Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico"

Transcript

1 Circuiti elettrici Per muovere una carica tra due punti ci vuole un campo elettrico, quindi una differenza di potenziale (ddp) Se la carica si muove in un percorso chiuso (circuito) ho bisogno di un congegno che mantenga una ddp tra i punti del circuito, cioè di un generatore Possiamo utilizzare molti oggetti già studiati per fare circolare corrente Possiamo usare condensatori e solenoidi Introdurremo anche le resistenze Possiamo immagazzinare energia oppure produrla Possiamo avere corrente costante (continua) come quella delle batterie, o alternata come quella delle prese

2 Verso della corrente e portatori di carica La corrente ha, per convenzione, il verso in cui si muovono le cariche positive In realtà, spesso sono le cariche negative che si muovono in verso opposto Questo avviene in tutti i metalli Alcune sostanze, i semiconduttori, possono condurre la corrente anche tramite cariche positive Queste sono le sostanze impiegate nell elettronica, nei computer, ecc. Un tipico materiale semiconduttore è in Silicio, drogato con Gallio o Germanio

3 Potenza dissipata Per portare una carica Q da un punto A ad un punto B del circuito, con ddp V il campo elettrico deve fare un certo lavoro W = q V Il lavoro fatto per unità di tempo è dato da P = dw dt = V dq dt = V I Questa è la potenza dissipata, e deve essere fornita dal generatore La potenza dissipata è tanto maggiore quanto più grandi sono la differenza di potenziale e la corrente La pericolosità della corrente dipende soprattutto dalla potenza che porta

4 Resistenza Si trova sperimentalmente che la corrente che passa tra due punti è proporzionale alla ddp secondo la legge di Ohm V = R I R è una costante che dipende da come è fatto il conduttore R = ρ L/S dove L è la lunghezza del conduttore ed S la sua sezione ρ si chiama resistività e dipende solo dalla sostanza di cui è fatto il conduttore, non dalla sua geometria La potenza dissipata in un conduttore sarà P = V I = R I 2 = V 2 /R Materiale Resistività Ω m Argento Rame Carbone Silicio 640 Quarzo fuso

5 Resistenze in serie Due o più resistenze si possono combinare per ottenere una resistenza di valore diverso Due resistenze in cui passa la stessa corrente sono in serie Le voglio rimpiazzare con un unica resistenza (equivalente) che abbia lo stesso effetto a parità di V devo ottenere la stessa corrente I V (A) e V (B) ddp ai capi della prima resistenza, V (B) e V (C) della seconda V (A) V (C) = R eq I = R 1 I + R 2 I = (R 1 + R 2 )I = R eq = R 1 + R 2

6 Resistenze in parallelo Due resistenze, tra le quali esiste la stessa ddp si dicono in parallelo Le sostituisco con una singola resistenza, in cui passi la corrente, somma delle correnti che passano in R 1 e R 2 I = V /R eq = I 1 + I 2 = V /R 1 + V /R 2 = 1/R eq = 1/R 1 + 1/R 2

7 Forza elettromotrice I generatori sono congegni capaci di trasformare l energia meccanica o chimica in energia elettrica Esempi pratici sono le batterie, gli alimentatori e la dinamo dell auto, le centrali eoliche, idroelettriche e nucleari, ecc. La misura della loro capacità di fare passare corrente è la forza elettromotrice (fem), cioè l energia per unità di carica che sono in grado di fornire La fem ha le stesse unità di misura della ddp, ma è concettualmente diversa All interno del generatore passa corrente, ed anch esso ha una resistenza r, che cambia la ddp ai capi del generatore rispetto a quella a circuito aperto V = f I r Per molti scopi pratici, r può essere sommata con qualche resistenza in serie e il generatore può essere pensato come un generatore ideale con f.e.m. = V

8 Circuiti in corrente continua Sono quelli in cui la corrente non varia nel tempo È composto da almeno un generatore e da una resistenza È costituito da nodi e da maglie Si può studiare usando la continuità della corrente nei nodi I = I 1 + I 2 e il fatto che la ddp deve essere nulla nel percorso attorno ad una maglia f = I r + I 1 R 1

9 Correnti alternate Alcuni generatori producono una corrente che varia nel tempo in modo sinusoidale. È questa la corrente alternata L espressione matematica è V (t) = V 0 cos(ω t + ϕ) = V 0 cos(2πν t + ϕ) Se la fem fosse periodica ma non armonica, si potrebbe comunque scomporre questa tramite il teorema di Fourier Un circuito con solo un generatore con fem V (t) = V 0 cos(2πν t) e una resistenza R, avrà una corrente I = V 0 /R cos(2πν t) e dissiperà una potenza P = V 2 0 R cos2 (2πν t) Poiché é inutile misurare la potenza istantanea, devo fare la media su un periodo (che equivale alla media su tempi lunghi) e ottengo P = V 2 0 /2R = V 2 eff /R = RI 2 0 /2 = RI 2 eff V eff = V 0 / 2, I eff = I 0 / 2

10 Condensatori Sono capaci di immagazzinare una carica Q se, tra le armature, c è una ddp V. Due condensatori in serie hanno la stessa carica, le ddp si sommano. Se li rimpiazzo con un unico condensatore di capacità C eq, trovo Q/C eq = V = V 1 + V 2 = Q/C 1 + Q/C 2 = 1/C eq = 1/C 1 + 1/C 2 Due condensatori in parallelo hanno la stessa ddp ed il condensatore equivalente dovrebbe avere una carica pari alla somma delle cariche Q = C eq V = Q 1 + Q 2 = C 1 V + C 2 V = C eq = C 1 + C 2

11 Carica di un condensatore Nei circuiti in corrente Marcello alternata Borromeo il corso condensatore di Fisica per Farmacia ha la - Anno proprietà Accademicodi Al momento di chiudere il circuito non c è carica sul condensatore Via via che la carica sulle armature aumenta, la ddp ai capi del condensatore controbilancia il generatore e la corrente diminuisce esponenzialmente V Q/C = IR = dq/dt Cercando una soluzione della forma Q(t) = V /C(1 A e t/τ ) Si trova A = 1 e τ = RC cioè Q(t) = CV (1 e t/τ )

12 Induttanza Un solenoide ha un campo magnetico proporzionale alla corrente Il flusso di B è quindi proporzionale a I posso scrivere allora Φ = LI Il coefficiente L non dipende dalla corrente ma solo da come è costruito il solenoide e si chiama induttanza Per un solenoide L = µ 0 n N S Dato che la legge di Faraday mi dice che V = dφ/dt allora trovo che V = L di dt L induttanza si misura in Henry (Henry = Volt secondo / Ampere)

13 Energia del campo magnetico In un circuito RL la potenza dissipata sarà VI = RI 2 + L di dt I = VI = RI 2 + d dt ( ) 1 2 LI 2 Una parte dell energia non è dissipata ma immagazzinata nel solenoide Per un solenoide di lunghezza a, esprimo in funzione del campo magnetico ricordando che L = µ 0 N 2 S/a e B = µ 0 N I /a, quindi I = a B/µ 0 N U = ( 1 2 LI 2) = 1 µ 0 N 2 S B 2 a 2 B2 2 a µ 2 = Sa 0 N2 2µ 0 Posso definire un energia per unità di volume del campo magnetico come u = U Sa = B2 2µ 0

14 Circuiti LC Sono composti da un condensatore, da un induttanza e da un generatore (in corrente alternata) L equazione del circuito è V (t) = Q(t) C (t) + LdI dt Dato che I = dq(t)/dt ho che l equazione è d 2 Q(t) dt Q(t) = V (t) LC Questa è l equazione di un oscillatore armonico forzato, con una frequenza cartteristica ω 0 = 1/ LC. I circuiti LC sono in grado di selezionare una data frequenza, e sono usati, per esempio, nella sintonizzazzione delle radio

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Possiamo combinare molti oggetti già studiati per fare circolare corrente nel modo che ci conviene Possiamo usare condensatori e solenoidi Introdurremo anche generatori (i motori delle

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma senza una differenza

Dettagli

Potenza elettrica circuito elettrico effetto Joule

Potenza elettrica circuito elettrico effetto Joule Potenza elettrica Si chiama circuito elettrico un generico percorso chiuso in cui le cariche possono muoversi con continuità, costituito da un insieme di componenti collegati tra loro mediante fili conduttori.

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

CORRENTE ELETTRICA parte I a

CORRENTE ELETTRICA parte I a Richiami sulla CORRENTE ELETTRICA parte I a - CORRENTE ELETTRICA - LEGGI DI OHM - CIRCUITI IN CORRENTE CONTINUA Corrente elettrica Un flusso di cariche elettriche da un punto ad un altro di un conduttore

Dettagli

Circuiti Elettrici + -

Circuiti Elettrici + - Circuiti Elettrici Dato un corpo carico positivamente ed uno carico negativamente. I due corpi generano un campo elettrico e ciascuno si trova ad un potenziale differente. Esiste cioè una differenza di

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1 Induzione La legge dell induzione di Faraday combina gli effetti dei campi elettrici e delle correnti, infatti sappiamo che Corrente + campo magnetico momento torcente motore elettrico Momento torcente

Dettagli

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V. CAPACITÀ ELETTRICA Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale. Si definisce capacità elettrica Unità di misura della capacità elettrica nel S.I. C

Dettagli

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t.

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t. 1 Correnti e circuiti Correnti e circuiti corrente: la quantità di carica che attraversa una superficie nell unità di tempo i i Q t lim t 0 Q t dq dt 1 Ampere (A) 1 C/s E' il rapporto tra la quantità di

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Q t dq dt. 1 Ampere (A) = 1 C/s. Q t. lim. l A. P = L / t = i V = V 2 /R= R i 2

Q t dq dt. 1 Ampere (A) = 1 C/s. Q t. lim. l A. P = L / t = i V = V 2 /R= R i 2 i i Q t lim t0 Q t dq dt Ampere (A) = C/s V i l A l A P = L / t = i V = V /= i I circuiti elettrici Per mantenere attivo il flusso di cariche all interno di un conduttore, è necessario che i due estremi

Dettagli

INDUTTANZA ENERGIA MAGNETICA

INDUTTANZA ENERGIA MAGNETICA INDUTTANZA E ENEGIA MAGNETICA Una corrente variabile in una bobina induce una f.e.m. in un altra bobina: è possibile avere lo stesso fenomeno in una sola bobina quando la corrente i varia nel tempo? Fenomenologia

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Energia accumulata in un condensatore

Energia accumulata in un condensatore Energia accumulata in un condensatore In base alla seconda legge di Kirchhoff istante per istante avremo Sappiamo che potenza istantanea fornita dal generatore Sostituendo nella eq. diff. e integrando

Dettagli

Correnti elettriche. Densità di corrente

Correnti elettriche. Densità di corrente Correnti elettriche Correnti elettriche corrispondono con cariche in moto e.g. sistemi elettrici, fulmini, sistema nervoso, vento solare Carica dq che si sposta in tempo dt corrisponde con corrente i =

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+rica Condensatori Condensatori Il condensatore è il sistema più semplice per immagazzinare energia elettrostatica. Consideriamo due piani metallici separati da un isolante. La relazione che

Dettagli

Lezione L9. 1. Equazione del Trasformatore; 2. Induttanza, Mutua Induttanza ed Autoinduttanza; 3. Circuito RL e Circuito RLC;

