DINAMICA. Forze di massa + Forze di superficie = Forze di inerzia. Forze di massa = ρ fdxdydz. Forze di inerzia = ρ. Adxdydz

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DINAMICA. Forze di massa + Forze di superficie = Forze di inerzia. Forze di massa = ρ fdxdydz. Forze di inerzia = ρ. Adxdydz"

Transcript

1 DINMIC Equilibrio idrodinamico Legge di Newton: i F i = m Forze agenti: Forze di massa + Forze di superficie = Forze di inerzia Forze di massa = ρ fdxdydz f = ccelerazione del campo, ovvero forza per unità di massa Forze di inerzia = ρ dxdydz = ccelerazione del moto

2 DINMIC Forze di superficie z Consideriamo l elementino infinitesimo e vediamo cosa succede a coppie di facce parallele. Faccia di normale x Φ = τ xy Φ x Φ = xx Φ = τ σ x xy xz xz dx dz dy Φ x + ( x ) Φ x x dx y

3 DINMIC Risultante forze agenti su facce di normale x: e analogamente per le altre coppie di facce, Quindi facendo la somma di tutte le forze si arriva a: ρ = ( f ) dove: Φ Φ Φ + + x y z ( ) ( ) ( ) x y z ( Φ ) ( ) ( ) x Φ y Φ z + + = div( Φ T ) x y z Dove Φ T è il tensore degli sforzi. Φ ( ) x x dxdydz Equazione indefinita del moto o della dinamica dei fluidi ρ = Φ ( f ) div( T )

4 DINMIC Dopo una lunga serie di passaggi, si può riscrivere l eq. indefinita del moto anche in questa forma: ( ) ( ) 1 ρ f = grad P μ V μgrad div( V ) 3 Equazione di Navier-Stokes Se il fluido è perfetto, cioè ha solo sforzi normali (pressione) mentre gli sforzi tangenziali sono nulli, si ottiene: ρ f = grad P ( ) Equazione indefinita della dinamica dei fluidi perfetti o equazione di Eulero

5 DINMIC Se integriamo sull intero volume l eq. indefinita della dinamica dei fluidi perfetti, si ottiene dopo molti passaggi: G +Π+ M + I = dove: G = ρ fdw w Π= P nd 0 Equazione globale dell equilibrio dinamico per i fluidi perfetti I M = ρvv d M [N] (Flusso di) quantità di moto n ( ρv ) = w t dw I [N] attraverso la superficie Inerzie locali

6 Osservazione su M : M DINMIC = ρvv d n M : contributo relativo alla porzione con V entrante V > 0 1 M : contributo relativo alla porzione con V uscente V < 0 M : contributo relativo alla porzione con V tangente V = 0 3 n n n G + Π+ M 1 M + I = 0 Osservazione su I : I ( ρv ) = w t dw Se fluido incomprimibile e moto permanente I = 0

7 PPLICZIONE EQ. GLOBLE Spinta di un getto su una piastra piana Ipotesi : ρ = cost e fluido perfetto V t = 0 moto permanente V 0 Volume di controllo D D -M V 0 E y x B M1 Π+ G + M M + I = 1 0 Π=Π B +Π D +Π DE + Π CF + Π EF + Π Π B = Π D = Π DE = Π CF = Π BC = 0 BC -M Superfici a pressione atmosferica C F V 0

8 S S = Π EF Spinta del volume sulla superficie della piastra diretta secondo x Proiettiamo l eq. globale nel piano orizzontale: G = 0 S + M M = 1 0 M = ρvv d = ρv d = ρv d = ρv = ρv Q 1 n M Q ρv0 = ma contributi uguali e opposti diretti secondo y Quindi: S = M D 1 S = ρv0 π 4

9 TEOREM DI BERNOULLI IPOTESI: b - fluido perfetto - fluido incomprimibile P - moto su una traiettoria Partiamo dall Equazione di Eulero ρ = ( f ) grad( p) Nel campo gravitazionale f = g grad( z) s n S dv ρ ggrad z = dt ( ) grad ( p) dv γgrad z = grad p dt ( ) ρ ( ) grad z p + = γ 1 dv g dt

10 L accelerazione è: TEOREM DI BERNOULLI dv dv V = = s + n dt dt r Proiettando questa equazione vettoriale sui tre assi della terna intrinseca, si ottiene: Lungo s: Lungo n: Lungo b: P 1 dv ( z + ) = (1) s γ g dt P 1 V ( z + ) = () n γ g r P ( z + ) = 0 (3) b γ Osservazioni: - lungo b: distribuzione idrostatica della pressione - lungo n: se traiettoria è quasi rettilinea, cioè r, allora la distribuzione di pressione è idrostatica

11 TEOREM DI BERNOULLI Consideriamo l eq. 1: P 1 dv ( z + ) = (1) s γ g dt pplichiamo la regola di derivazione euleriana alla velocità: V = V ( t; s( t) ) dv V V ds = + dt t s dt dv V V = + V dt t s dv V V = + dt t s e sostituendola nella (1): P 1 V 1 V ( z + ) = s γ g t g s P 1 V V ( z + ) = s γ g t s g

12 TEOREM DI BERNOULLI z + + = s γ g g t P V 1 V Teorema di Bernoulli per il moto vario Se il moto è permanente: P V z + + = s γ g 0 H = p V z + costante γ + g = Teorema di Bernoulli per il moto permanente carico totale altezza geodetica altezza cinetica altezza piezometrica

13 TEOREM DI BERNOULLI H energia totale p V = z+ + = γ g energia potenziale energia di pressione costante energia cinetica Linea dell energia o dei carichi totali V g V B g V C g Linea piezometrica In termini energetici, questi 3 termini sono energia dell unità di peso. Infatti: Epotenziale = Peso=1 mgz = ( mg) z = z Ecinetica = Peso=1 1 1 V 1V mv = ( mg) = g g Epressione = energia legata alla pressione di una particella di peso unitario

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 8: Equazioni fondamentali dell idrodinamica Anno Accademico

Dettagli

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale)

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale) CINEMATICA Esperienza di Osborne Reynolds (1842-1912) Per basse velocità: moto per filetti viscoso laminare Al crescere velocità: moto di transizione V d V d Per elevate velocità: moto turbolento V d CINEMATICA

Dettagli

Capitolo 3 Cinematica e Dinamica dei fluidi

Capitolo 3 Cinematica e Dinamica dei fluidi Capitolo 3 Cinematica e Dinamica dei fluidi Cinematica: velocità e accelerazione Campo di velocità: V = V(x,y,z,t) u = u(x,y,z,t) v = v(x,y,z,t) w = w(x,y,z,t) Joseph-Louis Lagrange (Torino, 25 gennaio

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi POLITECNICO DI MILANO Meccanica dei Fluidi 5. Fluidi Ideali A cura di: Diego Berzi v1.2 Indice 1 Teorema di Bernoulli 3 2 Estensione alle correnti 7 2 1 Teorema di Bernoulli Abbiamo visto Cap. 4, Par.

Dettagli

G. Bracco - Appunti di Fisica Generale

G. Bracco - Appunti di Fisica Generale Sistemi di punti materiali Finora abbiamo considerato solo un punto materiale ma in genere un corpo ha dimensione tale da non poter essere assimilato ad un punto materiale. E sempre opportuno definire

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 5: Cinematica dei fluidi Anno Accademico 2008-2009

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 07-08 Dinamica del punto materiale 9 pprossimazioni per piccoli angoli v ± gl sin tan v gl Limite di piccoli angoli: 0 6 cos +... 3 tan + +... 3 3 sin +... Serie di Taylor: pprossimazioni per

Dettagli

Meccanica dei fluidi, dove e cosa studiare

Meccanica dei fluidi, dove e cosa studiare Meccanica dei fluidi, dove e cosa studiare Meccanica dei Fluidi AA 2015 2016 Il libro di testo adottato è Meccanica dei Fluidi di Cengel & Cimbala, McGraw Hill. Alcuni argomenti sono stati trattati con

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi FLUIDI LIQUIDI Hanno volume proprio Sono incomprimibili GAS Non hanno volume proprio Sono facilmente comprimibili CARATTERISTICHE COMUNI Non sostengono gli sforzi di taglio (non hanno

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T].

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. IDRODINAMICA Portata e velocità media Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. In una corrente d acqua la velocità

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 3: Idrostatica (parte II pressione e sua misura) proprietà

Dettagli

Corso di Laurea Ingegneria Civile e Ambientale

Corso di Laurea Ingegneria Civile e Ambientale Corso di Laurea Ingegneria Civile e Ambientale UNIVERSITÀ DEGLI STUDI DI ENNA KORE FACOLTÀ DI INGEGNERIA E ARCHITETTURA Complementi di Idraulica Ambientale Prof. Mauro De Marchis 10/03/2014 Programma del

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale:

Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale: Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 3 Meccanica Razionale 1: Scritto Generale: 16.9.211 Cognome e nome:....................................matricola:......... 1.

Dettagli

Lavoro ed Energia. r A. < 0 --> lavoro resistente

Lavoro ed Energia. r A. < 0 --> lavoro resistente Lavoro ed Energia Lavoro di una forza 1) forza f indipendente dal punto di applicazione e dal tempo. Se il suo punto di applicazione effettua uno spostamento AB, si definisce lavoro della forza f = f AB

Dettagli

V C 2gh. Q AV C C A 2gh A 2gh. Applicazione Bernoulli: FORONOMIA. Efflusso da una luce. - Luce a BATTENTE

V C 2gh. Q AV C C A 2gh A 2gh. Applicazione Bernoulli: FORONOMIA. Efflusso da una luce. - Luce a BATTENTE Efflusso da una luce - Luce a BATTENTE Ipotesi: liquido perfetto, incomprimibile, moto permanente Applicazione Bernoulli: FORONOMIA Applico Bernoulli ai punti A (vicino al pelo libero) e B (sulla sezione

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi POLITECNICO DI MILANO Meccanica dei Fluidi 4. Dinamica dei Fluidi A cura di: Diego Berzi v1.2 Indice 1 Bilancio di massa 3 1.1 Forma indefinita......................... 3 1.2 Forma globale...........................

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 18-19 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente (statico,

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi Meccanica dei Fluidi F.Fabrizi e P. Pennestrì Liceo Scientifico I. Newton - Roma Classe III D 15 marzo 2013 1 Definizione di Fluido Un fluido è un insieme di particelle che interagiscono tra loro con una

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013)

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013) Esercizi di Fisica II svolti in aula Federico Di Paolo (22/02/203) Esercizio L elettrone e il protone hanno rispettivamente una massa di 9. 0 3 kg e, 67 0 27 kg. La loro carica elettrica è pari a.6 0 9

Dettagli

Capitolo 1 Idrostatica 1.1 Premesse e definizioni Esercizi proposti Svolgimento degli esercizi proposti 24

Capitolo 1 Idrostatica 1.1 Premesse e definizioni Esercizi proposti Svolgimento degli esercizi proposti 24 INDICE Premesse Capitolo 1 Idrostatica 1.1 Premesse e definizioni 1 1.2 Esercizi proposti 6 1.3 Svolgimento degli esercizi proposti 24 Capitolo 2 Equazione globale dell equilibrio dinamico 2.1 Premesse

Dettagli

Corso di Idraulica Agraria ed Impianti Irrigui

Corso di Idraulica Agraria ed Impianti Irrigui Corso di Idraulica Agraria ed Impianti Irrigui Docente: Ing. Demetrio Antonio Zema Lezione n. 3: Idrostatica Anno Accademico 2011-2012 2012 1 Generalità L idrostatica è quella parte dell idraulica che

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

PROVA PARZIALE DEL 19 DICEMBRE 2016 modulo I

PROVA PARZIALE DEL 19 DICEMBRE 2016 modulo I PROVA PARZIALE DEL 19 DICEMBRE 016 modulo I January 8, 017 Si prega di svolgere nella maniera più chiara possibile il compito, di scrivere e risolvere le equazioni in gioco riportando tutti i passaggi

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, è poco comprimibile e molto denso (ha un elevata densità, o massa volumica,

Dettagli

IDRAULICA E COSTRUZIONI IDRAULICHE

IDRAULICA E COSTRUZIONI IDRAULICHE DIPARTIMENTO DI INGEGNERIA CIVILE E ARCHITETTURA (DICAR) Corso di laurea magistrale in Ingegneria edile-architettura Anno accademico 2016/2017-4 anno IDRAULICA E COSTRUZIONI IDRAULICHE ICAR/01-6 CFU -

Dettagli

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ).

