A Formule utili. A.1 Integrali di uso frequente. A.1.1 Integrali Gaussiani. π a (A.1) I 0 (α) = dx e ax2 = Per n =1, 2,... si ha (A.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "A Formule utili. A.1 Integrali di uso frequente. A.1.1 Integrali Gaussiani. π a (A.1) I 0 (α) = dx e ax2 = Per n =1, 2,... si ha (A."

Transcript

1 A Formule utili A.1 Integrali di uso frequente A.1.1 Integrali Gaussiani Per n =1, 2,... si ha I (α) = dx e ax2 = π a (A.1) I 2n+1 (α) =, I 2n (α) = dx x 2n e ax2 =( 1) n n π α n a (A.2) I(α, β) = = 1 2 = 1 4 = 1 4 = 1 4 πβ = dx x sin(βx) e α2 x 2 dx x eıβx e ıβx 2ı dx eıβx + e ıβx ı β β 2 + β e 4α 2 β 2 π β e 4α 2 2 α 4α e β 2 4α 2 dx e α2 x 2 e α2 x 2 [e (αx+ı β 2α )2 + e (αx ı β 2α )2] e α2 x 2 (A.3)

2 128 A Formule utili A.1.2 Integrali con funzioni esponenziali dx x n e x = [( 1) n dn dα n ] = [( 1) n dn 1 dα n α α=1 dx e αx ] = α=1 = n! (A.4) = A.2 Oscillatore armonico A.2.1 Trattazione operatoriale La soluzioni per l equazione agli autovalori per l Hamiltoniano dell oscillatore armonico è: E n =(n ) ω ; Ĥ n = E n n (A.5) In termini degli operatori di creazione e distruzione mω 1 mω 1 a = 2 x i 2mω p a = 2 x + i 2mω p abbiamo: x = 2mω (a + a ) Per a e a + valgono le relazioni (A.6) p = 1 mω (a a ) (A.7) i 2 a n = n n 1 a + n = n +1 n +1 (A.8) A.2.2 Trattazione nella rappresentazione X Le autofunzioni sono date da φ n (x) = ( mω ) 1 4 i n ξ2 π 2n n! e 2 Hn (ξ) ξ = dove H n é il polinomio di Hermite n-simo definito da H n (ξ) =( 1) n e ξ2 dn e ξ2 dξ n Primi polinomi di Hermite mω x (A.9) (A.1) H (x) =1; H 1 (x) =2x; H 2 (x) =4x 2 1; H 3 (x) =8x 3 12x H 4 (x) =16x 4 48x ; H 5 (x) =32x 5 16x x (A.11)

3 A.4 Momento Angolare 129 A.3 Cambiamento di coordinate Il passaggio da coordinate cartesiane a coordinate sferiche avviene mediante la trasformazione: x = r sin θ cos φ y = r sin θ sin φ z = r cos θ (A.12) (A.13) (A.14) A.4 Momento Angolare A.4.1 Trattazione operatoriale Gli operatori J 2,J x,j y,j z soddisfano le seguenti relazioni di commutazione: [J 2,J x ]=[J 2,J y ]=[J 2,J z ]= [J x,j y ]=i J z [J y,j z ]=i J x [J z,j x ]=i J y Indichiamo con j, m il generico autoket comune a J 2 e J z : J 2 j, m = j(j +1) 2 j, m J z j, m = m j, m Gli operatori J ± = J x ± J y (A.15) soddisfano le seguenti regole di commutazione con gli operatori J 2 e J z : [J 2,J ± ]= [J z,j ± ]=±J ±. (A.16) Gli operatori J ± agiscono sugli autoket comuni ad J 2 e J z innalzando o abbassando di una unità il numero quantico azimutale: J ± l, m = l(l +1) m(m ± 1) l, m ± 1 (A.17) A.4.2 Relazione di ricorrenza per le Armoniche Sferiche dove cos θyl m (θ, φ) =a l,m Yl+1(θ, m φ) =a l 1,m Yl 1(θ, m φ) (l +1+m)(l +1 m) a l,m = (2l + 1)(2l +3) (A.18) (A.19)

4 13 A Formule utili A.4.3 Le prime Armoniche Sferiche Y = 1 4π (A.2) Y 2 = Y 1 = 3 3 cos θ, Y±1 1 = sin θe±ıφ (A.21) 4π 8π π (3 cos2 θ 1), Y 2 ±1 = 8π sin θ cos θe±ıφ, 15 Y 2 ±2 = 32π sin2 θe ±2ıφ (A.22) Y 3 = Y ±2 3 = π (5 cos3 θ 3cosθ), Y 3 ±1 = 64π sin θ(5 cos2 θ 1)e ±ıφ π sin2 θ cos θe 2±ıφ, Y 3 ±3 = 64π sin3 θe ±3ıφ (A.23) A.5 Equazione di Schrödinger in coordinate sferiche A.5.1 L equazione radiale Per un potenziale centrale V (r) l equazione di Schrödinger è separabile in coordinate sferiche. L autofunzione comune agli operatori H, L 2 e L z con autovalori rispettivamente E, l(l +1) 2 e m, sipuò scrivere nella forma ψ E,l,m (r, θ, φ) = χ E,l(r) r dove χ E,l (r) è soluzione dell equazione radiale: Y m l (θ, φ) (A.24) 2 d 2 χ E,l 2m dr l(l +1) 2mr 2 χ E,l + V (r)χ E,l = Eχ E,l (A.25) χ E,l (r) deve soddisfare la condizione lim r χ E,l(r) =. (A.26) A.5.2 Le prime funzioni di Bessel Sferiche j (ρ) = sin(ρ),j 1 (ρ) = sin(ρ) ρ ρ 2 cos(ρ), (A.27) ρ

5 A.7 Teoria Perturbativa indipendente dal tempo 131 A.5.3 Le prime autofunzioni dell atomo d idrogeno Detto a = 2 μe 2 il raggio di Bohr, si ha ψ 1,, = 1 a 3 2 π e r a (A.28) ψ 2,, = 1 ) 4 3 2π a 2 (2 ra e r 2a (A.29) ψ 2,1, = r 2π a 2 e r 2a a cos θ (A.3) ψ 2,1,±1 = r 2π a 2 e r 2a a sin θe ±ıϕ (A.31) A.6 Spin A.6.1 Matrici di Pauli σ 1 = ( ) 1 σ 1 2 = ( ) ( ) i 1 σ i 3 = 1 σ i σ j = δ ij + ɛ ijk σ k (A.32) (A.33) {σ i,σ j } = σ i σ j + σ j σ i =2δ ij (A.34) [σ i σ j ]=σ i σ j σ j σ i =2iɛ ijk σ k (A.35) A.6.2 Relazioni utili In particolare se A = B (A σ)(b σ) =(A B) I + i (A B) σ (A.36) (A σ) 2 = A 2 I (A.37) e iθ σ = I cos θ + i(n σ)sinθ dove n = θ θ (A.38) A.7 Teoria Perturbativa indipendente dal tempo Sia dato l Hamiltoniano H = H + H 1 dove il problema agli autovalori di H sia stato risolto: H n () = E () n n ().

6 132 A Formule utili Se l autovalore E n () è non degenere e se gli elementi di matrice m () H 1 n () sono piccoli rispetto ai livelli E n (), abbiamo i seguenti sviluppi per gli autovalori E n e gli autostati n di H: E n = E () n + E (1) n + E (2) n +... dove n = n () + n (1) + n (2) +... E (2) n E (1) n = n () H 1 n () (A.39) = m n m () H 1 n () 2 E n () E m () (A.4) n (1) = m () H 1 n () m () (A.41) m n E n () E m () A.8 Teoria Perturbativa dipendente dal tempo Sia dato l Hamiltoniano H = H + H 1 (t) dove si conosce la soluzione del problema agli autovalori di H H n () = E () n n (), mentre H 1 dipende dal tempo e i suoi elementi di matrice nella rappresentazione di H sono piccoli rispetto ai livelli E n (). Scriviamo lo stato del sistema al tempo t nella forma ψ(t) = n () d n (t) e i E n t n (). (A.42) Detta P i f la probabilità con la quale troveremo il sistema nello stato f (), se al tempo t = esso si trova nello stato i (), al I ordine perturbativo si ha P i f (t) = d f (t) 2 = ı dove ω fi = E() f E() i e f =i. t dτ f () H 1 (τ) i () e ıω fiτ 2 (A.43)

7 A.9 Approssimazione di Born 133 A.9 Approssimazione di Born Detti k e k i vettori d onda rispettivamente della particella incidente e di quella diffusa, l ampiezza di diffusione in approssimazione di Born per il potenziale V (r) è data da f B (k, k )= μ 2π 2 dr e ik r V (r ) e ik r (A.44) dove μ è la massa ridotta del sistema. Nel caso di potenziale centrale l espressione si semplifica: f B (q) = 2μ 2 q dr sin(qr) V (r) r (A.45) dove, trattandosi di scattering elastico, q = k k =2k sin θ 2,conθ angolo di diffusione.

8 Bibliografia 1. V. I. Kogan and V. M. Galitskiy. Problems in Quantum Mechanics. Prentice- Hall London, I. I. Gol dman and V. D. Krivchenkov. Problems in Quantum Mechanics. Pergamon Press London, I. I. Gol dman, V. D. Krivchenkov, V. I. Kogan and V. M. Galitskiy. Selected Problems in Quantum Mechanics. Infosearch London, D. Ter Haar. Selected problems in Quantum Mechanics. Infosearch Ltd. London, G. Passatore. Problemi di meccanica quantistica elementare. Franco Angeli Milano, II edizione, E. Merzbacher. Quantum Mechanics. Wiley New York, L. Landau et E. Lifchitz. Phys. Theor. vol. III (Mecanique Quantique). Mir Moscou, A. Messiah. Mecanique Quantique, volume I e II. Dunod Paris, R. Shankar. Principles of Quantum Mechanics. Plenum Press New York, II edition, G. Nardulli. Meccanica Quantistica, volume I e II. Franco Angeli Milano, S. Flügge. Practical Quantum Mechanics, volume I e II. Springer Verlag Berlin, 1971.

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

Appello di Meccanica Quantistica I

Appello di Meccanica Quantistica I Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per

Dettagli

Compito di recupero del giorno 27/11/2015

Compito di recupero del giorno 27/11/2015 Compito di recupero del giorno 27/11/2015 Esercizio n. 1 Una particella di massa m e spin 1/2 si muove in due dimensioni nel piano xy ed è soggetta alla seguente Hamiltoniana: H = 1 2m (p2 x + p 2 y) +

Dettagli

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013 L atomo di idrogeno R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II Modello per l atomo di idrogeno Modello: protone fisso nell origine ed elettrone in

Dettagli

Oscillatore Armonico in M.Q.

Oscillatore Armonico in M.Q. Oscillatore Armonico in M.Q. Oscillatore Armonico Unidimensionale Risoluzione in coordinate cartesiane L oscillatore armonico unidimensionale è un sistema che ha la seguente Hamiltoniana: H = P M + Mω

Dettagli

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi Problemi di Meccanica Quantistica Capitolo IX Spin a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IX.1 Un sistema consiste di due particelle distinguibili

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

I esonero di Meccanica Quantistica 22/2/2006 A.A Proff. G. Martinelli, A. Pugliese

I esonero di Meccanica Quantistica 22/2/2006 A.A Proff. G. Martinelli, A. Pugliese I esonero di Meccanica Quantistica //006 A.A. 005 006 Proff. G. Martinelli, A. Pugliese Esercizio n. Una particella di spin / e massa m è vincolata a muoversi su una sfera di raggio R. Al tempo t =0 lo

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2016-2017 (1) Per un sistema meccanico n-dimensionale scrivere: (a) gli elementi di matrice dello operatore posizione x

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2014-2015 (1) Per un sistema meccanico n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione

Dettagli

Non c è alcuna possibilità che gli uomini un giorno accedano all energia. Robert Millikan Premio Nobel per la Fisica 1923

Non c è alcuna possibilità che gli uomini un giorno accedano all energia. Robert Millikan Premio Nobel per la Fisica 1923 Capitolo 3 Atomi Non c è alcuna possibilità che gli uomini un giorno accedano all energia atomica. Robert Millikan Premio Nobel per la Fisica 1923 3.1 Potenziali a simmetria sferica In problemi a simmetria

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

SECONDA PARTE anno accademico

SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2018-2019 (1) Per un sistema meccanico d-dimensionale determinare: (a) gli elementi di matrice dell operatore posizione

Dettagli

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio Stato quantistico Funzione d onda 1D, rappresentazione delle coordinate + ( x) dx 1 Densità di probabilità Funzione normalizzata Osservabile F(X) Valore medio Osservabili Operatori lineari hermitiani sullo

Dettagli

Collezione di esami del corso di (Istituzioni di) Meccanica Quantistica del terzo anno della laurea in Fisica dell Università di Napoli Federico II

Collezione di esami del corso di (Istituzioni di) Meccanica Quantistica del terzo anno della laurea in Fisica dell Università di Napoli Federico II Collezione di esami del corso di (Istituzioni di) Meccanica Quantistica del terzo anno della laurea in Fisica dell Università di Napoli Federico II Avvertenze Ogni esame ha alle sue spalle un corso, che

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata

Dettagli

Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica. Corso di. Meccanica Quantistica. Prof. Gianluca Grignani.

Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica. Corso di. Meccanica Quantistica. Prof. Gianluca Grignani. Università degli Studi di Perugia - Corso di Laurea Triennale in Fisica Corso di Prof. Gianluca Grignani Problem Set 6 Problema Si consideri un oscillatore armonico isotropo bidimensionale con Hamiltoniana

Dettagli

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore)

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore) Compito di MQ. Gennaio 0 Vecchio Ordinamento o Applicativo: Risolvere gli esercizi I e II (tempo: due ore Siano date due particelle (non identiche di spin /. A t =0lospindellaprimapunti nella direzione

Dettagli

Elementi di struttura della materia

Elementi di struttura della materia Elementi di struttura della materia Luigi Sangaletti Università Cattolica del Sacro Cuore Dipartimento di Matematica e Fisica a.a. 2004-2005 Quantizzazione delle energie Tracciare ed identificare i primi

Dettagli

Oscillatore armonico in più dimensioni

Oscillatore armonico in più dimensioni Oscillatore armonico in più dimensioni 1 Oscillatore in D dimensioni La teoria dell oscillatore armonico si può generalizzare facilmente da una a più dimensioni. Infatti la hamiltoniana di un oscillatore

Dettagli

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2 1 Teoria Una particella di massa m = 1 g e carica elettrica q = 1 c viene accelerata per un tratto pari a l = m da una differenza di potenziale pari av = 0 volt Determinare la lunghezza d onda di De Broglie

Dettagli

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda Compito I di MQ. Febbraio 0 Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda ψ( x = f(r (r + ix con Hamiltoniana H = µbl y determinare la funzione d onda al tempo

Dettagli

Equazioni differenziali - Applicazioni

Equazioni differenziali - Applicazioni Equazioni differenziali - Applicazioni Antonino Polimeno Università degli Studi di Padova Equazione di Schrödinger 1D - 1 Equazione di Schrödinger i ψ(x, t) = Ĥ ψ(x, t) t al tempo t = 0 la funzione è definita

Dettagli

Campo elettromagnetico

Campo elettromagnetico Campo elettromagnetico z y Classicamente, è formato da un campo elettrico E e da un campo magnetico B oscillanti B E λ E = E 0 cos 2π(νt x/λ) B = B 0 cos 2π(νt x/λ) νλ = c ν, frequenza x λ, lunghezza d

Dettagli

Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello

Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello spazio. Il momento angolare. Lo spin Il gruppo SU(2)

Dettagli

Esame Scritto di Meccanica Quantistica Traccia di soluzione

Esame Scritto di Meccanica Quantistica Traccia di soluzione Esame Scritto di Meccanica Quantistica Traccia di soluzione 7 Giugno 7. Per esprimere la hamiltoniana data H = P 4m + p m + mω X + x ) in termini di x e x si esegue il cambiamento di coordinate ) X = x

Dettagli

Errata Corrige al testo Leonardo Angelini Meccanica Quantistica: problemi scelti Springer II edizione

Errata Corrige al testo Leonardo Angelini Meccanica Quantistica: problemi scelti Springer II edizione Errt Corrige l testo Leonrdo Angelini Meccnic Quntistic: problemi scelti Springer 08 - II edizione 5 novembre 08 Cpitolo. Costnti del moto Correggere l formul pg. 0 d F, G F, G + i F, G, H dt t F t G +

Dettagli

Oscillatore armonico tridimensionale

Oscillatore armonico tridimensionale Oscillatore armonico isotropo Oscillatore armonico tridimensionale L oscillatore armonico isotropo in 3 dimensioni é descritto dall hamiltoniana con H = m p + m ω r = h m + m ω r ) [ p, H ] 0 [ L, H ]

Dettagli

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i.

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i. 1 Corso di Laurea in Chimica e Tecnologie Chimiche - A.A. 212-213 Chimica Fisica II Esame scritto del 25 Febbraio 213 Quesiti d esame: 1. Definire gli operatori componente del momento cinetico P x e del

Dettagli

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore)

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore) Compito di MQ. Gennaio 204 Determinare i livelli energetici di un sistema di due particelle che interagiscono col potenziale 3 4 mω2 (x 2 + x 2 2) 5 2 mω2 x x 2 Determinare il più generale stato compatibile

Dettagli

Esercizi FisMat3 MQ. 24 Aprile 2018

Esercizi FisMat3 MQ. 24 Aprile 2018 Esercizi FisMat3 MQ 24 Aprile 2018 Gli esercizi proposti sono quasi tutti estratti dalla collezione di esercizi (con soluzioni) a cura di E. d Emilio e L. Picasso (ETS, 2011). Alcuni di questi sono stati

Dettagli

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale FISICA QUANTISTICA I PROVA SCRITTA DEL 0/9/013 1. Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale V (x) = V 0 θ(x) αδ(x), V 0, α > 0, (1) con la funzione a gradino

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2012/13)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2012/13) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (01/13) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli

Dettagli

Teoria dello scattering

Teoria dello scattering Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 7 Teoria dello scattering Teoria dello scattering Abbiamo già usato la regola d oro di Fermi per calcolare delle sezioni d urto:

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 015-016 (1) Si consideri una particella che può colpire uno schermo diviso in tre zone, indicate dai ket 1,, 3, e si supponga

Dettagli

Il momento angolare e l atomo di Idrogeno

Il momento angolare e l atomo di Idrogeno Il momento angolare e l atomo di Idrogeno Corso di Fisica Matematica 3, a.a. 2017-2018 Dipartimento di Matematica, Università di Milano 10/4/2018 Il testo (di L. Picasso) che stiamo seguendo discute in

Dettagli

Collana di Fisica e Astronomia

Collana di Fisica e Astronomia Collana di Fisica e Astronomia A cura di: Michele Cini Stefano Forte Massimo Inguscio Guido Montagna Oreste Nicrosini Franco Pacini Luca Peliti Alberto Rotondi Leonardo Angelini Meccanica quantistica:

Dettagli

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2.

OSCILLATORE ARMONICO UNIDIMENSIONALE. Consideriamo una particella sottoposta a una forza armonica di costante mω 2. 4/7 OSCILLATORE ARMONICO 09/10 1 OSCILLATORE ARMONICO UNIDIMENSIONALE Lo spazio di Hilbert e l operatore hamiltoniano Consideriamo una particella sottoposta a una forza armonica di costante mω 2. Nello

Dettagli

Esercizio III Data a tempo t = 0 una particella di spin uno con Hamiltoniana

Esercizio III Data a tempo t = 0 una particella di spin uno con Hamiltoniana Compitino I di MQ. Dicembre 04 Risolvere due dei seguenti esercizi (tempo: due ore Esercizio I Siano date due particelle di massa m interagenti col potenziale V (x, x = mω ( 5x + 5x + 8x x trovare i livelli

Dettagli

PARITA. Parità Parità intrinseca Conservazione della Parità

PARITA. Parità Parità intrinseca Conservazione della Parità PARITA Parità Parità intrinseca Conservazione della Parità PARITÀ L operatore di inversione spaziale è una trasformazione discreta che inverte il segno delle tre coordinate spaziali: P x, y, z -x, -y,

Dettagli

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma Quantum Computing Esercizi 1 Qubit Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma ψ = e iγ ( cos(θ/) 0 + e iφ sin(θ/) 1 ), dove γ, θ e φ sono numeri reali. Il fattore di

Dettagli

Coordinate curvilinee; integrazione

Coordinate curvilinee; integrazione Coordinate curvilinee; integrazione Antonino Polimeno Università degli Studi di Padova Coordinate curvilinee - 1 x = x(q 1, q 2, q 3 ) q 1 = q 1 (x, y, z) y = y(q 1, q 2, q 3 ) q 2 = q 2 (x, y, z) z =

Dettagli

Programma della I parte

Programma della I parte Programma della I parte Cenni alla meccanica quantistica: il modello dell atomo Dall atomo ai cristalli: statistica di Fermi-Dirac il modello a bande di energia popolazione delle bande livello di Fermi

Dettagli

PRIMA PARTE anno accademico

PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 017-018 (1) Si consideri una particella che può colpire uno schermo in cui sono praticate tre fenditure, indicate dai ket

Dettagli

Problemi di Meccanica Quantistica. Capitolo XI. Metodi Perturbativi e Variazionali

