Corso di Fisica Velocità ed Accelerazione. Prof. Francesco Di Capua a.a. 2018/19

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Fisica Velocità ed Accelerazione. Prof. Francesco Di Capua a.a. 2018/19"

Transcript

1 Corso di Fisica Velocità ed Accelerazione Prof. Francesco Di Capua a.a. 2018/19

2 breve riassunto lez. precedente

3 VeBore posizione Per descrivere il moto occorre definire la posizione di un punto nello spazio Si uflizza una terna di assi cartesiani in cui si introduce un vebore posizione r = xˆ i + yˆ j + zk ˆ Se il punto si muove rispebo al riferimento di assi cartesiani, il vebore posizione sarà una funzione del tempo r r(t) = x(t)ˆ i + y(t) ˆ j + z(t) k ˆ Il moto di un corpo sarà noto se si conosce la dipendenza dal tempo delle tre componenf x(t), y(t), z(t)

4 Velocità La rapidità con cui un vebore posizione cambia rispebo ad un sistema di riferimento è chiamata velocità Velocità media di un corpo in un intervallo di tempo Δt v = r r f i = Δr t t Δt f i Nel caso ad una dimensione v = (x x )ˆ i f i t t f i = Δx i ˆ Δt Dal punta di vista geometrico la velocità media è il rapporto dei catef del rebangolo in figura: cioè è la pendenza della reba che unisce le due posizioni finale ed iniziale nella curva spazio-tempo

5 Velocità istantanea La velocità istantanea è uguale al valore del rapporto Δx/Δt (velocià media) quando l intervallo di tempo Δt tende a zero Dal punto di vista matema@co si esprime con il conceao di limite del rapporto incrementale Al tendere di Δt a zero anche Δx tende a zero, il loro rapporto (velocità media) tende alla Velocità istantanea (tangente alla curva all istante t) v ist (t) = lim Δt 0 Δx Δt La velocità istantanea è in altre parole in ogni istante t la tangente alla curva x(t), tale pendenza è data dal valore della derivata di x rispeao al tempo t v ist (t) = lim Δt 0 Δx Δt = d dt x(t) ( ) Derivata rispeao alla variabile t della funzione x(t)

6 Esercizio: Velocità media ed istantanea(1) La posizione di una parfcella che si muove lungo l asse x varia nel tempo secondo l espressione x = 4t + 2t 2 Determinare lo spostamento della par@cella da t=0 a t=1s e da t=1s a t=3s Lo spostamento nell intervallo AB è Δx AB = 4(1) + 2(1) 2 [ 4(0) + 2(0) 2 ] Δx AB = = 2m Allo stesso modo nell intervallo BD Δx BD = 4(3) + 2(3) 2 [ 4(1) + 2(1) 2 ] Δx BD = [ 4 + 2] = +8m

7 Esercizio: velocità media ed istantanea(2) Negli stessi intervalli di tempi calcolare la velocità media v x = Δx AB Δt AB v x = Δx BD Δt BD = 2m 1s = 8m 2s = 2m /s = +4m /s Trovare la velocità istantanea in ogni istante t Δx = x f x i = 4(t + Δt) + 2(t + Δt) 2 [ 4t + 2t 2 ] Δx = 4t 4Δt + 2(t 2 + Δt 2 + 2tΔt) + 4t 2t 2 Δx = 4Δt + 2Δt 2 + 4tΔt v x = Δx Δt = 4Δt + 2Δt 2 + 4tΔt Δt = 4 + 2Δt + 4t

8 Esercizio: velocità media ed istantanea(3) v x = Δx Δt = 4Δt + 2Δt 2 + 4tΔt Δt Δx v ist (t) = lim Δt 0 = 4 + 4t Δt oppure = 4 + 2Δt + 4t v ist (t) = d dt A t=1 v ist =0, a t=3 v ist =8m/s ( x(t) ) = d dt Time (s) Speed (m/s) ( 4t + 2t 2 ) = 4 + 4t 4 12 v ist (t) 4 (t)

9 un passo indietro (es. vebori)

10 Esercizio Un esploratore è sorpreso da una nevicata mentre sta ritornando al campo base. Per ritornare al campo avrebbe dovuto camminare per 5.5 km verso Nord (θ=90 ) invece scopre di aver viaggiato per errore per 9.9 km in direzione che si discosta da Est di 25.3 verso Nord (θ=25.3 ). QuanF km deve ancora percorrere l esploratore una volta scoperto l errore per ritornare al campo? N Spostamento errato esploratore A x = Acos(25.3 ) = 9.9cos(25.3 ) = 8.95km A y = Asen(25.3 ) = 9.9sen(25.3 ) = 4.23km O 25.3 E Campo Base B x = 0 B y = S Per raggiungere il campo base occorre compiere uno spostamento R R x = B x A x = 8.95km R y = B y A y = ( )km =1.27km R = R 2 x + R 2 y = 9.04km

11 Esercizi VeBori Il vebore A, direbo in direzione i (asse x), è aggiunto al vebore B, che ha modulo pari a 7.0 m. La somma è un vebore che punta in direzione posifva dell asse j (asse y), con un modulo pari a 3 volte quello di A. Quanto vale il modulo di A? A = a 1ˆ i B = b 1ˆ i + b 2 ˆ j B = b b 2 2 = 7.0m! C = A! + B = c 2 ˆ j C = A + B = 3A c 1 = a 1 + b 1 = 0 c 2 = b 2 b 1 = a 1 b 2 = 3a 1 B = b b 2 2 = 7.0m b b 2 2 = 49.0m 2 a (3a 1 ) 2 = 49.0m 2 10a 1 2 = 49.0m 2 a 1 = 2.2m

12 Velocità nello spazio a 3 dimensioni v ist (t) = lim Δt 0 v v ist (t) = lim Δt 0 Δr Δt v ist (t) = d dt ( r(t) ) v ist = lim Δt 0 Δr Δt = d dt ( x(t) )ˆ i + d dt ( y(t) ) ˆ j + d dt ( z(t) ) k ˆ Il veaore velocità nello spazio ha come componen@ le derivate delle componen@ del veaore posizione rispeao al tempo v = dx dt 2 + dy dt 2 + dz dt 2 modulo della velocità

13 Sommario: concebo di velocità Variazione nel tempo della posizione, legge del moto Velocità media, pendenza della reba che unisce due posizioni nella curva spazio tempo Velocità istantanea è il limite della velocità di media quando l intervallo di tempo tende a zero, tangente alla curva x(t) La velocità è la derivata della funzione x(t) rispebo al tempo v = (x f x i )ˆ i t f t i = Δx i Δt ˆ v ist (t) = lim Δt 0 Δx Δt = d dt ( x(t) )

14 Accelerazione La rapidità con cui la velocità varia rispebo al tempo si chiama accelerazione Un moto di un corpo che avviene a velocità costante è ad accelerazione nulla Si definisce accelerazione media di un corpo in un certo intervallo di tempo a = v f v i t f t i = Δv Δt a = v f v i t f t i = Δv Δt Nel caso di una dimensione il modulo del veaore accelerazione media è a x = v xf v xi t f t i a x = a x i ˆ = Δv x Δt

15 Accelerazione istantanea Derivata della velocità rispebo al tempo a ist (t) = lim Δt 0 a = lim Δt 0 Δv Δt = d dt v(t) ( ) se la velocità è costante nel tempo, la sua derivata è nulla e l accelerazione è nulla dimensioni fisiche [ a ist (t)] = m s 2 a ist (t) = d ( dt v(t) ) = d 2 dt ( r(t) ) derivata seconda rispeao al tempo del veaore posizione

16 Accelerazione istantanea(2) L accelerazione ad un dato istante è data dalla pendenza della curva velocità-tempo Per il moto unidimensionale: a x = d dt v x(t) = d dt a ist = a xˆ i d dt x(t) = d 2 dt Quando la velocità diminuisce (pendenza tangente negafva) l accelerazione è negafva, quando la velocità aumenta, l accelerazione è posifva x(t) ( )

17 Esempio Data una legge oraria: x(t) =18m + (12m /s)t (1.2m /s 2 )t 2 Determinare l accelerazione: Derivata prima rispeao al tempo di x(t): v(t) = (12m /s) 2 (1.2m /s 2 )t = (12m /s) (2.4m /s 2 )t Derivata seconda rispeao al tempo di x(t): a(t) = 2.4m /s 2 Nota: partendo da una dipendenza spazio-tempo quadrafca si oeene un accelerazione costante