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ). Impulso e quantità di moto: Lavori e Forze Impulso: l impulso di una forza variabile in un certo intervallo di tempo è definito come l integrale della forza rispetto al tempo nell intervallo considerato:

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Programma di IDRODINAMICA

Programma di IDRODINAMICA Programma di IDRODINAMICA LEZIONE DEL 10 marzo 2014 Distinzione tra liquidi e gas. Grandezze e sistemi di misura: dimensione delle grandezze; sistema internazionale di misura e sistema pratico; grandezze

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 4 Fisica dei fluidi Stati della materia 2 Condizione di riposo di un liquido 3 La pressione idrostatica. 4 Principio di Pascal. 5 Esercizio 7 Variazione di pressione con la profondità..

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 4: Idrostatica (parte III - equazione globale - legge

Dettagli

Meccanica Dinamica dei fluidi

Meccanica Dinamica dei fluidi Meccanica 6-7 Dinamica dei fluidi Proprietà meccaniche dei fluidi olidi Liquidi Gas orma propria Pressione acqua Assumono la forma dell ambiente che li contiene Volume proprio Incompressibile ρ kg/m 3

Dettagli

Corso di Idraulica Agraria ed Impianti Irrigui

Corso di Idraulica Agraria ed Impianti Irrigui Corso di Idraulica Agraria ed Impianti Irrigui Docente: Ing. Demetrio Antonio Zema Lezione n. 3: Idrostatica Anno Accademico 2012-2013 2013 1 Generalità L idrostatica studia le relazioni di equilibrio

Dettagli

Fisica Generale 1 per Chimica Formulario di Meccanica

Fisica Generale 1 per Chimica Formulario di Meccanica Fisica Generale 1 per Chimica Formulario di Meccanica Vettori : operazioni elementari: Nota: un vettore verra' qui rappresentato in grassetto es: A = ( A x, A y, A z ) Prodotto scalare A. B = A B cos θ,

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 25 giugno 2001 Teoria 1. L energia potenziale é la funzione U tale che ovvero F = du dx U = F dx essendo F una forza che

Dettagli

Fisica Dinamica del punto

Fisica Dinamica del punto isica - Dinamica del punto 7 VARIAZIONE DELLA VELOCITA accelerazione Principio d inerzia Un corpo permane nel suo stato di quiete o di moto rettilineo uniforme a meno che non intervenga una forza esterna

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Fluidodinamica Computazionale.

Fluidodinamica Computazionale. Fluidodinamica Computazionale carmelo.demaria@centropiaggio.unipi.it Fluidodinamica Computazionale (CFD) CFD è l analisi dei sistemi che involvono movimento di fluidi, scambio di calore ed i fenomeni a

Dettagli

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni Prova scritta di Fisica Scienze e Tecnologie dell Ambiente 6 Settembre 007 Soluzioni Parte 1 1) Sia θ l angolo di inclinazione del piano. Scelto l asse x lungo la direzione di massima pendenza, e diretto

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 016 1) Un corpo di massa M= kg si muove lungo una guida AB, liscia ed irregolare, partendo dal punto A a quota H = 9m, fino al

Dettagli

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1 Dinamica del fluidi A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi A. Stefanel - Fluidodinamica 1 Per descrivere il moto di un fluido ci sono due formalismi equivalenti: Lagrange: si descrive il moto

Dettagli

Idrodinamica. Equazione di con0nuità Equazione di Bernoulli

Idrodinamica. Equazione di con0nuità Equazione di Bernoulli Idrodinamica Equazione di con0nuità Equazione di Bernoulli Fluidi Ideali Lo studio del moto di un fluido reale sarebbe troppo complesso ed è ancora oggetto di molti studi. Limitiamoci a studiare un liquido

Dettagli

FISICA (modulo 1) PROVA SCRITTA 08/09/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 08/09/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 08/09/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Nel sistema in figura, i corpi m 1 ed m 2 sono caratterizzati da coefficienti di attrito dinamico

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

τ ij = pδ ij (30.1.1)

τ ij = pδ ij (30.1.1) 30. Fluidi I fluidi presentano una varia fenomenologia con moti regolari e moti turbolenti. Le equazioni del moto sono non lineari e, per un gas rarefatto, possono essere derivate da un modello microscopico

Dettagli

Fenomeni di rotazione

Fenomeni di rotazione Fenomeni di rotazione Si e visto che nel caso di un fluido, data la proprietà di deformarsi quando sottoposti a sforzi di taglio, gli angoli di rotazione di un elemento di fluido rispetto ad sistema di

Dettagli

Dinamica del fluidi. A. Barbisan - Fluidodinamica 1

Dinamica del fluidi. A. Barbisan - Fluidodinamica 1 Dinamica del fluidi A. Barbisan - Fluidodinamica 1 Per descrivere il moto di un fluido ci sono due formalismi equivalenti: Lagrange: si descrive il moto di ogni porzione di fluido z x z y Porzione di fluido

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

FISICA (modulo 1) PROVA SCRITTA 20/07/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 20/07/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 20/07/2015 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Una forza variabile nel tempo agisce su un corpo di massa M = 3 Kg in modo tale che il corpo si

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012 Politecnico di Milano Fondamenti di Fisica Sperimentale Prof. A. Farina) a.a. 200-20-Facoltà di Ingegneria Industriale- Ingegneria Aerospaziale, Energetica e Meccanica Seconda prova in itinere - 26/06/202

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

Fluidodinamica Computazionale.

Fluidodinamica Computazionale. Fluidodinamica Computazionale carmelo.demaria@centropiaggio.unipi.it Fluidodinamica Computazionale (CFD) CFD è l analisi dei sistemi che involvono movimento di fluidi, scambio di calore ed i fenomeni a

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Generalità sulla materia

Generalità sulla materia Generalità sulla materia Le sostanze si trovano normalmente in 3 stati di aggregazione a seconda della temperatura: solido, liquido e aeriforme (gas, vapore). Un quarto stato è quello di plasma che si

Dettagli

MECCANICA COMPUTAZIONALE DELLE STRUTTURE

MECCANICA COMPUTAZIONALE DELLE STRUTTURE MECCANICA COMPUTAZIONALE DELLE STRUTTURE Elio Sacco Dipartimento di Meccanica Strutture Ambiente Territorio Università di Cassino Tel: 776.993659 Email: sacco@unicas.it Fenomeno in natura Leggi della fisica

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Programma Parte I Meccanica dei Fluidi Proprietà generali dei Fluidi; Il Principio di Pascal; La legge di Stevino per i liquidi pesanti; Il Principio di Archimede; Il moto dei fluidi; Legge di Bernoulli;

Dettagli

MECCANICA DEI FLUIDI

MECCANICA DEI FLUIDI MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte

Dettagli

Viscosità e fluido ideale

Viscosità e fluido ideale Viscosità e fluido ideale La iscosità è una grandezza fisica che indica la resistenza di un fluido allo scorrimento. La iscosità si può pensare come una misura della forza che occorre applicare ad uno

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

Appunti del corso di Fluidodinamica Ambientale PRINCIPI DI BASE E.Pugliese Carratelli - F.Dentale G. Viccioen

Appunti del corso di Fluidodinamica Ambientale PRINCIPI DI BASE E.Pugliese Carratelli - F.Dentale G. Viccioen PRINCIPI DI BAE Es gibt nichts praktischeres, als eine gute Theorie. Non c è niente di più pratico di una buona teoria Attribuito a Immanuel Kant (1724-1804) AA 2018-2019 Avvertenze Alcune parti sono marcate

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Moto uniformemente accelerato 1) v=v 0 +a(t-t 0 ) 2) s=s 0 +v 0 (t-t 0 )+½a(t-t 0 ) 2 s=s

Dettagli

P = r. o + r. O + ω r (1)

P = r. o + r. O + ω r (1) 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 22 luglio 2004 Soluzioni: parte II

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 22 luglio 2004 Soluzioni: parte II Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale ppello del luglio 4 Soluzioni: parte II Q1. Trovare la curvatura κ della curva p(t) = sin t + e t + cos te z t [, π] nel punto corrispondente

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

ESAME DI AERODINAMICA 10/9/2012

ESAME DI AERODINAMICA 10/9/2012 ESAME DI AERODINAMICA 10/9/2012 Se un aereo Boeing 727 sviluppa un C L pari a 16 volte il suo C D, quale distanza (in Km) può percorrere in volo planato partendo da un altezza di 7500 m se all improvviso

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 Compito generale 21 Giugno 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 Compito generale 21 Giugno 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 Compito generale 21 Giugno 2013 1) Un corpo di massa M = 300 g viene lanciato verso il basso, con velocità in modulo v A = 1 m/s, lungo un piano inclinato di

Dettagli

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi La lezione di oggi La densità La pressione L equazione di continuità Il teorema di Bernoulli Stenosi e aneurismi ! Densità, pressione! La portata di un condotto! Il teorema di Bernoulli! Applicazioni dell

Dettagli

FISICA (modulo 1) PROVA SCRITTA 02/02/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 02/02/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 0/0/015 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Due blocchi di massa m 1 e m sono posti sopra un piano orizzontale. Si considerino separatamente i

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 13-14 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente y m N mg mg

Dettagli

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico 5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a

Dettagli

Meccanica Meccanica dei fluidi

Meccanica Meccanica dei fluidi Meccanica 8-9 Meccanica dei fluidi olidi Liquidi Gas orma propria Pressione acqua Assumono la forma dell ambiente che li contiene Volume proprio Incomprimibile kg/m 3 3 p Riempie tutto il volume Comprimibile.3

Dettagli

Table of contents Introduction. Controllo dei Robot. Statica

Table of contents Introduction. Controllo dei Robot. Statica Table of contents Introduction Controllo dei Robot Dipartimento di Ing. Elettrica e dell Informazione (DEI) Politecnico di Bari e-mail: paolo.lino [at] poliba.it Controllo dei Robot Obiettivo della statica

Dettagli

CAPITOLO IV. La dinamica dei fluidi newtoniani

CAPITOLO IV. La dinamica dei fluidi newtoniani Cap. IV La dinamica dei fluidi newtoniani 43 CAPITOLO IV La dinamica dei fluidi newtoniani 1. - I princípi della dinamica. I principi della dinamica sono il frutto dell evoluzione del pensiero umano durante

Dettagli

Lecture 3 Conservation Laws Text:

Lecture 3 Conservation Laws Text: Lecture 3 Text: Motori Aeronautici Mar. 6, 2015 e primo Mauro alorani Univeristà La Sapienza interna 3.20 Agenda 1 2 3 e primo interna Altre forme del interna e primo interna 3.21 Modelli a parametri distribuiti

Dettagli

Fluidodinamica Computazionale.

Fluidodinamica Computazionale. Fluidodinamica Computazionale carmelo.demaria@centropiaggio.unipi.it Fluidodinamica Computazionale (CFD) CFD è l analisi dei sistemi che involvono movimento di fluidi, scambio di calore ed i fenomeni a

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accademico 006-007 Esercizio n.: Un punto materiale di massa m e vincolato a muoversi lungo un binario orizzontale scabro. Siano µ s e µ d i coefficienti

Dettagli

Lezione 5 Dinamica del punto

Lezione 5 Dinamica del punto ezione 5 Dinamica del punto rgomenti della lezione avoro Potenza Energia cinetica avoro forza peso avoro forza d attrito avoro Studiando cosa succede integrando la forza nel tempo siamo arrivati alla definizione

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro di una forza Consideriamo una forza F applicata ad un punto materiale P che si sposti

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi Meccanica dei Fluidi Jan Pralits Department of Civil, Chemical and Environmental Engineering University of Genoa, Italy jan.pralits@unige.it 2014 Fondamenti dei meccanica dei continui (80939/6CFU) Ing.

Dettagli

RICHIAMI DELLA FISICA DI BASE. 2) I temi fondamentali della fisica classica e della fisica moderna.

RICHIAMI DELLA FISICA DI BASE. 2) I temi fondamentali della fisica classica e della fisica moderna. PROGRAMMA di FISICA CLASSE 3^ A 3^F AS 2017-18 ARTICOLAZIONE DEI CONTENUTI: Al fine del raggiungimento degli obiettivi cognitivi sono stati scelti i seguenti argomenti: RICHIAMI DELLA FISICA DI BASE 1)

Dettagli

Esercizi sull integrazione II

Esercizi sull integrazione II ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione II (Grazie agli studenti

Dettagli

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v Forza viscosa 1 / 44 Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v attrito turbolento (2) Per entrambi i modelli l equazione

Dettagli