzione alla CFD

Pillole di Fluidodinamica e breve introduzione alla CFD Pillole di Fluidodinamica e breve introduzione alla CFD ConoscereLinux - Modena Linux User Group Dr. D. Angeli diego.angeli@unimore.it Sommario 1 Introduzione 2 Equazioni di conservazione 3 CFD e griglie

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni. INTRO- Il Velivolo. Prof. D. P. Coiro

Corso di MECCANICA DEL VOLO Modulo Prestazioni. INTRO- Il Velivolo. Prof. D. P. Coiro Corso di MECCANICA DEL VOLO Modulo Prestazioni INTRO- Il Velivolo Prof. D. P. Coiro coiro@unina.it www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni - Prof. D. Corio - Intro Il Velivolo

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2007

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2007 OMPITO DI MENI DEI FLUIDI del 12 gennaio 2007 Docente TEM 1 0.5 m 1.0 m Δh ESERIZIO 1. Il serbatoio di figura, di profondità unitaria, contiene. La paratoia, incernierata in, è composta da due superfici

Dettagli

Strato Limite - Boundary layer

Strato Limite - Boundary layer 1 Strato Limite - Boundary layer http://www.grc.nasa.gov/www/k-1/airplane/boundlay.html http://www-mdp.eng.cam.ac.uk/web/library/enginfo/aerothermal_dvd_only/aero/fprops/introvisc/node6.html Lo strato

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 29 gennaio olio. acqua. γ o = 8.0 kn/m 3. γ = 9.8 kn/m3. Cognome. Nome Matricola Docente TEMA 1

COMPITO DI MECCANICA DEI FLUIDI del 29 gennaio olio. acqua. γ o = 8.0 kn/m 3. γ = 9.8 kn/m3. Cognome. Nome Matricola Docente TEMA 1 ognome OMPITO DI MENI DEI FLUIDI del 29 gennaio 2009 TEM 1 ESERIZIO 1. Il serbatoio di figura presenta, sulla parete verticale di destra, un apertura rettangolare alta 1m e larga 2m, chiusa da una paratoia

Dettagli

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che il piano esercita sul blocco vale in modulo: F = 9.8 N F = 0.5 N F =

Dettagli

SCHEDE DEGLI ESPERIMENTI Laboratorio Fisica del Volo A.A

SCHEDE DEGLI ESPERIMENTI Laboratorio Fisica del Volo A.A SCHEDE DEGLI ESPERIMENTI Laboratorio Fisica del Volo A.A. 2010-11 ESPERIMENTO N.1: Le due bilance e il downwash - 2 bilance - Un mezzo cilindro di metallo o PVC o un profilo alare - Una lamina di metallo

Dettagli

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II)

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II) Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria himica Esercitazione 6 (FI) - 1 Gennaio 016 Scambio di materia (II) Esercizio 1 Evaporazione di acqua da una piscina Stimare la perdita

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

[a= 1.54 m/s 2 ; T 12 =17.5 N, T 23 = 10.5 N]

[a= 1.54 m/s 2 ; T 12 =17.5 N, T 23 = 10.5 N] Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale. Il coefficiente di attrito dinamico fra il piano e i blocchi è µ=0.2.

Dettagli

γ = & & Lezione XXVII Sistemi vibranti a 1 gdl (VHPSLGLVLVWHPLQRQOLQHDUL

γ = & & Lezione XXVII Sistemi vibranti a 1 gdl (VHPSLGLVLVWHPLQRQOLQHDUL (HPLGLLWHPLQRQOLQHDUL Molle ad aria Ricordando quanto detto a proposito dell isolamento delle vibrazioni, possiamo dimostrare che utilizzando un sistema di molle ad aria è possibile avere frequenze proprie

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Programma Parte I Meccanica dei Fluidi Proprietà generali dei Fluidi; Il Principio di Pascal; La legge di Stevino per i liquidi pesanti; Il Principio di Archimede; Il moto dei fluidi; Legge di Bernoulli;

Dettagli

Esercizi di Elettricità

Esercizi di Elettricità Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, è poco comprimibile e molto denso (ha un elevata densità, o massa volumica,

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 25 giugno 2001 Teoria 1. L energia potenziale é la funzione U tale che ovvero F = du dx U = F dx essendo F una forza che

Dettagli

FISICA (modulo 1) PROVA SCRITTA 02/02/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 02/02/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 0/0/015 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Due blocchi di massa m 1 e m sono posti sopra un piano orizzontale. Si considerino separatamente i

Dettagli

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Luglio 2013

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Luglio 2013 Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Luglio 2013 Quesito 1 L unità di misura del momento di inerzia può essere espressa come a) J s b) N m

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli