Equazioni parametriche di II grado (vincolata da condizioni)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equazioni parametriche di II grado (vincolata da condizioni)"

Transcript

1 Equzioni prmetrihe di II grdo (vinolt d ondizioni) Per risolvere un equzione prmetri di II grdo, vinolt d ondizioni, oorre:. Trsformre l equzione nell su form noni 0 (rogliendo fttor omune i termini in e i termini in ). Applire le proprietà sotto indite N Tipologi delle rdii Condizione d imporre Un sol soluzione (Equzione di I grdo) 0 Un rdie ugule zero (Equzione spuri) 0 Rdii opposte (Equzione spuri) 0 0 Rdii reli e distinte > 0 5 Rdii reli 0 6 Rdii reli e oinidenti Rdii uguli 0 Rdii omplesse < 0 8 Un rdie ugule 5 Sostituire 5 l posto dell 5 nell equzione 9 Somm delle rdii 0 Prodotto delle rdii Rdii reiprohe Le due rdii sono l un l opposto del reiproo dell ltr Differenz delle rdii Somm dei qudrti delle rdii 5 Somm dei ui delle rdii 6 Somm dei reiproi delle rdii on 0 Somm dei qudrti dei reiproi delle rdii 8 Somm dei ui dei reiproi delle rdii on 0 on 0 Appunti di Alger oomer.virgilio.it/mimmoorrdo

2 Appunti di Alger oomer.virgilio.it/mimmoorrdo Dimostrzione (on 0 ) Dimostrzione 9 Dimostrzione 0 Dimostrzione Dimostrzione Dimostrzione m m Dimostrzione Dimostrzione 6 : oppure ( ) ( ) ( ) ( )

3 Equzioni prmetrihe di II grdo (senz ondizioni) Per risolvere un equzione prmetri di II grdo oorre:. Trsformre l equzione nell su form noni 0 Rogliere fttor omune i termini in e i termini in, per determinre i oeffiienti,, dell equzione, in funzione del prmetro t. Studire il so 0 (l equzione divent di I grdo) Determinre il vlore di k per il qule 0 Sostituire tle vlore nell equzione e determinre l soluzione. Studire il so 0 (l equzione divent pur) Determinre il vlore di k per il qule 0 Sostituire tle vlore nell equzione e determinre le soluzioni,. Studire il so 0 (l equzione divent spuri) Determinre il vlore di k per il qule 0 Sostituire tle vlore nell equzione e determinre le soluzioni, 5. Clolre il Determinre il vlore del 6. Studire il so > 0 (l equzione mmette due soluzioni reli e distinte) Risolvere l disequzione > 0 per determinre il vlore di k per il qule > 0 Determinre le soluzioni,. Studire il so 0 (l equzione mmette due soluzioni reli e oinidenti) Risolvere l equzione 0 per determinre il vlore di k per il qule 0 Determinre le soluzioni, 8. Studire il so < 0 (l equzione mmette due soluzioni omplesse e distinte) Risolvere l disequzione < 0 per determinre il vlore di k per il qule < 0 9. Rppresentre il qudro rissuntivo dell disussione dell equzione Rppresentre il qudro rissuntivo on il seguente shem Vlore del prmetro Tipo di Equzione Soluzioni k 5 Equzione di I grdo 5 k Equzione Pur, k Equzione Spuri 0 ; 5 k k < e 5 k k Equzione Complet on > 0, k k Equzione Complet on 0, k > e k Equzione Complet on < 0 Soluzioni Complesse Appunti di Alger oomer.virgilio.it/mimmoorrdo

4 Esempio k k k 0. ( k ) ( k ) k 0 ; ( k ) ; ( ). 0 ; Equzione di I ; k 0 ; k ; k k ; [ ( ) ] ( ) 0 ; 0 ;. 0 ; Equzione Pur; k 0 ; k ; 0 ; 0 ; 9 0 ; 9 0 ;. 0 ; Equzione Spuri; k 0 ; k ; 9 0; ( ) ( ) ( ) 5. k k k 9 k k k 6. > 0 ; k > 0 ;. 0 ; k 0 ; 8. < 0 ; k < 0 ; 0 9 k 9 k ( k k k ) k > ; k ; k < ;, ( k ) ( k ) k k, Vlore del prmetro Tipo di Equzione Soluzioni k Equzione di I grdo k Equzione Pur ; k Equzione Spuri 0 9 k > e k ; ( k ) k Equzione Complet on > 0, ( k ) k ; k k Equzione Complet on 0, k < Equzione Complet on < 0 Soluzioni Complesse Appunti di Alger oomer.virgilio.it/mimmoorrdo

5 Esempio ( k ) k k k k k ( k ). k k( k ) ( k ) ; m..m. ( k ) 0. ( k ) ( k ) ( k ) k k k ; k 0 k ; ( ) ( k ) k 0 k ; ( k k ) ; k ; ( ) k ;. 0 ; Equzione di I ; ( k ) 0 ; k 0 ; k non ettile, perhé Dominio. Pertnto l equzione non è mi di I grdo.. 0 ; Equzione Pur; k k 0 ; k e k k non ettile, perhé Dominio. per k 0 ; 0 ; 0 ; ;, ; Equzione Spuri; k 0 ; k 0 ; non ettile, perhé 0 Dominio. Pertnto l equzione non è mi spuri. 6. ( ) ( ) k k k k 6k 9k 56k 6k 8k 6k 6k 6k 6k k 9k 6k. > 0 k ( k ) ( k ) ( ) ( 6k 8k ) ; ( ) ( ) > 0 k k ; k e ( k k ) ( k ) ( k ), ( k ) k k ( k 9k ) k k ( k ) k k ( k ) k k ( k ) 9k 9k 8k k k ( k ) 6k k ( k ) k ( k ) ( k ) ( k ) k ( k ) ( k ) ( k ( k ) k ( k ) ( k ) Appunti di Alger oomer.virgilio.it/mimmoorrdo 5

6 8. 0 ; per Per k. Per k l equzione perde di signifito, perhé Dominio 8 6, k 9. < 0 ; per nessun vlore di k Vlore del prmetro Tipo di Equzione Soluzioni k 0 ; e k L equzione perde di signifito Per nessun vlore di k Equzione di I grdo k Equzione Pur Per nessun vlore di k Equzione Spuri k 0 ; k e k Equzione Complet on > 0 k Equzione Complet on 0 Per nessun vlore di k Equzione Complet on < 0, 9 k, ( k ) ( k ) Appunti di Alger oomer.virgilio.it/mimmoorrdo 6

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO 6 LE EQUAZIONI DI GRADO - SECONDA PARTE NOTA - Preliminre questi rgomenti, è l onosenz dei numeri omplessi (pitolo preedente) ) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI GRADO In ogni equzione

Dettagli

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita EQUAZONE ALGEBRCA D SECONDO GRADO o QUADRATCA in un inognit 1 form omplet oeffiienti b 4 (disriminnte) formule risolutive b se > due rdii reli e distinte (se e hnno segni disordi è positivo) b b (form

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi.

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi. Corso di Anli Alger di Bse ^ Lezione Equzioni di. Equzioni di. Equzioni fttorili. Equzioni iqudrtihe. Equzioni inomie. Equzioni frtte. Allegto Eserizi. EQUAZIONI ALGEBRICHE EQUAZIONI DI GRADO Con il termine

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

La risoluzione di una disequazione di secondo grado

La risoluzione di una disequazione di secondo grado L risoluzione di un disequzione di seondo grdo Quest nno le disequzioni srnno importntissime. Non si prlerà però proprimente di disequzioni m di studire il segno di un funzione. In effetti un numero può

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Equazioni di secondo grado intere letterali

Equazioni di secondo grado intere letterali Equazioni di seondo grado intere letterali Esempio. k ) x k + )x + k + 0 a k b k + ) k + Disussione. Se k 0 k l equazione si abbassa di grado. Disutiamo il aso a 0 aso in ui l equazione diventa di primo

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni 9 ) Proprietà delle disuguglinze fr numeri reli reltivi ) Inequzioni e loro proprietà ) Inequzioni rzionli intere di primo grdo d un incognit 4) Segno del trinomio di secondo grdo : T = c 5) Inequzioni

Dettagli

Algebra Condizioni di Esistenza Equazioni di secondo grado Scomposizione di un trinomio di secondo grado Definizione di valore assoluto

Algebra Condizioni di Esistenza Equazioni di secondo grado Scomposizione di un trinomio di secondo grado Definizione di valore assoluto Alger Condizioni di Esistenz n N x D x A(x) on n pri D x 0 A x 0 tn f(x) f x + k se f(x) f x + k log A x B(x) A x > 0 A x B x > 0 f x α f x 0 on α > 0 irrz. f x α f x > 0 on α < 0 irrz. f x g x f x > 0

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni lgeriche. NOTA ogni monomio o polinomio può essere

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

Le frazioni algebriche

Le frazioni algebriche Progetto Mtemtic in Rete - Frzioni lgeriche - Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni

Dettagli

KIT ESTIVO MATEMATICA A.S. 2018/19

KIT ESTIVO MATEMATICA A.S. 2018/19 ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 8/ CLASSI PRIME IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse seond, onsiglimo lo svolgimento piere di eserizi

Dettagli

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione)

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione) Alger linere. Vettori: definizioni Un ettore x n dimensioni è un insieme ordinto di n numeri x ( x x...x n ) I numeri x x...xn sono detti omponenti del ettore x. I ettori possono essere sritti sotto form

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

L IPERBOLE. x y 0 x 5 + y 0 = si sviluppano i prodotti notevoli; Cioè ( ) ( ) ( ) ( ) y = 8 si porta un radicale al 2 membro;