Problemi di Meccanica Quantistica. Capitolo XI. Metodi Perturbativi e Variazionali Problemi di Meccanica Quantistica Capitolo XI Metodi Perturbativi e Variazionali a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema XI.1 Si consideri

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 1 (2015/16) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli

Dettagli

Esercizi natalizi. 20 gennaio 2016

Esercizi natalizi. 20 gennaio 2016 Esercizi natalizi 20 gennaio 206 Prefazione Questa è una breve guida alla soluzione degli esercizi del 5-2-5, scritta con l intenzione di mettere in evidenza i risultati ed i passaggi matematici e concettuali

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 007-008 () Sia dato un sistema che può trovarsi in tre stati esclusivi,, 3, e si supponga che esso si trovi nello stato

Dettagli

1.3 L effetto tunnel (trattazione semplificata)

1.3 L effetto tunnel (trattazione semplificata) 1.3 L effetto tunnel (trattazione semplificata) Se la parete di energia potenziale non ha altezza infinita e E < V, la funzione d onda non va rapidamente a zero all interno della parete stessa. Di conseguenza,

Dettagli

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico Tema d esame di Elementi di MQ. Prova I Dato il potenziale monodimensionale V (x) = 2 γδ(x), con γ positivo, trovare l energia dello stato fondamentale la probabilità che una particella nello stato fondamentale

Dettagli

FISICA QUANTISTICA I (2016/17)

FISICA QUANTISTICA I (2016/17) FISICA QUANTISTICA I (2016/17) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli a semplici esempi,

Dettagli

Capitolo 4. Momento angolare e Sistemi Tridimensionali

Capitolo 4. Momento angolare e Sistemi Tridimensionali Capitolo 4 Momento angolare e Sistemi Tridimensionali 111 112 CAPITOLO 4. MOMENTO ANGOLARE E SISTEMI TRIDIMENSIONALI 4.1 Momento Angolare Nei problemi tridimensionali una variabile dinamica importante

Dettagli

MECCANICA QUANTISTICA anno accademico Traccia delle soluzioni. ˆx 1. x 1. ˆx n. ˆp 1. ˆp n

MECCANICA QUANTISTICA anno accademico Traccia delle soluzioni. ˆx 1. x 1. ˆx n. ˆp 1. ˆp n PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 1-13 Traccia delle soluzioni Esercizio 1 (a) Gli elementi di matrice dell operatore posizione ˆ x tra gli autostati

Dettagli

FISICA QUANTISTICA I (2018/19)

FISICA QUANTISTICA I (2018/19) FISICA QUANTISTICA I (2018/19) Scopo del corso Lo studente dovrebbe apprendere alla fine di questo corso i contenuti fondamentali della meccanica quantistica e imparare ad applicarli a semplici esempi,

Dettagli

Esame scritto (parte di Meccanica Quantistica) 19/06/2017. Esercizio 1. Si consideri l oscillatore armonico descritto dalla Hamiltoniana

Esame scritto (parte di Meccanica Quantistica) 19/06/2017. Esercizio 1. Si consideri l oscillatore armonico descritto dalla Hamiltoniana Corso di Fisica Matematica 3 a.a. 06/7 Esame scritto (parte di Meccanica Quantistica) 9/06/07 Esercizio. Si consideri l oscillatore armonico descritto dalla Hamiltoniana H 0 = p m + mω x, e siano n (n

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

Compito Scritto Meccanica Quantistica, 01/02/2017

Compito Scritto Meccanica Quantistica, 01/02/2017 Compito Scritto Meccanica Quantistica, 01/0/017 Esercizio 1. Si consideri una particella di massa m espin1,chesimuoveinunospaziolimitatoda due superfici piane poste in z = a/ ez = a/, per cui la sua coordinata

Dettagli

Figura 7.1: Ipotesi di Heisenberg

Figura 7.1: Ipotesi di Heisenberg Capitolo 7 Isospin nei nuclei Nel 9 Heisenberg scrisse tre articoli sulla forza nucleare, trattando neutrone e protone come due stati della stessa particella, il nucleone, distinti dal valore assunto da

Dettagli

Corso di Fisica Teorica I Modulo Prof. Camillo Imbimbo, Prof. Stefano Giusto Prova Scritta 15/02/2002

Corso di Fisica Teorica I Modulo Prof. Camillo Imbimbo, Prof. Stefano Giusto Prova Scritta 15/02/2002 Corso di Fisica Teorica I Modulo Prof. Camillo Imbimbo, Prof. Stefano Giusto Prova Scritta 15/0/00 Un sistema di N elettroni in una scatola cubica di volume V è descritto dall Hamiltoniana Ĥ = Ĥ0 + Ĥ1

Dettagli

REGISTRO DELLE LEZIONI 2005/2006. Tipologia

REGISTRO DELLE LEZIONI 2005/2006. Tipologia Struttura formale della meccanica quantistica Rapprestazione matriciale Addì 03-10-2005 Addì 03-10-2005 15:00-16:00 Teorema della compatibilità Theorema dell'indeterminazione per operatori non commutanti

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 08 (usare fogli diversi per esercizi diversi) Primo Esercizio i) Assumiamo che Q sia un punto di un corpo rigido piano

Dettagli

Laurea Magistrale di INGEGNERIA ELETTRONICA (LM-29) a.a , I semestre! Programma del corso di FISICA SUPERIORE! Docente: MAURO PAPINUTTO!

Laurea Magistrale di INGEGNERIA ELETTRONICA (LM-29) a.a , I semestre! Programma del corso di FISICA SUPERIORE! Docente: MAURO PAPINUTTO! Laurea Magistrale di INGEGNERIA ELETTRONICA (LM-29) a.a. 2013-14, I semestre Programma del corso di FISICA SUPERIORE Docente: MAURO PAPINUTTO Dipartimento di Fisica Phone: +39 06 4991 4376 Universita`

Dettagli

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Considero l equazione di Schrödinger per gli autovalori Ĥψ = Eψ e prendo un s.o.n.c. di funzioni u j (x). ψ si potrà esprimere come

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Se esiste un vettore x per cui Ax = λx x 0 Allora λ è un autovalore della matrice A corrispondente all autovettore x Gli autovalori sono soluzioni dell equazione secolare det(a

Dettagli

Atomi a più elettroni

Atomi a più elettroni Chapter 7 Atomi a più elettroni 7.1 Lo spin Gli esperimenti indicano che alle particelle si deve associare un momento angolare intrinseco, o spin, indipendentemente dalla loro natura (particelle elementari

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2011-2012 Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si trovi

Dettagli

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a ESERCIZI DI MECCANICA QUANTISTICA a cura di Stefano Patrì - a.a. - Esercizio Un oscillatore armonico in dimensione con massa m e pulsazione ω si trova in uno stato iniziale ψ, tale che: una misura dell

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE 0/ DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Complementi di Meccanica Quantistica

Complementi di Meccanica Quantistica Esercizi e Problemi del corso di Complementi di Meccanica Quantistica tenuto da Fedele Lizzi Nota: I problemi preceduti da una si riferiscono alle parti monografiche del corso, di cui ogni anno viene svolta

Dettagli

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2)

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2) Effetto Zeeman Effetto Zeeman normale La hamiltoniana di una particella in presenza di un campo elettromagnetico, descritto dal potenziale vettore A e dal potenziale scalare Φ é H = 2M e l euazione di

Dettagli

Appunti di Meccanica Quantistica

Appunti di Meccanica Quantistica Università degli Studi di Bari Corso di Laurea in Fisica Appunti di Meccanica Quantistica Versione provvisoria aggiornata al 9 dicembre 215 Leonardo Angelini Dipartimento Interateneo di Fisica via Amendola

Dettagli

Comune ordine di riempimento degli orbitali di un atomo

Comune ordine di riempimento degli orbitali di un atomo Comune ordine di riempimento degli orbitali di un atomo Le energie relative sono diverse per differenti elementi ma si possono notare le seguenti caratteristiche: (1) La maggior differenza di energia si

Dettagli

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare 1 Momento angolare. Il momento della quantitá di moto (momento angolare) é definito in fisica classica dal vettore (nel seguito usiamo la convenzione che gli indici ripetuti vanno intesi sommati) l = x

Dettagli

1 Nucleo di evoluzione nel formalismo canonico

1 Nucleo di evoluzione nel formalismo canonico Corso di Laurea Magistrale in Fisica, Università di Cagliari Corso di Teorie di gauge, A. A. 04/05 Esercizi I, 7 ottobre 04 Docente: Giuseppe D Appollonio Nucleo di evoluzione nel formalismo canonico a)

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

Appendice 1 RISONANZE. Istituzioni di Fisica Nucleare e Subnucleare Lezione 6 A. Andreazza - a.a. 2015/16