Lezione L9. 1. Equazione del Trasformatore; 2. Induttanza, Mutua Induttanza ed Autoinduttanza; 3. Circuito RL e Circuito RLC; ezione 9 1. Equazione del Trasformatore;. nduttanza, Mutua nduttanza ed Autoinduttanza; 3. Circuito R e Circuito RC; FCA GEERAE, Cassino A.A. 004-005 005 Carmine E. agliarone Transformatori Un semplice

Dettagli

Il vettore densità di corrente è solenoidale V=RI

Il vettore densità di corrente è solenoidale V=RI Corrente elettrica Equazione di continuita' r r ρ = J t ρ nel caso stazionario: = 0 e r J r = 0 t J densità di corrente ρ densità di carica Il vettore densità di corrente è solenoidale Leggi di ohm V=RI

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

Conduzione elettrica

Conduzione elettrica Conduzione elettrica Corrente elettrica i lim t t d dt dτ v dtdσcosθ d d di nev dtdσcosθ d nev dσcosθ d Definiamo il vettore densità di corrente j nev d dunue di j u d n Σ L intensità di corrente attraverso

Dettagli

Lez Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza.

Lez Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza. Lez. 09-3-3 Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza. Consideriamo ora un circuito elettrico alimentato da un generatore di f.e.m composto dalla serie di una R,

Dettagli

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne Elettrodinamica 1. La corrente elettrica continua 2. I circuiti elettrici Prof. Giovanni Ianne 1 La corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. La lampada ad

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) III a Esperienza del Laboratorio di Fisica Generale II Oscillazioni libere e risonanza di un circuito LC-serie (Trattazione analitica del circuito LC-serie) Con questa breve nota si vuole fornire la trattazione

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Campi elettrici e magnetici variabili nel tempo

Campi elettrici e magnetici variabili nel tempo Campi elettrici e magnetici variabili nel tempo a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci Fisica 2, Giancoli 23 Aprile 2018, Bari Dal programma o 1.0 CFU CAMPI ELETTRICI

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

Leggi e principi fondamentali

Leggi e principi fondamentali Legge di Ohm per i conduttori filiformi Leggi e principi fondamentali La resistenza elettrica R [Ω] di un conduttore metallico filiforme dipende dalla natura del conduttore e dalle sue dimensioni secondo

Dettagli

Corrente elettrica. Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci. a.a Aprile 2018, Bari

Corrente elettrica. Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci. a.a Aprile 2018, Bari Corrente elettrica a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci 23 Aprile 2018, Bari Dal programma o 2.0 CFU Conduttori e Dielettrici Corrente elettrica: Conduzione elettrica.

Dettagli

INDUZIONE E AUTOINDUZIONE

INDUZIONE E AUTOINDUZIONE E possibile avere un effetto analogo anche in un singolo circuito Un circuito percorso da una corrente variabile può indurre una f.e.m., e quindi una corrente indotta su se stesso, in questo caso il fenomeno

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

Esame di stato 2010 Tema 2 1 M. Vincoli

Esame di stato 2010 Tema 2 1 M. Vincoli Esame di stato 2010 Tema 2 1 M. incoli a) La pila di olta è sostanzialmente un generatore di differenza di potenziale costituito da più celle galvaniche collegate in serie, ciascuna delle quali è formata

Dettagli

Corrente ele)rica resistenza circui1 a corrente con1nua

Corrente ele)rica resistenza circui1 a corrente con1nua Corrente ele)rica resistenza circui1 a corrente con1nua Corrente ele)rica Se colleghiamo un filo condu)ore a un disposi1vo (per esempio una ba)eria) che mantenga una d.d.p. ΔV costante compiendo del lavoro

Dettagli

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo I FENOMENI ELETTRICI Carica elettrica Forza di Coulomb Potenziale elettrico Intensità di corrente Leggi di Ohm Resistenza e resistività Effetto termico della corrente Carica elettrica Proprietà elettriche

