Ω : 0 z x 2 y 2 + 5, x 2 + y 2 1. Soluzione: Tenuto conto che. 1 + f 2 x + f 2 y dx dy. riesce, servendosi delle coordinate polari,

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ω : 0 z x 2 y 2 + 5, x 2 + y 2 1. Soluzione: Tenuto conto che. 1 + f 2 x + f 2 y dx dy. riesce, servendosi delle coordinate polari,"

Transcript

1 ANALISI VETTORIALE Soluzione scritto 19 settembre Esercizio. Assegnata la superficie cartesiana S : z = x y + 5, x + y 1 calcolare l area di S calcolare il volume di Tenuto conto che Ω : z x y + 5, x + y 1 S : z = f(x, y), (x, y) Ω Area(S) = riesce, servendosi delle coordinate polari, π 1 Area(S) = dθ 1 + 4ρ ρ dρ = π 6 Ω 1 + f x + f y dx dy ( 5 ) π Si noti come l area della superficie S, che non é piana, risulti maggiore di quella, π, del cerchio x + y 1 sul quale é costruita! Figura 1. S : z = x y + 5, x + y 1 1

2 Per quanto concerne il volume V, tenuto conto che (x, y) Ω f(x, y) > si ha, servendosi ancora delle coordinate polari, V = π f(x, y) dx dy = Ω dθ 1 ( ρ (cos (θ) sin (θ)) + 5 ) ρ dρ = 5π La simmetria della copertura S faceva del resto prevedere che il volume V sarebbe dovuto essere lo stesso del cilindro x + y 1, z Esercizio. Assegnato il campo vettoriale F (x, y, z) = (x + y + z ) {x, y, z} calcolare il lavoro di F (x, y, z) lungo la semicirconferenza z =, y, x + y = 1 percorsa in senso antiorario, calcolare il flusso di F (x, y, z) uscente dalla sfera di centro l origine e raggio 3, calcolare un potenziale di F (x, y, z). La semicirconferenza C assegnata ha la seguente rappresentazione parametrica x = cos(θ) y = sin(θ) θ [, π] z = Il lavoro L richiesto é pertanto dato dal seguente integrale π L = F. t ds = [ cos(θ) sin(θ) + sin(θ) cos(θ)] dθ = C Il risultato nullo per il lavoro era del resto prevedibile dal momento che il campo F, radiale, é, in ogni punto, ortogonale alla circonferenza C 1 Il flusso F uscente dalla superficie sferica S é, per definizione, 1 Si tratta di un fenomeno generale: in ogni punto di una superficie la normale é ortogonale alle tangenti delle curve geodetiche passanti per tale punto.

3 3 F = F. n dσ Tenuto conto che, avendo indicato con r = x + y + z si ha { x n = r, y r, z } r S e quindi F. n = r 3 = 3 3 da cui, tenuto conto che l area della sfera di raggio 3 vale 4π 3 riesce = 3 3 dσ = 4π 3 5 Osservato che il campo F é radiale S { x F = r 3 r, y r, z r un potenziale, ancora di tipo radiale V (r) é fornito da una primitiva del fattore r 3, V (r) = 1 4 r4 = 1 ( x + y + z ) 4 } 4.3. Esercizio. Assegnata l equazione differenziale y = (y + 1)(y ) determinare le soluzioni costanti, determinare la soluzione che verifica la cond. iniziale y() =. Le soluzioni costanti di un equazione di tipo autonomo y = f(y) sono tutte e sole le costanti c tali che f(c) =. Nel caso proposto { y = 1 f(y) = (y + 1)(y ) (y + 1)(y ) = y = La soluzione dell equazione differenziale y = f(y), y() = si cerca con l algoritmo formale y dy f(y) = Tenuto presente che x dx, y dy (y + 1)(y ) = x

4 4 Figura. y = (y + 1)(y ), y() = riesce 1 (y + 1)(y ) = 1 { 1 3 y 1 } y {log( y ) log() log( y + 1 )} = x 3 Tenuto presente che l esistenza delle due soluzioni costanti 1 e implica per la soluzione y che soddisfa la condizione y() = le limitazioni e quindi riesce quindi 1 < y < y = y, y + 1 = y + 1 log( y) log() log(y + 1) = 3x log Da cui y (y + 1) = e3x y = (1 e3x ) e 3x + 1 ( ) y = 3x (y + 1)

5 Esercizio. Sia S la superficie determinata dall equazione x + y + z 4 = determinare il piano tangente nel punto P = (,, ), determinare una rappresentazione parametrica di S determinare il massimo e il minimo della funzione su S. f(x, y, z) = x + y + z La superficie x + y + z 4 = ovvero x + y ( ) + z = 1 é l ellissoide di centro l origine e semiassi,,. Figura 3. x + y + z 4 =

6 6 Il piano tangente ad una superficie assegnata tramite l equazione F (x, y, z) = nel punto (x, y, z ) é dato da (x x )F x (x, y, z ) + (y y )F y (x, y, z ) + (z z )F z (x, y, z ) = Si ha pertanto, nel caso assegnato (x )F x (,, )+(y )F y (,, )+(z )F z (,, ) = 4(x ) = x = Una rappresentazione parametrica della superficie, scritta nella forma ( x ) ( ) y ( z ) + + = 1 si ricava, adattando le coordinate polari sferiche, nella forma seguente x = cos(θ) sin(ϕ) y = sin(θ) sin(ϕ) z = cos(ϕ) x = cos(θ) sin(ϕ) y = sin(θ) sin(ϕ) z = cos(ϕ) θ [, π], ϕ [, π] La funzione f(x, y, z) = x + y + z assegnata rappresenta il quadrato della distanza del punto (x, y, z) dall origine: tenuto presente che la superficie S é un ellissoide centrato nell origine e di assi coincidenti con gli assi cartesiani, risulta evidente che i punti di minimo e/o di massimo sono le intersezioni dell ellissoide con gli assi. Minimo e massimo sono pertanto minimo e massimo dei tre numeri {,, }: ne segue min =, max = 4

7 4.5. Esercizio. Assegnata la funzione F (x) = e (x y) sin(y) dy dire per quali valori x é definita, per quali x é derivabile, servendosi della sostituzione y = x + u provare che F (x) é periodica di periodo π. Tenuto presente che per ogni A < B si ha B B e (x y) sin(y) dy e (x y) dy = A A B x A x e u du 7 e u du si riconosce che l integrale improprio assegnato é assolutamente convergente per ogni x R: quindi la funzione F (x) é definita in tutto R. Tenuto presente che anche l integrale improprio (x y) e (x y) sin(y) dy é assolutamente convergente per ogni x R si riconosce che la funzione F (x) é derivabile in tutto R e riesce F (x) = (x y) e (x y) Servendosi della sostituzione indicata si ha F (x) = Con tale espressione riesce del resto F (x + π) = e quindi e u sin(x + u) du e u sin(x + π + u) du = F (x + π) = F (x) sin(y) dy e u sin(x + u) du

8 8 Figura 4. F (x) = e (x y) sin(y) dy

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E.

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E. ANALISI VETTORIALE Soluzione esonero.1. Esercizio. Assegnato il campo E (x, y, z) = x(y + z ), y(x + z ), z(x + y ) } 1111 calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1),

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 4

Analisi Vettoriale A.A Soluzioni del Foglio 4 Analisi Vettoriale A.A. 26-27 - Soluzioni del Foglio 4 Esercizio 4.1. Sia Σ la superficie cartesiana z = 1 x y, (x, y) = {x 2 + y 2 1}, determinare in ogni punto di Σ il versore normale diretto nel verso

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Esercizi su integrali tripli: cambiamento di variabili

Esercizi su integrali tripli: cambiamento di variabili Esercizi su integrali tripli: cambiamento di variabili Riccarda Rossi Università di Brescia Analisi II Riccarda Rossi (Università di Brescia) Integrali tripli Cambiamento di variabili Analisi II 1 / 51

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati:

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: ANALISI Soluzione esercizi 2 gennaio 212 12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: (x, y) R 2 : x < y} (x, y) R 2 : 2 x 3} (x, y) R 2 : x 2 +

Dettagli

Figura 1. F = {y 2, x 2 }

Figura 1. F = {y 2, x 2 } ANALISI VETTORIALE Soluzione esercizi 14 gennaio 211 7.1. Esercizio. Assegnato il campo vettoriale F = y 2, x 2 calcolare la circuitazione τ ds ovvero ( y 2 dx + x 2 dy ) essendo Ω il quadrato di vertici

Dettagli

Terzo esonero. 21 marzo Esercizio

Terzo esonero. 21 marzo Esercizio Terzo esonero 2 marzo 27. Esercizio Disegnare l insieme D : x, y) : x y 2 x, 2x 2 y 2x} e calcolarne l area. Determinare una trasformazione lineare che mandi D in un rettangolo. Calcolare l integale doppio

Dettagli

Esercizi sull integrazione II

Esercizi sull integrazione II ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione II (Grazie agli studenti

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio Analisi Vettoriale - A.A. 3-4 Foglio di Esercizi n. 8 Soluzioni Dire se le funzioni. Esercizio sin (x) (x + )x, e x x, x x sono integrabili in senso classico o improprio negli intervalli [, ] e (, + ).

Dettagli

Analisi Matematica III (Fisica) 07 Gennaio 2016

Analisi Matematica III (Fisica) 07 Gennaio 2016 Analisi Matematica III (Fisica 7 Gennaio 16 1. (1 punti Calcolare l area della sezione del cilindro x + y 4 determinata dal piano di equazione z x + y. (Possibilmente in due modi differenti Ci sono vari

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

Le soluzioni del foglio 3

Le soluzioni del foglio 3 Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:... es.1 es. es.3 es. es.5 somma 6 6 6 6 6 3 Analisi Matematica : Secondo Parziale, 3.5.16, Versione A Cognome e nome:....................................matricola:......... 1. Dimostrare che la forma differenziale

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 07/08 Codocente: Dott. Salvatore Fragapane Lezione - 09/03/08, dalle 6.00 alle 8.00 in aula 6 Es. Studiare

Dettagli

(1) Determinare l integrale generale dell equazione

(1) Determinare l integrale generale dell equazione FONDAMENTI DI ANALISI MATEMATICA (9 cfu Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 3 settembre 8 Quarto appello Avvertenza: Nella

Dettagli

Soluzione scritto 4 marzo 2011

Soluzione scritto 4 marzo 2011 .. Esercizio. Scrivere ANALISI VETTORIALE Soluzione scritto 4 marzo l integrale generale dell equaz. y + y tan(t) =, π < t < π ; un integrale particolare dell equaz. y + y tan(t) = t cos(t); un integrale

Dettagli

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione).

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione). Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e MeccanicaMeccatronica, V. Casarino P. Mannucci (-) Foglio 3 Esercizi su forme differenziali lineari ed integrali

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Esonero AM220, 2019, con Soluzioni

Esonero AM220, 2019, con Soluzioni Esonero AM22, 29, con oluzioni Ogni risposta va accuratamente motivata. Non si possono usare: libri, appunti, congegni elettronici, etc.. ia := { (x, y, z) R 3, tali che x 2 + y 2 4, z = x 2 + y 2 }. ia

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei 6 Curve e integrali curvilinei 6.1. Esempi ed esercizi svolti e/o proposti Esempio 6.1.1. Si consideri la curva parametrica ϕ: t [0,2π] ϕ(t) = (acos(t),asin(t),bt) R 3 dove a e b sono due costanti positive.

Dettagli

1. Cambiamenti di coordinate affini Esempio 1.1. Si debba calcolare l integrale doppio. (x + y) dx dy =

1. Cambiamenti di coordinate affini Esempio 1.1. Si debba calcolare l integrale doppio. (x + y) dx dy = . Cambiamenti di coordinate affini Esempio.. Si debba calcolare l integrale doppio (x + y) dx dy essendo il parallelogramma di vertici (, ), (, ), (3, 3), (, 3) nel quale é possibile riconoscere, vedi

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria Primo Appello 13 Luglio 017 Cognome: Nome: Matricola: Es.1: 11 punti Es.: 6 punti Es.3: 7 punti Es.: 8 punti Totale

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nome, Cognome... Matricola... ANALISI MATMATICA PROVA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 6/7 Libri, appunti e calcolatrici non ammessi Prima parte - Lo studente scriva solo la risposta, direttamente

Dettagli

ANALISI VETTORIALE COMPITO PER CASA DEL 6/12/ y x 2 + y 2 dxdy =

ANALISI VETTORIALE COMPITO PER CASA DEL 6/12/ y x 2 + y 2 dxdy = ANALII VTTORIAL COMPITO PR CAA DL 6// sercizio Calcolare l integrale y x + y dxdy dove è l intersezione del cerchio del piano di centro l origine e raggio con il semipiano dato da y x. Risposta In questo

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011 TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL /9/11 Esercizio 1 a. Dopo aver scritto l equazione parametrica C(t) della curva di equazione cartesiana y = x x, si calcolino i vettori T(t), N(t) e

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n.

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. Analisi Matematica II, Anno Accademico 17-18. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. CAMMINI ESERCIZIO 1 Un cammino soddisfa le relazioni y = x z, z = y + x 3, essendo

Dettagli

Integrali doppi. f(x, y) dx dy, dove R = [0, 1] [0, 3] e. 2xy y x 2 x 3 + x 2 y y > x 2. (x + sin y) dx dy, dove Q = [ 1, 1] [ 1, 1].

Integrali doppi. f(x, y) dx dy, dove R = [0, 1] [0, 3] e. 2xy y x 2 x 3 + x 2 y y > x 2. (x + sin y) dx dy, dove Q = [ 1, 1] [ 1, 1]. . Calcolare. Calcolare. Calcolare. Calcolare R T Integrali doppi f(, d d, dove R = [, ] [, ] e f(, = + > d d, dove T è il triangolo di vertici (,, (,, (,. ( + sin d d, dove = [, ] [, ]. di vertici (,,

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #8. Sia f : R 2 R la funzione definita da 2 y 2 per (, y) (, ) f(, y) 2 + y 2 per (, y) (, ). (a) Stabilire se f è continua

Dettagli

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Analisi e Geometria 1 Docente: Gianluca Mola 27/1/29 Ing. Industriale Cognome: Nome: Matr. Nello spazio sottostante gli esercizi devono essere riportati sia i risultati

Dettagli

Esempi di esercizi d esame A.A. 2006/07 Analisi Matematica 2 Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli

Esempi di esercizi d esame A.A. 2006/07 Analisi Matematica 2 Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli Esempi di esercizi d esame A.A. 6/7 Analisi Matematica Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli versione preliminare, si prega di segnalare eventuali errori *) Determinare e

Dettagli

(4x 2 + y 2 ) 2 j. x = 3 sin t r(t) : 2

(4x 2 + y 2 ) 2 j. x = 3 sin t r(t) : 2 Esercizi su campi vettoriali Esercizio 1. Si consideri il campo vettoriale: ( 1) (( 1) + y ) i y (( 1) + y ) j. = cos t + 1 0 t π y = sin t Esercizio. Si consideri il campo vettoriale: y i + j. 4( + y

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Esercizi sull integrazione

Esercizi sull integrazione ANALII MAMAICA -B (L-Z) (C.d.L. Ing. Gestionale) Università di Bologna - A.A.8-9 - Prof. G.Cupini sercizi sull integrazione (Grazie agli studenti del corso che comunicheranno eventuali errori) sercizio.

Dettagli

Analisi Matematica III 04 Novembre In coordinate polari l insieme K è rappresentabile come unione dei seguenti insiemi normali

Analisi Matematica III 04 Novembre In coordinate polari l insieme K è rappresentabile come unione dei seguenti insiemi normali . ( punti) Si determini il valore dell integrale della funzione f(, y) + y, sull insieme di integrazione K {(, y) R : ( ) + y, + (y ) }. In coordinate polari l insieme K è rappresentabile come unione dei

Dettagli

Prove d Esame A.A. 2012/2013

Prove d Esame A.A. 2012/2013 Complementi di Analisi Polo di Savona Complementi di Analisi Matematica Prove d Esame A.A. 2012/2013 1- PrCam.TEX [] Complementi di Analisi Polo di Savona Prima Prova parziale 23/11/2011 Prima Prova parziale

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove Calcolare R = R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x =, C :

Dettagli

+ (6 ( 6)) 2 = 6 6 = 1 2/30

+ (6 ( 6)) 2 = 6 6 = 1 2/30 Prova scritta di Matematica II - marzo 6 - COEZIONE Fila A c.d.l. Scienze dell Architettura - Prof.. izzi.a. Calcolare la distanza tra i punti P = (, 6, e Q = (, 6,. d(p, Q = ( 9 + (6 ( 6 + ( = 69 =. 6.b.

Dettagli

Funzioni a valori vettoriali Differenziabilità e regola della catena

Funzioni a valori vettoriali Differenziabilità e regola della catena e regola della catena Analisi Matematica A Secondo modulo Corso di Laurea in Matematica Università di Trento 4 aprile 2019 o: le curve o: F : R 2 R 2 Sia E R n. Una funzione a valori vettoriali f : E R

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #7. Sia f : R R la funzione definita da a) Determinare i massimi e minimi di f. b) Mostrare che f è limitata. fx, y) xy

Dettagli

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27 Analisi Matematica 2 Superfici e integrali superficiali Superfici e integrali superficiali 1 / 27 Superficie Sia D un dominio connesso di R 2 (per def. un dominio connesso é la chiusura di un aperto connesso).

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

Esercizio 1.1. Trovare il volume V della figura racchiusa tra il piano z = 8x + 6y e il rettangolo R = [0, 1] [0, 2]. (8x + 6y) dx dy. x=1. 4x 2.

Esercizio 1.1. Trovare il volume V della figura racchiusa tra il piano z = 8x + 6y e il rettangolo R = [0, 1] [0, 2]. (8x + 6y) dx dy. x=1. 4x 2. Esercizi maurosaita@tiscalinet.it Versione provvisoria. Giugno 6. Indice Integrali doppi. isposte....................................... 6 Integrali doppi generalizzati 6. isposte.......................................

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

Primo Parziale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale

Primo Parziale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale Primo Parziale del Corso di Analisi Matematica 4. Calcolare la soluzione generale dell equazione differenziale 5 + 3 4 + 3 3 + =. Soluzione: Sostituendo = e λ si arriva all equazione caratteristica λ 5

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9/6/ A ) ata la funzione f(x, y) x y log( + x + y ), a) stabilire dove risulta derivabile parzialmente nel suo

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

Es. 1 Es. 2 Es. 3 Totale

Es. 1 Es. 2 Es. 3 Totale Es. 1 Es. 2 Es. 3 Totale Analisi e geometria 2 Seconda Prova in Itinere Docente: 2 7 212 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 6.6.7, Versione A Cognome e nome:....................................matricola:......... es. es. es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Seconda prova in itinere 1 Febbraio 21 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy,

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy, PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli

Dettagli

Analisi Matematica 3

Analisi Matematica 3 Testi delle prove d esame del corso di Analisi Matematica 3 presso la Facoltà di Ingegneria Bruno Rubino L Aquila, 2006 Indice 1 Curve 3 2 Superfici 4 3 Teorema di Gauss-Green e formula dell area 4 4 Campi

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 2

Analisi Vettoriale A.A Soluzioni del Foglio 2 Analisi Vettoriale A.A. 2006-2007 - Soluzioni del Foglio 2 2.1 Esercizio Assegnato il sistema e y + z + x 2 = 0 x 2 + y 2 + z 2 + y 1 = 0 dimostrare che in un intorno del punto (0,0,1) il sistema definisce

Dettagli

Raccolta esami di Analisi II

Raccolta esami di Analisi II Esame del 18 gennaio 2011 Raccolta esami di Analisi II Corsi di laurea in Ing. Edile-Architettura e Civile-Ambientale V = x,, z : x 2 + 2 4, x 2 + 2 z x 2 + 2 } a disegnare l intersezione di V con il piano

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici Sfere Coordinate sferiche e sfere in forma parametrica Sfere, rette e piani Circonferenze nello spazio Circonferenze in forma parametrica 2 2006 Politecnico di Torino

Dettagli

sin(x + y) dx dy. Soluzione: Il dominio di integrazione S assegnato é un rettangolo: quindi esistono due formule di riduzione

sin(x + y) dx dy. Soluzione: Il dominio di integrazione S assegnato é un rettangolo: quindi esistono due formule di riduzione 4.1. Esercizio. Assegnato l insieme calcolare R 2 : ANALII VETTORIALE oluzione esercizi x π/2, y π sin(x + y) dx dy. 19 novembre 21 oluzione: Il dominio di integrazione assegnato é un rettangolo: quindi

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI Appello Febbraio 995 ( F (( + y i y (( + y j. ( Stabilire se F è conservativo e in caso affermativo trovarne un ( Calcolare il lavoro compiuto dal campo

Dettagli

Analisi Matematica II 14 Giugno 2019

Analisi Matematica II 14 Giugno 2019 Analisi Matematica II 14 Giugno 2019 Cognome: Nome: Matricola: 1. (10 punti) Si determinino i sottoinsiemi del piano in cui valgano, rispettivamente, continuità, derivabilità e differenziabilità della

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:... es. es. es. es.4 es.5 somma 5 4 8 8 5 Analisi Matematica : Primo Parziale,.4.7, Versione A Cognome e nome:....................................matricola:.......... Calcolare la lunghezza della curva di

Dettagli

Esercizi su curve e integrali di linea. 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza

Esercizi su curve e integrali di linea. 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza Esercizi su curve e integrali di linea 1. Si forniscano almeno due parametrizzazioni per la semicirconferenza : {(x, y) R, x + y 4, y } Soluzione: possibili parametrizzazioni per la curva sono: α 1 (t)

Dettagli

Analisi 4 - SOLUZIONI (15/07/2015)

Analisi 4 - SOLUZIONI (15/07/2015) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI (5/7/5) Docente: Claudia Anedda ) Calcolare l area della superficie totale della regione di spazio limitata, interna al paraboloide di equazione x +y

Dettagli

p 1 : x + y + z = 0, p 2 : x y 2z = 1 Soluzione: Punto-retta

p 1 : x + y + z = 0, p 2 : x y 2z = 1 Soluzione: Punto-retta ANALISI VETTORIALE Soluzione esercizi 12 novembre 2010 3.1. Esercizio. Determinare la distanza del punto Q = (3, 4) dalla retta r : x + y = 3, ovvero determinare il minimo della funzione f(x, y) = (x 3)

Dettagli

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Appello del 21 novembre 2014 Tempo: 150 minuti 1. Enunciare la definizione di forma differenziale esatta

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Contents. 1. Funzioni di più variabili.

Contents. 1. Funzioni di più variabili. RACCOLTA DI ESERCIZI PER IL CORSO DI ANALISI MATEMATICA II A.A. 03/04 CORSI DI LAUREA IN INGEGNERIA DELL EDILIZIA, INGEGNERIA EDILE-ARCHITETTURA PROF. D. BARTOLUCCI Contents. Funzioni di più variabili..

Dettagli

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010 Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 1 1.Si calcoli la lunghezza della curva di equazione g y = 1 x 1 log x x [1, e].. Sia f(x, y, ) = x + y e sia il sostegno della curva

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M.

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M. POLITECNICO I MILANO. FACOLTÀ I INGEGNERIA INUTRIALE. Analisi e Geometria 2. Giugno 2. ocenti: F. Lastaria, M. Citterio, M. aita Indice Integrali di superficie. Parte prima. Integrali di superficie. Parte

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 7.9.16, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 3 9cr. 5 5 5 5 5 /3

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica 2 - a.a. 2009/2010

Analisi Matematica 2 - a.a. 2009/2010 Quarto appello Esercizio Analisi Matematica 2 - a.a. 29/2 Sia Γ = { (,y,z) R 3 : 2 + y 2 = z 2, y 2 + (z 2) 2 = }.. Provare che tutti i punti di Γ sono regolari. 2. Determinare lo spazio tangente a Γ nel

Dettagli

Integrali doppi. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Integrali doppi. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Integrali doppi Hynek Kovarik Università di Brescia nalisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei nalisi Matematica 2 1 / 47 Motivazione: calcolo di volume Hynek Kovarik

Dettagli

Prova scritta di Matematica II - 16 marzo CORREZIONE Fila A c.d.l. Scienze dell Architettura - Prof. R. Rizzi

Prova scritta di Matematica II - 16 marzo CORREZIONE Fila A c.d.l. Scienze dell Architettura - Prof. R. Rizzi Prova scritta di Matematica II - 6 marzo 6 - CORREZIONE Fila A c.d.l. Scienze dell Architettura - Prof. R. Rizzi COGNOME E NOME.................................................................. N. di matricola..................

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 300607 Cognome e nome: Matricola: es es es3 es4 es es6 es7 somma cr 6 6 6 6 6 - - 30 9cr/6cr 3 30 Determinare, nel punto ( 0, 0, z 0 ), l equazione del piano tangente

Dettagli