Appendice 1 RISONANZE. Istituzioni di Fisica Nucleare e Subnucleare Lezione 6 A. Andreazza - a.a. 2015/16 Appendice RISONANZE Istituzioni di Fisica Nucleare e Subnucleare Lezione 6 Generalizzazione a scattering anelastico (Krane.8) Nel caso ci sia la possibilità di assorbimento, questo può venire descritto

Dettagli

Problemi di Meccanica Quantistica. Capitolo VII. Oscillatore Armonico in più dimensioni

Problemi di Meccanica Quantistica. Capitolo VII. Oscillatore Armonico in più dimensioni Problemi di Meccanica Quantistica Capitolo VII Oscillatore Armonico in più dimensioni a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema VII.1 Per un

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE /2 DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 28 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = 1 x + x x > 0 determinare le frequenze delle piccole

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Se esiste un vettore x per cui Ax = λx x 0 Allora λ è un autovalore della matrice A corrispondente all autovettore x Gli autovalori sono soluzioni dell equazione secolare det(a

Dettagli

Commutazione di una componente col quadrato: È possibile misurare simultaneamente L 2 e una componente di L.

Commutazione di una componente col quadrato: È possibile misurare simultaneamente L 2 e una componente di L. Atomi L = r i L x = y i L y = z i L z = x i Momento angolare: riassunto [ L 2 ] z z [L x, L y ] = i L z i y [L Enrico Silva - proprietà z, L x ] = i L intellettuale y, L non ceduta x,y,z = 0 Non x è x

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

Distribuzione δ Carlo Oleari. La δ di Dirac è una distribuzione (o funzione generalizzata) definita dal seguente integrale.

Distribuzione δ Carlo Oleari. La δ di Dirac è una distribuzione (o funzione generalizzata) definita dal seguente integrale. Distribuzione δ Carlo Oleari La δ di Dirac è una distribuzione (o funzione generalizzata) definita dal seguente integrale b a dxf(x) δ(x x ) = f(x ), a < x < b (1) dove f(x) è una funzione sufficientemente

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

24.1. Ritorno al gruppo delle trasformazioni di Möbius Lo spazio proiettivo degli stati di un qubit.

24.1. Ritorno al gruppo delle trasformazioni di Möbius Lo spazio proiettivo degli stati di un qubit. 4.1. Ritorno al gruppo delle trasformazioni di Möbius. 4.1.1. Lo spazio proiettivo degli stati di un qubit. Il qubit è il sistema quantistico più semplice che esista: un sistema i cui stati possibili possono

Dettagli

2. Una particella incidente su un gradino di potenziale, V (x) = 0 per x < 0 e V (x) = U per x 0, è descritta dalla funzione d onda

2. Una particella incidente su un gradino di potenziale, V (x) = 0 per x < 0 e V (x) = U per x 0, è descritta dalla funzione d onda Esempi di esercizi 1. Un oscillatore armonico unidimensionale, di massa m, e costante elastica k, ha costante di smorzamento η. Esso è sollecitato da una forza F (t) = F e iωt. (a) Spiegare in che senso

Dettagli

Eccitazioni nucleari

Eccitazioni nucleari 1 Spettro rotazionale Lezione 28 Eccitazioni nucleari Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Eccitazioni nucleari. Capitolo Spettro rotazionale

Eccitazioni nucleari. Capitolo Spettro rotazionale Capitolo 1 Eccitazioni nucleari 1.1 Spettro rotazionale Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Soluzione del secondo Esonero di Meccanica Quantistica

Soluzione del secondo Esonero di Meccanica Quantistica 1 Soluzione del secondo Esonero di Meccanica Quantistica 1/3/007 Compito A Osserviamo che l hamiltoniana è separabile nella forma H = H x1 + H y1 + H x + H y dove si è posto H x1 = p x 1 m + U(x 1), H

Dettagli

Compito di gennaio 2001

Compito di gennaio 2001 Compito di gennaio 001 Un asta omogenea A di massa m e lunghezza l è libera di ruotare attorno al proprio estremo mantenendosi in un piano verticale All estremità A dell asta è saldato il baricentro di

Dettagli

Simmetrie della hamiltoniana e degenerazione

Simmetrie della hamiltoniana e degenerazione Simmetrie della hamiltoniana e degenerazione. Simmetrie e gruppi di trasformazioni In meccanica quantistica hanno grande importanza le simmetrie della hamiltoniana, dove per simmetria si intende l invarianza

Dettagli