Dettagli

Secondo Parziale Fisica Generale T-B

Secondo Parziale Fisica Generale T-B Secondo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 20/12/2012 Soluzioni Esercizi Ex. 1 Due fasci di particelle, uno composto da nuclei di elio (m He = 6.65

Dettagli

Applicazioni delle derivate alla Fisica

Applicazioni delle derivate alla Fisica Liceo Scientifico Statale S. Cannizzaro Applicazioni delle derivate alla Fisica erasmo@galois.it Indice 1 Intensità di corrente elettrica 1 2 Tensione e corrente ai capi di un condensatore 2 3 Forza elettromotrice

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 8 Aprile 2013

Fisica 2 per biotecnologie: Prova in itinere 8 Aprile 2013 Fisica per biotecnologie: Prova in itinere 8 Aprile 03 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati ed eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA Commento ai problemi proposti nell incontro del 17 febbraio 2016 Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 I problemi proposti TRACCE

Dettagli

CAPITOLO 5 CORRENTE ELETTRICA

CAPITOLO 5 CORRENTE ELETTRICA CAPITOLO 5 CORRENTE ELETTRICA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Conduzione elettrica Materiali conduttori SOLIDI: Costituiti da un reticolo spaziale Ai vertici: ioni positivi

Dettagli

Condensatori e Corrente

Condensatori e Corrente Tutorato #9 Condensatori e Corrente La Capacità La capacità di un conduttore isolato è sostanzialmente una misura della quantità di carica che è necessario accumulare sulla supercie per aumentare il suo

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza Esperienza di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrica e circuiti Slide 1 Materiali: prima classificazione Conduttori : sostanze nelle quali alcune o tutte le cariche elettriche possono muoversi liberamente sotto l'azione di forze elettriche

Dettagli

Tre resistenze in serie

Tre resistenze in serie Tre resistenze in serie Un circuito è formato da tre resistenze collegate in serie a una batteria da 24,0 V. La corrente nel circuito è di 0,0320 A. Sapendo che R 1 = 250,0 Ω e R 2 = 150,0 Ω, calcola a)il

Dettagli

Induzione magnetica 1

Induzione magnetica 1 l flusso concatenato nduzione magnetica 1 è solenoidale è definito il flusso di concatenato con una linea chiusa e orientata Φ () n d (verso della normale n indotto dalla percorrenza della linea secondo

Dettagli

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e:

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e: Oscillazioni Applicando la legge di Faraday: E d l d ma Φ B con d l in direzione d E dl ovvero ovvero d + q / n base alla nostra scelta di polarizzazione di pero', si ha' che: dq Segue che: A d d q Allora,

Dettagli

T 1? [1 livello 2014]

T 1? [1 livello 2014] Corrente elettrica 1. Nel circuito elettrico mostrato in figura l interruttore viene chiuso e il condensatore inizia a caricarsi. Quale valore avrà la carica elettrica Q del condensatore, raggiunta la

Dettagli

Modellistica di sistemi elettrici e magnetici

Modellistica di sistemi elettrici e magnetici Modellistica di sistemi elettrici e magnetici Interazione tra cariche elettriche Legge di Coulomb q q 2 F d F F = q q 2 4 π ǫ d 2, ǫ = ǫ 0 ǫ r ǫ : permettività del mezzo ǫ 0 : permettività del vuoto ǫ

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni: Circuiti L/LC Circuiti L La trattazione di un circuito L nel caso in cui venga utilizzato un generatore di tensione indipendente dal tempo é del tutto analoga alla trattazione di un circuito C, nelle stesse

Dettagli

La corrente elettrica

La corrente elettrica 1 La corrente elettrica All interno di ogni conduttore metallico vi sono degli elettroni che sono debolmente legati ai nuclei. Questi elettroni sono liberi di muoversi all interno del metallo e sono detti

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13 Prova Scritta del 11/11/2013 - NOME 1) Un commerciante prepara palloncini colorati all interno di un magazzino di volume di

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29

ELETTRICITÀ CORRENTE CONTINUA LEZIONE N. 29 LEZIONE N. 29 (LA CONDUZIONE ELETTRICA NEI METALLI) Nei metalli gli atomi sono talmente vicini che qualche elettrone esterno viene a trovarsi nel campo elettrico dell atomo più vicino. Per questo motivo

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 16 Aprile 2012

Fisica 2 per biotecnologie: Prova in itinere 16 Aprile 2012 Fisica per biotecnologie: Prova in itinere 16 Aprile 1 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: - Proprietà generali delle cariche elettriche - Cariche puntiformi e distribuzioni continue di

Dettagli

Circuiti elettrici. 1. Resistenze. 2. Condensatori. 3. Circuiti in corrente continua. 4. Circuiti in corrente alternata IV - 0. A. Contin - Fisica II

Circuiti elettrici. 1. Resistenze. 2. Condensatori. 3. Circuiti in corrente continua. 4. Circuiti in corrente alternata IV - 0. A. Contin - Fisica II Circuiti elettrici 1. Resistenze 2. Condensatori 3. Circuiti in corrente continua 4. Circuiti in corrente alternata IV - 0 Resistenza elettrica Georg Simon Ohm osservò sperimentalmente che la corrente

Dettagli

Misure con circuiti elettrici

Misure con circuiti elettrici Misure con circuiti elettrici Samuele Straulino Laboratorio di Fisica II - S.S.I.S. 2008 2009 http://hep.fi.infn.it/ol/samuele/dida.php Descriverò in particolare questi aspetti: comportamento a regime

Dettagli

Flusso e corrente 1. Il caso idraulico. fluido di densità µ. densità di corrente J. dm dv. v n. dm dt ds. dm dt. flusso elementare

Flusso e corrente 1. Il caso idraulico. fluido di densità µ. densità di corrente J. dm dv. v n. dm dt ds. dm dt. flusso elementare l caso idraulico Flusso e corrente fluido di densità µ ds densità di corrente J n v v n J dm v µ d v ds dds v n flusso elementare v n dm ds d Φ J n ds d dm portata attraverso una sezione S Φ S ( J) J nds

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica L'intensità della corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche In un filo metallico (come il filamento di una lampadina) le cariche in moto

Dettagli

Università degli Studi di Firenze Facoltà di Ingegneria - CdL Ing. Industriale Fisica generale II - a.a. 2007/2008 Prato, 10 Luglio 2008

Università degli Studi di Firenze Facoltà di Ingegneria - CdL Ing. Industriale Fisica generale II - a.a. 2007/2008 Prato, 10 Luglio 2008 Università degli Studi di Firenze Facoltà di Ingegneria - CdL Ing. Industriale Fisica generale II - a.a. 007/008 Prato, 10 Luglio 008 1) Uno strato piano spesso indefinito è uniformemente carico con densità

Dettagli

Correnti elettriche, resistenze, legge di Ohm

Correnti elettriche, resistenze, legge di Ohm Correnti elettriche, resistenze, legge di Ohm Se in un conduttore, tra due punti qualsiasi sulla sua superficie o al suo interno, si mantiene una differenza di potenziale (ddp ) V - V - > 0 il campo elettrico

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica L'intensità della corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche In un filo metallico (come il filamento di una lampadina) le cariche in moto

Dettagli

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t Corrente elettrica In un buon conduttore è disponibile una notevole quantità di elettroni liberi di muoversi Se applico un campo elettrico E essi sono accelerati a = e E/m La velocita' cresce linearmente

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

MODULI DI FISICA (QUINTO ANNO)

MODULI DI FISICA (QUINTO ANNO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI FISICA (QUINTO ANNO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 ELETTROSTATICA 1-2 TRIMESTRE U.D. 1.