18 Moto con accelerazione costante In molf Fpi di mof l accelerazione è costante. In tal caso l accelerazione media è uguale a quella istantanea Accelerazione istantanea a x = a x = Δv x Δt = v xf v xi t f t i Accelerazione media ponendo t f =t e t i =0 a x = v x(t) v x 0 t 0 v x (t) = v x 0 + a x t La velocità al generico istante t varia linearmente con il tempo

19 Moto con accelerazione costante(2) Si può inoltre scrivere l espressione della velocità media: v x = x x 0 t 0 x = x 0 + v x Per una velocità che aumenta linearmente con il tempo la velocità media su un intervallo di tempo è sempre data dalla media aritme@ca tra velocità all istante iniziale e la velocità all istante finale x = x 0 + v x (t) + v x 0 2 t = x 0 + v x (t)t 2 x = x 0 + (v x 0 + a x t)t 2 + v x 0 t 2 t v x = v x (t) + v x 0 2 v x (t) = v x 0 + a x t + v x 0 t 2 = x 0 + v x 0 t a xt 2

20 Moto con accelerazione costante (3) x(t) = x 0 + v x 0 t a x t 2 La posizione x(t) varia quadra@camente con il tempo È semplice dimostrare che si passa da posizione x ad accelerazione a applicando due volte l operazione di derivazione e viceversa si passa da a ad x applicando due volte l integrazione

21 Integrazione e derivazione x = x 0 + v x 0 t a xt 2 a x = costante derivata x(t) integrale x(t) v x = d dt x(t) = v x 0 + a xt v x = a x t + v x0 derivata v(t) integrale v x (t) a x = d dt v x (t) = a x x = 1 2 a x t 2 + v x0 t + x 0

22 Riassumendo (sul moto con accelerazione costante) x = x 0 + v x 0 t a x t 2 v x = v x0 + a x t x = x 0 + v x 0 (v x v x0 a x ) a x (v x v x0 a x ) 2 t = v x v x0 a x v x 2 = v x a x (x x 0 )

23 Esempio 1 Un auto viaggia alla velocità costante di 45 m/s Al passaggio davanf una moto della polizia dopo un secondo viene inseguita. La polizia inizia un inseguimento con un accelerazione di 3m/s 2 Dopo quanto tempo la polizia raggiunge l auto? La polizia inizia l inseguimento dopo un tempo t=1s, l auto viaggiando alla velocità di 45 m/s, si trovera dopo 1s distante 45 m dalla polizia (consideriamo dunque una posizione iniziale x i = 0, per la polizia, e x i = 45 m per l auto in corsa L auto si muove a velocità costante (accelerazione nulla) x f = x i + v ist t at 2 x AUTO = 45m + (45m /s) t Per la moto che parte da ferma si ha (x i =0 v xi =0 e a x =3 m/s 2 ) x f = x i + v xi t a x t 2 x POLIZIA = 1 2 (3m /s2 )t 2

24 Esempio 1 La polizia raggiunge l auto al tempo t in cui vale x AUTO = x POLIZIA x POLIZIA = 1 2 (3m /s2 )t 2 = x AUTO = 45m + (45m /s) t 3 2 t 2 45t 45 = 0 t = 30.97s x POLIZIA = 1 2 (3m /s2 )(30.97s) 2 =1438.7m x AUTO = 45m + (45m /s)30.97s =1438.7

25 Esempio 2 Un tennista colpendo la pallina ne cambia la sua velocità da 0 a 40 m/s (144 km/h). La pallina resta abaccata alla raccheba per 0.5 m durante la babuta. Calcolare l accelerazione v x 2 = v x a x (x x 0 ) a x = v x 2 2(x x 0 ) = (40m /s) m =1600m /s2 Dopo la babuta la velocità della pallina resta costante (accelerazione nulla). Calcolare il tempo di reazione che deve avere l altro tennista per rispondere considerando che il campo è lungo 25m x = x 0 + v x 0 t a x t 2 x x 0 = v x 0 t 25m = (40m /s)t t = 0.62s

Corso di Fisica Moto in caduta libera e Moto in due dimensioni. Prof. Francesco Di Capua a.a. 2018/19

Corso di Fisica Moto in caduta libera e Moto in due dimensioni. Prof. Francesco Di Capua a.a. 2018/19 Corso di Fisica Moto in caduta libera e Moto in due dimensioni Prof. Francesco Di Capua a.a. 2018/19 .dalla lezione precedente Moto con accelerazione costante In mola Api di moa l accelerazione è costante.