L IPERBOLE. x y 0 x 5 + y 0 = si sviluppano i prodotti notevoli; Cioè ( ) ( ) ( ) ( ) y = 8 si porta un radicale al 2 membro; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato;

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

Materia: MATEMATICA Data: 5/04/2005

Materia: MATEMATICA Data: 5/04/2005 Mteri: MATEMATICA Dt: 5/4/25 L disequzione e' un disuguglinz che e' verifict per certi intervlli di vlori Ad esempio l disequzione x - 4 e' verifict per tutti i vlori dell x mggiori di 4, cioè se l posto

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. Fermi" LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA

ISTITUTO TECNICO INDUSTRIALE E. Fermi LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA ISTITUTO TENIO INDUSTILE "E. Fermi" LU nno Solstio / Progrmm di MTEMTI lsse prim Sez. G Insegnnte MUSUMEI LUIN Gli insiemi ppresentzione di un insieme. I sottoinsiemi. Le operzioni on gli insiemi unione

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Introduzione alle disequazioni algebriche

Introduzione alle disequazioni algebriche Introduzione lle disequzioni lgebriche Giovnni decide di fre ttività fisic e chiede informzioni due plestre. Un plestr privt chiede un quot d iscrizione nnu di 312, più 2 per ogni ingresso. L plestr comunle

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Misura degli archi e degli angoli

Misura degli archi e degli angoli Misur degli rhi e degli ngoli. Si definise ome positivo il verso ntiorrio di perorrenz di un ironferenz; ome negtivo il verso orrio.. Fissto su un ironferenz un punto A ome origine e un punto B ome estremo

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

DISCIPLINA* RIPASSO UNITA 1 UNITA 2 UNITA 3 UNITA 4 UNITA 5 UNITA 6

DISCIPLINA* RIPASSO UNITA 1 UNITA 2 UNITA 3 UNITA 4 UNITA 5 UNITA 6 All. Anno Scolstico 6-7 Clsse Bl DISCIPLINA* Mtemtic DOCENTE; Giovnn Frre Testo in dozione: L. Ssso l Mtemtic colori edizione zzurr Primo biennio ed. De Agostini- Petrini RIPASSO le frzioni lgebriche:

Dettagli

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO ACCADEMIA NAVALE Sllbus POLIGRAFICO ACCADEMIA NAVALE LIVORNO PREFAZIIONE È noto che in tluni ordini dell scuol medi superiore l'insegnmento dell mtemtic non giunge sino ll'ultimo nno, in ltri, lo svolgimento

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

5. Autovalori e autovettori di matrici reali.

5. Autovalori e autovettori di matrici reali. 5 Autovlori e utovettori di mtrici reli Definizione 5 Dt un mtrice A M n si dice utovlore di A un numero rele tle che X per cui n, n, AX = λ X L mtrice X si dice utovettore reltivo ll'utovlore λ λ Vicevers

Dettagli

Simulazione seconda prova parziale

Simulazione seconda prova parziale Simulzione seond prov przile Test. x + dx = x () {( ) + ln [( ) ( + )]} {( ) [( ) ( )]} () + ln + (b) {( ) + ln [( + ) ( + )]} (d) {( + ) + ln [( + ) ( )]}. Si f(x) = x + x. Allor 0 f (y)dy = () (b) ()

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA PROBLEMI DI APPLICAZIONE DELL'ALGEBRA ALLA GEOMETRIA ) Inscrivere in un semicirconferenz di dimetro r un rettngolo ABCD vente il lto AB sul dimetro

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: /7 Progrmm di mtemtic Istituto tecnico settore tecnologico. Clsse II H Disequioni di primo grdo sistemi di disequioni e disequioni frtte. Segno

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI T CAPITOLO LE DISEQUAZIONI LINEARI Le disuguglinze numerihe Eserizi p. 7 Listen to it You n epress strit inequlities between numbers with the symbols nd. Le disuguglinze numerihe stbilisono relzioni fr

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Candidato: Matricola: Sede locale: Per la Commissione 1B 2B 3B Parte A Parte B Totale

Candidato: Matricola: Sede locale: Per la Commissione 1B 2B 3B Parte A Parte B Totale FACOLTÀ DI INGEGNERIA - CORSO DI LAUREA IN INGEGNERIA INFORMATICA Esme di MATEMATICA B (IN TELECONFERENZA), TITOLARE: A. LANGUASCO) mrzo 00 (Secondo compitino,.. 001/00) Cndidto: Mtricol: Sede locle: Per

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

DISEQUAZIONI RAZIONALI

DISEQUAZIONI RAZIONALI DISEQUAZIONI RAZIONALI Un disequzione è un disuulinz r due espressioni letterli per l qule si rierno i vlori delle lettere he rendono l disuulinz ver. Primo prinipio di equivlenz: A B A ± M B ± M dove

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli