Meccanica Cinematica del punto materiale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Meccanica Cinematica del punto materiale"

Transcript

1 Meccanca 7-8

2 Puno maerale Corpo d dmenson rascurabl rspeo allo spazo nel quale s muoe e neragsce con alr corp Approssmazone Terra-Sole R d Earh Sun-Earh m.5 m E una buona approssmazone? - rba norno al Sole: K - Maree: nsuffcene! Dpende dallo scopo dell anals (dalla domanda a cu samo cercando d rspondere) Non pccolo n senso assoluo Elerone-nucleo relecron raom m 8 m 8 puno maerale? Puno maerale: modello (elemenare) S perde qualunque nformazone non descra dal modello (roazone, brazone, sruura, complessà...)

3 Moo d un puno maerale: Poszone n funzone del empo z Varazone della poszone: 3 4 Varazone della elocà: Deraa 5 n un dao ssema d rfermeno Velocà ( ), ( ), z ( ) Accelerazone Equazone del moo ( legge orara ) Traeora: Luogo de pun araersa dal puno maerale n momeno (cura connua) NB: Quee : assenza d momeno n un cero ssema d rfermeno Grandezze fondamenal per la descrzone del momeno: poszone, elocà, accelerazone (funzon del empo) Plaone ( a.c.) Arsoele (384-3 a.c.)

4 Moo relneo Traeora pù semplce: rea moo relneo z z Samo no a sceglere l ssema d rfermeno Conene sceglere l ssema d rfermeno n modo che l moo sa descro da una sola coordnaa () 3 () 3 NB: con elocà e accelerazone qualunque Equazone del moo: è una funzone () La scela dell orgne della coordnaa spazale ( ) e del empo nzale ( ) è arbrara

5 Moo relneo: Velocà Rapdà dello sposameno. Msuro la poszone n due ders san: ( ) ( ) Consderamo: Sposameno Inerallo d empo Defnamo la elocà meda: ( ) ( ) m (defnzone) Esempo. Treno ala elocà Mlano-Roma: m Con una cero errore spermenale, nelmnable! «Nelle proe naural non s dee rcercare l'esaezza geomerca.» (Galleo Galle) km km 96.5 km/h h 55mn.9h Mlano-Roma-Mlano: m

6 Velocà meda: Esempo Velocà (meda) d espansone del reso d Supernoa (Tcho, SN 57) (Kamper 978, Hughes ) m θ 3.5" ann Dsanza: 7 d km d θrad θ arcsec radan: θ rad 3.5'' π ann second: s s θ rad d d θ rad m d θ rad km s 4 km/s

7 ( ) ( ) Moo relneo: Velocà ( ) ( ) Velocà meda: lm d( ) d DERIVATA Rapdà della arazone della poszone per ogn Pendenza della rea angene alla funzone () In generale la elocà è a sua ola funzone del empo ( ) d( ) d Se cosane: moo relneo unforme m Velocà sananea: Consderamo nerall nfnesm e sposamen nfnesm

8 d cosane d e α d d α d d e α d df dg [ f ( ) + g( )] + d d d d dg df [ f ( ) g( )] f + g d d d d d [ f ( g( ))] df dg dg d Derae d sn cos d cos d sn d log d d

9 Moo relneo: Velocà e sposameno ( ) d( ) d Noa l equazone del moo (), possamo rcaare la elocà () con l operazone d derazone Problema nerso: Noa (), come rcaamo ()? d Poszone () a nerall d empo regolar ( s) Velocà meda: +, + Per nerall nfnesm: ( ) d Sposameno oale: d ( ) d ( ) + m,,,... N Sposameno oale: somma de N ( ) d Equazone del moo relneo N m Poszone nzale ( ) m, (elocà qualunque)

10 α d α d α + Inegral α + α + α + + C ( α ) ( ) α + α + α + α d α + C d + C d d

11 Moo relneo: Velocà e sposameno + sposameno con segno m,, m NB: Il segno è negao se l puno maerale s acna a Sposameno oale se l puno rorna alla poszone nzale! Forma complea per la elocà meda Velocà meda: m Equazone del moo m + ( ) d ( ) d In generale: Valor medo della funzone f(z) nell nerallo z < f > z z z f ( z) dz

Meccanica Introduzione

Meccanica Introduzione Meccanica 23-24 Inroduzione FISICA GENERALE Meccanica: -Sudio del moo dei corpi -Forza di gravià Termodinamica: - Calore, fenomeni ermici, applicazioni Eleromagneismo: - Cariche eleriche, magnei FISICA

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Soluzione di sistemi di equazioni differenziali

Soluzione di sistemi di equazioni differenziali Soluzone d ssem d equazon dfferenzal Porese aere l mpressone d non sapere nulla sulle equazon dfferenzal e d non aerne ma nconraa una. In realà quesa mpressone è sbaglaa perché la legge d Neon F ma s può

Dettagli

Approfondimenti su: cinematica, moto in una dimensione

Approfondimenti su: cinematica, moto in una dimensione Approondmen su: cnemaca, moo n una dmensone Problem,,3,4: dcolà meda, ul per la preparazone all esame Problem 5,6: argomen d approondmeno, acola ) Un ghepardo, n agguao nella saana, asa una gazzella e

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 Moo reilineo O ( ) ( ) Dalla posizione alla elocià d ) ( ) d d d Dalla elocià alla posizione d ) d d ) d ( ) + ) d α d α d α + Inerali α + α + α + + C ( α ) ( ) α + α + α + α d α + C d +

Dettagli

Analisi delle reti con elementi dinamici

Analisi delle reti con elementi dinamici Prncp d ngegnera elerca ezone a Anals delle re con elemen dnamc Induore Connesson d nduor Induore nduore è un bpolo caraerzzao da una relazone ensonecorrene d po dfferenzale: ( d( d e hanno ers coordna

Dettagli

ESPONENTI DI LIAPUNOV

ESPONENTI DI LIAPUNOV ESPONENTI DI IAPUNOV Ssem a empo dscreo, mono- e mul-dmensonal Problemache d calcolo Ssem a empo connuo C. Pccard e F. Dercole Polecnco d Mlano - 9/0/200 /8 MAPPE MONO-DIMENSIONAI Consderamo l ssema a

Dettagli

Note: 11 esercitazioni relative ai modelli presentati a lezione. Esercitatori: Ing. Piegari, Ing. Merlo

Note: 11 esercitazioni relative ai modelli presentati a lezione. Esercitatori: Ing. Piegari, Ing. Merlo Noe: esercazon relae a moell presena a lezone Esercaor: Ing. Pegar, Ing. erlo cemeno: ogn mercole opo le esercazon ermen: el. 376-45 E-mal: marco.merlo@polm., lug.pegar@polm. So: hp://www.eec.polm. DINAICA

Dettagli

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto Seconda legge di Newon: Fd = dp Legame fra l azione della forza agene sul puno durane l inervallo d e la variazione della sua quania di moo Casi in cui F() e noa: relaivamene rari Spesso per conoscere

Dettagli

Università degli Studi di Milano. Facoltà di Scienze Matematiche Fisiche e Naturali

Università degli Studi di Milano. Facoltà di Scienze Matematiche Fisiche e Naturali Unersà degl Sud d Mlano Facolà d Scenze Maemache Fsche e Naural Cors d Laurea n: Inormaca ed Inormaca per le Telecomuncazon Anno accademco 7/8, Laurea Trennale, Edzone durna FISICA Lezone n. 5 (4 ore)

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 7-8 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate)

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate) Modell elemenar n forma d ssem dnamc Fondamen d Aomaca G. Ferrar Trecae rc elerc Ressore v ngresso sca R E n ssema LTI SISO d ordne ssema saco e propro D, D R rc elerc Indore v ngresso sca sao L E n ssema

Dettagli

Calcolo della derivata nel punto iniziale. Estrapolazione al primo ordine in t/2 e calcolo della derivata. Estrapolazione al secondo ordine in t

Calcolo della derivata nel punto iniziale. Estrapolazione al primo ordine in t/2 e calcolo della derivata. Estrapolazione al secondo ordine in t Il meodo d Runge-Kua Rassumendo possamo de che l meodo d Runge- Kua d odne due consse nell esegue una esapolazone del pmo odne da a x(/ nel aluae la deaa x (/ e nell ulzzala pe oenee una sma d x( esaa

Dettagli

MECCANICA STATICA CINEMATICA DINAMICA

MECCANICA STATICA CINEMATICA DINAMICA MECCANICA STATICA CINEMATICA DINAMICA CINEMATICA DESCRIVE IL MOTO INDIPENDENTEMENTE DALLE CAUSE CHE LO PRODUCONO O LO MODIFICANO DINAMICA STUDIA IL MOTO IN RELAZIONE ALLE CAUSE (FORZE) CHE LO PRODUCONO

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

CINEMATICA. Concetto di moto

CINEMATICA. Concetto di moto Uniersià degli Sudi di Torino D.E.I.A.F.A. CINEMATICA La cinemaica è una branca della meccanica classica che si occupa dello sudio del moo dei corpi senza preoccuparsi delle cause che lo deerminano. Tecnicamene

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

Equazioni dei componenti

Equazioni dei componenti Equazon de componen Eserczo Nella fgura è rappresenao un quadrupolo la cu sruura nerna alla superfce lme conene ressor R e R. Deermnare le equazon del componene ulzzando come arabl descre quelle corrsponden

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Spostamento, velocità, accelerazione

Spostamento, velocità, accelerazione Spostamento, veloctà, acceleraone Posone e spostamento Due stan assegna t 1 e t, con t t 1 >0 Posone al tempo t 1 : r r t ) ( ( t ), ( t ), ( 1 ( 1 1 1 t1 Posone al tempo t : r r t ) ( ( t ), ( t ), (

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessario conoscere la posizione del corpo nello spazio e quindi occorre fissare un sisema di riferimeno. x Z z k i r j P (x,y,z) y Y i, j, k eore unià

Dettagli

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a. 2009-2010 Cenn d modellsca (crcu elerc

Dettagli

P posizione i occupata dal punto materiale all istante di tempo t: x ( t ) coordinata del punto P. x ( t ) = x ( t) i vettore posizione all istante t

P posizione i occupata dal punto materiale all istante di tempo t: x ( t ) coordinata del punto P. x ( t ) = x ( t) i vettore posizione all istante t MOTO RETTILINEO: formalismo eoriale Il puno maeriale si muoe lungo una rea O O origine x () P asse X P posizione i occupaa dal puno maeriale all isane di empo : x ( ) coordinaa del puno P x ( ) x ( ) i

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessaio conoscee la posizione del copo nello spazio e quindi occoe fissae un sisema di ifeimeno. x Z z k i θ ϕ j P (x,y,z) y Y i, j, k eoe unià (esoe)

Dettagli

Definizione della tariffa per l accertamento di conformità degli strumenti di misura

Definizione della tariffa per l accertamento di conformità degli strumenti di misura alla delberazone d Guna n. 2 del 20.0.2009 Defnzone della arffa per l accerameno d conformà degl srumen d msura. Per l accerameno d conformà degl srumen d msura sono defne le seguen 8 class arffare: denfcavo

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Cinematica del punto materiale 1. La definizione di cinematica.

Cinematica del punto materiale 1. La definizione di cinematica. Cinemaica del puno maeriale 1. La definizione di cinemaica. 2. Posizione e Sposameno 3. Equazione oraria del moo 4. Traieoria 5. Moo in una dimensione. 6. Velocià media e velocià isananea. 7. Moo reilineo

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Uniesià Poliecnica delle Mache, Facolà di Agaia C.d.L. Scienze Foesali e Ambienali, A.A. 009/010, Fisica 1 Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessaio conoscee la posizione del copo nello

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d leroecnca: crcu n eoluzone dnamca nono Maffucc maffucc@uncas er oobre 7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa la correne nell nduore all sane caare

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 3-4 Cinemaica del puno maeriale 5 Coordinae polari (r, θ): Angolo θ() aggio r ( ) cos. Cinemaica del puno maeriale Moo circolare Caso paricolare di moo curilineo nel piano Traieoria: circonferenza

Dettagli

Fisica Cinematica del punto

Fisica Cinematica del punto Fisica - Cinemaica del puno 5 a d accelerazione angenziale a dφ u + u N a N a + a N accelerazione normale (cenripea) Cenro e raggio di curaura La raieoria localmene può essere approssimaa da una circonferenza

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. C.d.L. Scienze e Tecnoloie Ararie, A.A. 6/7, Fisica Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessario conoscere la posizione del corpo nello spazio e quindi occorre fissare un sisema di riferimeno.

Dettagli

Campo magnetico stazionario

Campo magnetico stazionario Campo magneco sazonaro www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Equazon fondamenal Equazon per l campo magneco H J B H B n d J n d Equazon d legame maerale ezzo lneare soropo B H H ) ( ezzo

Dettagli

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Dinamica del puno maeriale Scuola di Ingegneria e Archieura UNIBO Cesena Anno Accademico 2015 2016 Principi fondamenali Sir Isaac Newon Woolshorpe-by-Colserworh, 25 dicembre 1642 Londra,

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli

Fisica Generale B. Correnti elettriche stazionarie. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale B. Correnti elettriche stazionarie. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fsca Generale Corren elerche sazonare Scuola d Ingegnera e rcheura UNIO Cesena nno ccademco 14 15 Inensà d correne Fenomen sazonar: le carche sono n movmeno con caraersche nvaran nel empo n cascun puno.

Dettagli

Esercitazioni di Teoria dei Circuiti: circuiti in evoluzione dinamica

Esercitazioni di Teoria dei Circuiti: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d Teora de rcu: crcu n eoluzone dnamca prof nono Maffucc maffucc@uncas er oobre 7 Maffucc: rcu n eoluzone dnamca er-7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 5 Moo circolare Caso paricolare di moo curilineo nel piano raieoria: circonferenza Modulo della elocià (in enerale) non uniforme Coordinae polari: Anolo aio r( ) Coordinaa curilinea Posizione

Dettagli

Componenti dotati di memoria (dinamici)

Componenti dotati di memoria (dinamici) omponen doa d memora (dnamc) S raa d componen elerc che esprmono una relazone cosua ra ensone e correne che rchama anche alor d ensone e/o correne rfer ad san d empo preceden. a relazone cosua è n queso

Dettagli

CONDUTTIMETRIA. La conduttanza è l inverso della resistenza e la resistenza Conduttanza C = R

CONDUTTIMETRIA. La conduttanza è l inverso della resistenza e la resistenza Conduttanza C = R ODUTTIMETIA La condumera è una ecnca basaa sulla conducblà degl on presen n soluzone. I conduor possono essere : I spece generalmene meall e meallod, sono caraerzza dall assenza del rasporo d maera, n

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste Modell reologc Romano Lapasn Dparmeno d Ingegnera e Archeura Approcc fenomenologc e approcc molecolar/mcroreologc Problema cenrale della reologa: defnzone dell equazone cosuva (relazone ra ensore degl

Dettagli

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste Modell reologc Romano Lapasn Dparmeno d Ingegnera e Archeura Approcc fenomenologc e approcc molecolar/mcroreologc Problema cenrale della reologa: defnzone dell equazone cosuva (relazone ra ensore degl

Dettagli

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1 Moo smorzao Nel precedene paragrafo abbiamo risolo il caso in cui l'accelerazione del puno maeriale è cosane. In queso paragrafo affroneremo il caso di una accelerazione dipendene dalla elocià. Consideriamo

Dettagli

Lavoro ed Energia. Scorciatoia: concetto di energia/lavoro. devo conoscere nel dettaglio la traiettoria: molto complicato!!!

Lavoro ed Energia. Scorciatoia: concetto di energia/lavoro. devo conoscere nel dettaglio la traiettoria: molto complicato!!! avoro ed Energa esempo: corpo soggetto a orza varable con la poszone [orza d gravtà, orza della molla] oppure traettora complcata utlzzando la sola legge d Newton F ma non posso calcolare la veloctà del

Dettagli

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g.

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Studo delle oscllazon del pendolo semplce e msura dell accelerazone d ravta. Introduzone fsca Un pendolo semplce e costtuto da un flo d lunhezza L nestensble e d massa trascurable a cu e appesa un corpo

Dettagli

v t v t m s lim d dt dt Accelerazione ist

v t v t m s lim d dt dt Accelerazione ist 1 Accelerazione Se la elocià non si maniene cosane il moo non è più uniforme ma prende il nome di moo accelerao. ACCELERAZIONE: ariazione della elocià rispeo al empo Disinguiamo ra ACCELERAZIONE MEDIA

Dettagli

Circuiti magnetici. (versione del ) Campo magnetico stazionario o quasi stazionario

Circuiti magnetici.  (versione del ) Campo magnetico stazionario o quasi stazionario Crcu magnec www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Campo magneco sazonaro o quas sazonaro Condzon sazonare: grandezze eleromagneche cosan nel empo Condzon quas sazonare: varazon nel empo

Dettagli

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio orso d leroecnca NO er. 0000B orso d leroecnca NO Angelo Baggn ap. 6 appresenazone e anals de crcu elerc n regme ransoro Inroduzone rcuo resso () 0 00V 0Ω > 0 rcuo puramene resso () 00V 0A V ondensaor

Dettagli

Circuiti del secondo ordine

Circuiti del secondo ordine Crcu el secono orne Un crcuo el secono orne è caraerzzao a un equazone fferenzale el secono orne I crcu el secono orne conengono una o pù ressenze e ue elemen namc L e/o C Teora e Crcu Prof. Luca Perregrn

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio Cap 5: ANALISI DEI SEGNALI E ARAURA DINAMICA Un segnale è defnto come una qualsas varable fsca che camba nel tempo, nello spazo, o rspetto a altre varabl e che trasporta nformazon segnal determnstc segnal

Dettagli

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese.

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese. Adren-Mare Legendre (Parg, 18 seembre 175 Parg, 10 gennao 1833) è sao un maemaco francese. 1 Trasformazon d Legendre per cambare varable ndpendene Supponamoche samo neressa a conoscere una grandezza f

Dettagli

(studio del moto dei corpi) Cinematica: descrizione del moto. Dinamica: descrizione del moto in funzione della forza

(studio del moto dei corpi) Cinematica: descrizione del moto. Dinamica: descrizione del moto in funzione della forza MECCANICA (sudio del moo dei corpi) Cinemaica: descrizione del moo Dinamica: descrizione del moo in funzione della forza CINEMATICA del puno maeriale oo in una dimensione x 2 x 1 2 1 disanza percorsa empo

Dettagli

G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 2005 SISTEMI DI INDUTTORI pag. 1 di 12

G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 2005 SISTEMI DI INDUTTORI pag. 1 di 12 G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 5 SISTEMI DI INDUTTORI pag. d SISTEMI DI INDUTTORI. INDUTTORI Gl nsem d nduor sono un argomeno parcolarmene mporane, cò ne gusfca una raazone

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Introduzione alla cinematica

Introduzione alla cinematica Inroduzione alla cinemaica La cinemaica si pone come obieivo lo sudio del moo, ovvero lo sudio degli sposameni di un corpo in funzione del empo A ale fine viene inrodoo un conceo asrao: il puno maeriale

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

Mo# con accelerazione costante. Mo# bidimensionali

Mo# con accelerazione costante. Mo# bidimensionali Mo# con accelerazione cosane Mo# bidimensionali Moo con accelerazione cosane () ü Se l accelerazione è cosane uol dire che la elocià aria in modo lineare nel empo, cioè per ineralli di empo uguali si hanno

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T.

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T. tabelle dnamche Tabelle dnamche Spesso non s conosce a pror quanta memora serve per memorzzare una struttura dat (tabella d dat ~ array, tabella hash, heap, stack, ecc.. Può captare qund d allocare una

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Posizione-Spostamento-velocità media. t 3. x 3. x ( t 3 ) = x 3. x ( t 4 ) = x 4. caso particolare di moto unidimensionale. r!

Posizione-Spostamento-velocità media. t 3. x 3. x ( t 3 ) = x 3. x ( t 4 ) = x 4. caso particolare di moto unidimensionale. r! Posizione-Sposameno-velocià media Consideriamo un puno maeriale che si muove nel empo lungo una rea (moo unidimensionale) 5 1 5 1 2 2 4 ( 1 ) = 1 ( 2 ) = 2 ( 3 ) = 3 ( 4 ) = 4 ( 5 ) = 5 v, ʹ < 1 < 2

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Moto in una dimensione

Moto in una dimensione INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moo in una dimensione Sposameno e velocià Sposameno Il moo di un puno maeriale è deerminao se si conosce, isane

Dettagli

Capitolo 2 Le leggi del decadimento radioattivo

Capitolo 2 Le leggi del decadimento radioattivo Capolo Le legg del decadmeno radoavo. Sablà e nsablà nucleare Se analzzamo aenamene la cara de nucld, vedamo che n essa sono rappresena, olre a nucle sabl, anche var nucle nsabl. Con l ermne nsable s nende

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Reti neurali feedforward

Reti neurali feedforward Ret neural feedforward Stefano Ferrar Unverstà degl Stud d Mlano stefanoferrar@unmt Ret Neural Stage 04 Rete neurale feedforward S () x y S () x y 4 S () x 4 5 Stefano Ferrar Stage d Ret Neural aa 0/4

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Quantità di moto. F tavola ragazzo

Quantità di moto. F tavola ragazzo Quanttà d moto Consderamo un ragazzo su uno skateboard mentre cade. La forza peso gestsce l moto erso l basso durante la caduta, Lungo la drezone orzzontale aremo nece che: Mentre l ragazzo cade spnge

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Circuiti dinamici del primo e del secondo ordine

Circuiti dinamici del primo e del secondo ordine rcu namc el prmo e el secono orne www.e.ng.unbo./pers/masr/aca.hm ersone el -4-4 rcu elemenar el prmo orne rcuo el prmo orne: crcuo l cu sao è efno meane una sola arable a eermnazone ella rsposa rchee

Dettagli

Introduzione alla II legge della termodinamica

Introduzione alla II legge della termodinamica Introduzone alla II legge della termodnamca In natura esstono fenomen che, pur NON volando la conservazone dell energa (ΔE nt = Q L), non s verfcano: Per esempo: Oggett alla stessa che s portano a dverse;

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

EVOLUZIONE DI UN SISTEMA ROBOTICO COMANDATO IN TELEMANIPOLAZIONE E RETROAZIONATO IN POSIZIONE E FORZA

EVOLUZIONE DI UN SISTEMA ROBOTICO COMANDATO IN TELEMANIPOLAZIONE E RETROAZIONATO IN POSIZIONE E FORZA EVOLUZIONE DI UN SISTEMA ROBOTICO COMANDATO IN TELEMANIPOLAZIONE E RETROAZIONATO IN POSIZIONE E FORZA Tuor: Prof. Robero Caraccolo 1 INDICE 1. Inroduzone 1.1 Aspe general d elemanpolazone va Inerne 1.2

Dettagli

Dilatazione Termica dei Solidi

Dilatazione Termica dei Solidi Prof. Tortorell Leonardo Spermentazone Tortorell'e-book per la ISICA 6.05 - Dlatazone Termca de Sold 6.05.a) Descrzone Qualtatva del enomeno ra molt effett prodott nella Matera da un Aumento d Temperatura,

Dettagli

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 09-00 5 O O r r x r x Moo nel piano: elocià dr Componeni caresiane r x + dx d x + xx + Modlo della elocià: + x x Componeni polari dr r, r r r d dr d dr r ( r ) r + r r + r r Deriaa di n ersore

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007 Meod quanav per la sma del rscho d mercao Aldo Nassgh 16 Oobre 007 METODI NUMERICI Boosrap della curva de ass Prncpal Componen Analyss Rsk Mercs Meod d smulazone per l calcolo del VaR basa su Full versus

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Lezione 2. Meccanica di un sistema puntiforme Cinematica in due dimensioni

Lezione 2. Meccanica di un sistema puntiforme Cinematica in due dimensioni Lezione Meccanica di un sisema puniforme Cinemaica in due dimensioni Moo in un piano Il moo di un corpo su una rea può essere definio, in ogni isane da una sola funzione del empo ;spazio percorso. Se la

Dettagli

MECCANICA DELLA LOCOMOZIONE

MECCANICA DELLA LOCOMOZIONE Facolà d Ingegnera - Unersà d Psa Anno Accademco: 01/13 TECNICA ED ECONOMIA DEI TRASPORTI Docene: Marno Lup MECCANICA DELLA LOCOMOZIONE - EQUAZIONE GENERALE DEL MOTO. MOTO IN CURVA DEI VEICOLI STRADALI

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D IL MOVIMENTO Spazio e empo Sposameno Legge oraria Velocia Moo uniforme Accelerazione Moo uniformemene accelerao Esempi di moi in 2-D Il movimeno pag.1 Spazio e empo Ingredieni fondamenali: Disanza variazione

Dettagli

Soluzione di sistemi di equazioni differenziali

Soluzione di sistemi di equazioni differenziali Soluzone d ssem d equazon dffeenzal Poese aee l mpessone d non sapee nulla sulle equazon dffeenzal e d non aene ma nconaa una. In ealà quesa mpessone è sbaglaa peché la legge d Neon F ma s può scee nella

Dettagli

Impatto sulla rete di alimentazione in c.a. dei raddrizzatori con carico capacitivo

Impatto sulla rete di alimentazione in c.a. dei raddrizzatori con carico capacitivo orso d ELERONA NDUSRALE Raddrzzaor con carco capacvo. mpao sulla ree e flrao passvo Aromen raa Anals d un raddrzzaore a semonda Raddrzzaor a doppa semonda mpao sulla ree Defnzone d Power Facor Defnzone

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

Impatto sulla rete di alimentazione in c.a. dei raddrizzatori con carico capacitivo

Impatto sulla rete di alimentazione in c.a. dei raddrizzatori con carico capacitivo orso d ELERONIA INDUSRIALE Raddrzzaor con carco capacvo. Impao sulla ree e flrao passvo Aromen raa Anals d un raddrzzaore a semonda Raddrzzaor a doppa semonda Impao sulla ree Defnzone d Power Facor Defnzone

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Università degli Studi di Milano. Facoltà di Scienze Matematiche Fisiche e Naturali

Università degli Studi di Milano. Facoltà di Scienze Matematiche Fisiche e Naturali Uniersià degli Sudi di Milano Facolà di Scienze Maemaiche Fisiche e Naurali Corsi di Laurea in: Informaica ed Informaica per le Telecomunicazioni Anno accademico 17/18, Laurea Triennale, Edizione diurna

Dettagli