Dettagli

Corso di Fisica Lez. 2 Ve)ori e Moto unidimensionale. Prof. Francesco Di Capua a.a. 2018/19

Corso di Fisica Lez. 2 Ve)ori e Moto unidimensionale. Prof. Francesco Di Capua a.a. 2018/19 Corso di Fisica Lez. 2 Ve)ori e Moto unidimensionale Prof. Francesco Di Capua a.a. 2018/19 breve riassunto lez. precedente Misure ed unità di misura Misure e confronb di sistemi fisici: una misura viene

Dettagli

a = a = costante v x = v t = v x a x = Δv Δt = v v x x t

a = a = costante v x = v t = v x a x = Δv Δt = v v x x t Moto uniformemente accelerato(1) Se un corpo si muove con accelerazione costante il suo moto si dice uniformemente accelerato a = a = costante In un moto uniformemente accelerato Ø L accelerazione media

Dettagli

a = a = costante v x = v t = v x a x = Δv Δt = v v x x t

a = a = costante v x = v t = v x a x = Δv Δt = v v x x t Moto uniformemente accelerato(1) Se un corpo si muove con accelerazione costante il suo moto si dice uniformemente accelerato a = a = costante In un moto uniformemente accelerato Ø L accelerazione media

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Studia le cause del movimento dei corpi (cioè perchè essi si muovono)

Studia le cause del movimento dei corpi (cioè perchè essi si muovono) Studia il movimento dei corpi (cioè come essi si muovono) Studia le cause del movimento dei corpi (cioè perchè essi si muovono) Si occupa delle condizioni di equilibrio dei corpi (è un caso particolare

Dettagli

Meccanica. Parte della fisica che studia il MOVIMENTO Si divide in

Meccanica. Parte della fisica che studia il MOVIMENTO Si divide in Meccanica Parte della fisica che studia il MOVIMENTO Si divide in Cinematica: descrive il movimento Dinamica: studia le cause del movimento Statica: studia quando non c è movimento Movimento Un oggetto

Dettagli

ELEMENTI DI CINEMATICA Una volta fissato un sistema di riferimento con la sua origine O è possibile descrivere in ogni istante la posizione del punto

ELEMENTI DI CINEMATICA Una volta fissato un sistema di riferimento con la sua origine O è possibile descrivere in ogni istante la posizione del punto ELEMENTI DI CINEMATICA Una volta fissato un sistema di riferimento con la sua origine O è possibile descrivere in ogni istante la posizione del punto P al passare del tempo t per mezzo della terna di coordinate

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Modulo di Fisica (F-N) A.A MECCANICA

Modulo di Fisica (F-N) A.A MECCANICA Modulo di Fisica (F-N) A.A. 2016-2017 MECCANICA COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 4 Prof.ssa Stefania Petracca 1 Vettore posizione Per poter generalizzare i concetti introdotti nella lezione precedente al caso bidimensionale, e successivamente

Dettagli

Il moto rettilineo. Liceo Scientifico Statale S. Cannizzaro - Palermo Prof. E. Modica

Il moto rettilineo. Liceo Scientifico Statale S. Cannizzaro - Palermo Prof. E. Modica Il moto rettilineo Liceo Scientifico Statale S. Cannizzaro - Palermo Prof. E. Modica Equazione oraria Definizione. Si dice equazione oraria di un moto, una relazione matematica tra due grandezze cinematiche.

Dettagli

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono.

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. CINEMATICA DEL PUNTO MATERIALE I Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. Il moto di un punto risulta

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale La cinematica è quella parte della fisica (meccanica) che si occupa di descrivere il moto dei corpi, senza porsi il problema di identificare le cause che lo determinano.