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli IV Appello - 12/06/2013 Soluzioni Esercizi Ex. 1 Tre cariche puntiformi Q 1 = 2q, Q 2 = 4q e Q 3 = 6q (dove

Dettagli

Esame Scritto Fisica Generale T-B/T-2

Esame Scritto Fisica Generale T-B/T-2 Esame Scritto Fisica Generale T-B/T- (CdL Ingegneria Civile e Informatica [A-K] Prof. M. Sioli II Appello A.A. 013-01 - 9/01/01 Soluzioni Esercizi Ex. 1 Sulla superficie della Terra, in condizioni di bel

Dettagli

Circuiti in corrente continua

Circuiti in corrente continua Domanda Le lampadine mostrate in figura sono le stesse. Con quali collegamenti si ha maggiore luce? Circuiti in corrente continua Ingegneria Energetica Docente: Angelo Carbone Circuito 1 Circuito 2 La

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 14 Corrente elettrica e circuiti

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 14 Corrente elettrica e circuiti Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 14 Corrente elettrica e circuiti 2 La corrente elettrica nei solidi Flusso di elettroni dovuto ad una differenza di potenziale

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

CAPITOLO 5 CORRENTE ELETTRICA

CAPITOLO 5 CORRENTE ELETTRICA CAPITOLO 5 CORRENTE ELETTRICA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Conduzione elettrica Materiali conduttori SOLIDI: Costituiti da un reticolo spaziale Ai vertici: ioni positivi

Dettagli

LA CORRENTE ALTERNATA

LA CORRENTE ALTERNATA CAPITOLO 39 LA COENTE ALTENATA L ALTENATOE È la legge di Faraday-Neumann, perché in linea di principio l alternatore è costituito da una spira che viene fatta ruotare all interno di un campo magnetico.

Dettagli

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta.

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta. Fenomeni elettrici Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta. Una nuova forza? Quali proprietà ha questa forza? Differenze e analogie con la forza gravitazionale?

Dettagli

n.: 1 Didattica erogativa lezione esercitazione laboratorio seminario Data: 25/09/2018 Totale ore: 2

n.: 1 Didattica erogativa lezione esercitazione laboratorio seminario Data: 25/09/2018 Totale ore: 2 n.: 1 Didattica erogativa lezione esercitazione laboratorio seminario Data: 25/09/2018 Totale ore: 2 Argomento: Introduzione ai fenomeni elettrici. Triboelettricita', generalita' di conduttori e isolanti.

Dettagli

Fondamenti di Elettronica, Sez.1

Fondamenti di Elettronica, Sez.1 Fondamenti di Elettronica, Sez.1 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

Verifica scritta di Fisica Classe V

Verifica scritta di Fisica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 19/01/2019 Verifica scritta di Fisica Classe V Soluzione Risolvi 4 degli 8 quesiti proposti. Ogni quesito vale 25 p.ti. 1. Una sbarra

Dettagli

Mutua induzione S P E R I M E N T A L E = MI 1. Dipende solo dalla geometria dei circuiti

Mutua induzione S P E R I M E N T A L E = MI 1. Dipende solo dalla geometria dei circuiti D A T Mutua induzione S P R I M N T A = MI 1 Dipende solo dalla geometria dei circuiti D A T Disclaimer: credits given in the irst presentation o this series in generale S P R I M N T A per reciprocità

Dettagli

Q=costante (indipendente dal dielettrico)

Q=costante (indipendente dal dielettrico) Se in un condensatore viene posto un materiale dielettrico con costante 5 volte maggiore rispetto quella dell aria: Quali grandezze cambiano tra Q, C e V? Q=costante (indipendente dal dielettrico) C =

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova di esame del 20/7/ NOME, n. matricola

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova di esame del 20/7/ NOME, n. matricola Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15 Prova di esame del 20/7/2015 - NOME, n. matricola 1) a) Quanto calore è necessario per aumentare la temperatura di una pentola

Dettagli

Formulario per Fisica con Esercitazioni

Formulario per Fisica con Esercitazioni Formulario per Fisica con Esercitazioni 27 gennaio 2015 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure 1/2 divisione della scala. Errore

Dettagli

Lezione L6. 1. Conduttori Ohmici; 3. Legge di Ohm; 5. Correnti Continue ed Alternate. FISICA GENERALE II, Cassino A.A

Lezione L6. 1. Conduttori Ohmici; 3. Legge di Ohm; 5. Correnti Continue ed Alternate. FISICA GENERALE II, Cassino A.A Lezione L6. Conduttori Ohmici;. esistenza Elettrica e esistività; 3. Legge di Ohm; 4. Legge di oule-lenz; 5. Correnti Continue ed Alternate. 005 Carmine E. Pagliarone Densità di corrente elettrica e Corrente

Dettagli

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico Fenomeni elettrici Legge di Coulomb Modello dell atomo, carica elettrica, forza tra cariche stazionarie Campo elettrico e potenziale elettrostatico Campo elettrico, linee di forza, lavoro della forza elettrostatica,

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 12 Corrente elettrica

Main training FISICA. Lorenzo Manganaro. Lezione 12 Corrente elettrica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 12 Corrente elettrica Lezione 12 Corrente Elettrico 1. Leggi di Ohm 2. Legge di Joule 3. Leggi di Kirchhoff e circuiti Statistica 30 25 20 15 1.

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Fisica generale II - Ingegneria Biomedica - A.A. 2015/2016 Esame parziale (Prima parte) - Versione 1 - data: 18 / 04 / Cognome: Nome: Matricola:

Fisica generale II - Ingegneria Biomedica - A.A. 2015/2016 Esame parziale (Prima parte) - Versione 1 - data: 18 / 04 / Cognome: Nome: Matricola: Fisica generale II - Ingegneria Biomedica - A.A. 2015/2016 Esame parziale (Prima parte) - Versione 1 - data: 18 / 04 / 2016 Cognome: Nome: Matricola: 1. Scrivere l equazione dimensionale della quantità

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA LA CORRENTE ELETTRICA Giuseppe Frangiamore con la collaborazione di Antonino Palumbo Definizione di corrente elettrica La corrente elettrica è un qualsiasi moto ordinato di cariche elettriche, definita

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

Misure di forze elettromotrici

Misure di forze elettromotrici Misure di forze elettromotrici Il metodo potenziometrico o di Poggendorf permette di misurare la forza elettromotrice di un generatore confrontandola con una forza elettromotrice nota con precisione (pila

Dettagli

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p V = V A V con V >V.

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p V = V A V con V >V. Corrente elettrica ) Definizione di corrente elettrica Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p = con >. Nel filo si stabilisce un campo elettrico che esercita

Dettagli

ε ε ε ε = L e, applicando Kirchoff, ε IR L = 0 ε L di L dx dx R R R dt R dt x L Rt L Rt L Rt L t

ε ε ε ε = L e, applicando Kirchoff, ε IR L = 0 ε L di L dx dx R R R dt R dt x L Rt L Rt L Rt L t Circuiti R serie Un circuito che contiene una bobina, tipo un solenoide, ha una autoinduttanza che impedisce alla corrente di aumentare e diminuire istantaneamente. Chiudendo l interruttore a t= la corrente

Dettagli

Corso di laurea in Informatica Secondo compitino di Fisica Generale Docenti: G. Colò, M. Maugeri 17 giugno 2008

Corso di laurea in Informatica Secondo compitino di Fisica Generale Docenti: G. Colò, M. Maugeri 17 giugno 2008 Firma Laurea ed anno di corso orso di laurea in nformatica Secondo compitino di Fisica Generale Docenti: G. olò, M. Maugeri 7 giugno 008 ognome: Nome: Matricola: Pos: ) La legge di Joule mostra che la

Dettagli