Dettagli

Equazioni del moto in 1 dimensione:

Equazioni del moto in 1 dimensione: Equazioni del moto in 1 dimensione: O Velocità media come rapporto incrementale tra spazio percorso e tempo In generale la velocità varia istante per istante 1 Velocità istantanea: limite del rapporto

Dettagli

VETTORE POSIZIONE E VETTORE SPOSTAMENTO

VETTORE POSIZIONE E VETTORE SPOSTAMENTO VETTORE POSIZIONE E VETTORE SPOSTAMENTO! r Il vettore rappresenta la posizione del punto P nello spazio. y P 1! Δr! r 1 =!! r r 1! r P x y! Δ r! r!! = r r 1 P rappresenta lo spostamento del punto P fra

Dettagli

Cinematica. A.Solano - Fisica - CTF

Cinematica. A.Solano - Fisica - CTF Cinematica Posizione, spostamento, traiettoria Velocità media e istantanea Accelerazione media e istantanea Moto rettilineo uniforme Moto rettilineo uniformemente accelerato Oggetti in caduta libera Moto

Dettagli

Cinematica del punto. Moto rettilineo. Dott.ssa Elisabetta Bissaldi

Cinematica del punto. Moto rettilineo. Dott.ssa Elisabetta Bissaldi Cinematica del punto Moto rettilineo Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 La meccanica Studia il MOTO DEI CORPI Spiega la relazione tra le CAUSE che generano

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro di una forza Consideriamo una forza F applicata ad un punto materiale P che si sposti

Dettagli

Simulazione del moto di un punto materiale soggetto a una forza

Simulazione del moto di un punto materiale soggetto a una forza Simulazione del moto di un punto materiale soggetto a una forza Università degli Studi di Brescia Elementi di Informatica e Programmazione Università di Brescia 1 SCOPO DELLA SIMULAZIONE Punto materiale:

Dettagli

CINEMATICA. Prof Giovanni Ianne

CINEMATICA. Prof Giovanni Ianne CINEMATICA Il moto e la velocità L accelerazione Moto rettilineo uniforme Moto rettilineo uniformemente accelerato Moti periodici e composti il moto e la velocità Un corpo è in moto quando la sua posizione

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://cms.pg.infn.it/santocchia/

Dettagli

Fisica 1 Anno Accademico 2011/2011

Fisica 1 Anno Accademico 2011/2011 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 011/011 (1 Marzo - 17 Marzo 01) Sintesi Abbiamo introdotto lo studio del moto di un punto materiale partendo da un approccio cinematico.

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Simulazione del moto di un punto materiale soggetto a una forza

Simulazione del moto di un punto materiale soggetto a una forza Simulazione del moto di un punto materiale soggetto a una forza Università degli Studi di Brescia Elementi di Informatica e Programmazione Università di Brescia 1 SCOPO DELLA SIMULAZIONE Punto materiale:

Dettagli

Cinematica del punto. Moto nel piano. Dott.ssa Elisabetta Bissaldi

Cinematica del punto. Moto nel piano. Dott.ssa Elisabetta Bissaldi Cinematica del punto Moto nel piano Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Si consideri un punto materiale che si muove nello spazio descrivendo nel caso

Dettagli

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI LEGGI RARIE DI ALCUNI MTI PARTICLARI MT RETTILINE UNIFRME (1) v = costante; a = 0 Legge oraria: P(t) v x 0 è la posizione di P all istante t=0 (posizione iniziale) x 0 x(t) P(t=0) v x(t) = v t + x 0 Nel

Dettagli

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA Sommario INTRODUZIONE ALLA CINEMATICA... 3 MOTO RETTILINEO UNIFORMEMENTE ACCELERATO...

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo;

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo; Esercizio Una particella si muove lungo una retta seguendo la legge oraria con u 3 m/s e 4 s.. Determinare in quali istanti la particella si trova nell origine;. Disegnare la legge oraria; x(t) u t ( sin

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica CINEMATICA STUDIO del MOTO INDIPENDENTEMENTE dalle CAUSE che lo hanno GENERATO DINAMICA STUDIO del MOTO e delle CAUSE

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio Gennaio 013 Indice 1 Lunghezza d arco 1 1.1 Parametrizzazione alla lunghezza d arco..................... 1. Ogni

Dettagli

FISICA. Serie 3: Soluzioni. Esercizio 2 Velocità media. I liceo

FISICA. Serie 3: Soluzioni. Esercizio 2 Velocità media. I liceo Serie 3: Soluzioni FISICA I liceo Esercizio Velocità media. Perché per definire la velocità media sono necessari due istanti (che nel corso abbiamo chiamato t i e t f ) mentre qui è dato solo l istante

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale Punto materiale Velocità e accelerazione Moto rettilineo uniforme Moto naturalmente accelerato Moto parabolico Moto armonico Antonio Pierro Per consigli, suggerimenti, eventuali

Dettagli

Meccanica: Introduzione. Lo Studio del moto degli oggetti

Meccanica: Introduzione. Lo Studio del moto degli oggetti Meccanica: Introduzione Lo Studio del moto degli oggetti 1 Grandezze fisiche n Scalari : esprimibili mediante singoli numeri (es. massa,temperatura, energia, carica elettrica ecc.) n Vettoriali : per essere

Dettagli

Variazione di una funzione

Variazione di una funzione a) Variazione di una funzione Variazione di : Δ= 2-1 Δf Variazione di f: Δf= 2-1 =f( 2 )-f( 1 ) b) 1 Δ 2 In questo caso a una variazione di, Δ, corrisponde una piccola variazione di f, Δf Δf In questo

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizio 1 Esercizi di Cinematica Esercitazioni di Fisica LA per ingegneri - A.A. 2009-2010 Data la legge oraria: s(t) = a t 3 b t + c (con a = 3 ms 3, b = 2 ms 1, c = 1 m) calcolare la posizione e la

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Lavoro ed energia. A.Solano - Fisica - CTF

Lavoro ed energia. A.Solano - Fisica - CTF Lavoro ed energia Lavoro Energia cinetica Teorema dell energia cinetica Forze conservative Energia potenziale Principio di conservazione dell energia meccanica Potenza Lavoro di una forza costante m F

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 3B Appunti sulla Cinematica di un Punto Materiale Riccardo Fabbri 1 (Dispense ed esercizi su www.riccardofabbri.eu) Il Moto

Dettagli

Se la velocità di un punto mobile in moto rettilineo è la stessa in qualunque istante il moto si definisce uniforme.

Se la velocità di un punto mobile in moto rettilineo è la stessa in qualunque istante il moto si definisce uniforme. Il moto uniforme Se la velocità di un punto mobile in moto rettilineo è la stessa in qualunque istante il moto si definisce uniforme. Tale definizione implica che: 1. il grafico (t, x) è una retta; 2.

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAI TESTI DI RIFERIMENTO: FONDAMENTI DI FISICA

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

CALCOLO INTEGRALE: L INTEGRALE DEFINITO

CALCOLO INTEGRALE: L INTEGRALE DEFINITO ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA CALCOLO INTEGRALE: L INTEGRALE DEFINITO A. A. 2013-2014 1 IL PROBLEMA DELL AREA Determinare l area della regione S di piano compresa tra il grafico

Dettagli

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono.

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. CINEMATICA DEL PUNTO MATERIALE I Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. Il moto di un punto risulta

Dettagli

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo FISICA Serie 3: Cinematica del punto materiale II I liceo Le funzioni affini Una funzione f è detta una funzione del tempo se ad ogni istante t associa il valore di una grandezza fisica f a quell istante,

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico.

Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico. Sul concetto di derivata di una funzione con riferimento ad alcune sue applicazioni nel campo matematico e fisico. Introduzione In matematica la derivata di una funzione è uno dei cardini dellanalisi matematica

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE DOWNLOAD Il pdf di questa lezione è scaricabile dal sito http://www.ge.infn.it/ prati/didattica/ March 7, 2018 CINEMATICA E PUNTO MATERIALE: CONCETTI La cinematica studia

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Moto uniformemente accelerato 1) v=v 0 +a(t-t 0 ) 2) s=s 0 +v 0 (t-t 0 )+½a(t-t 0 ) 2 s=s

Dettagli

Analisi e Geometria 1 Anno accademico 2017 / Federico Lastaria. Homepage:

Analisi e Geometria 1 Anno accademico 2017 / Federico Lastaria. Homepage: Analisi e Geometria 1 Anno accademico 2017 / 2018 Federico Lastaria federico.lastaria@polimi.it Homepage: https://home.aero.polimi.it/lastaria/ Dipartimento di Scienze e Tecnologie Aerospaziali (DAER)

Dettagli

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana Fisica per Medicina Lezione - Matematica e Cinematica Dr. Cristiano Fontana Dipartimento di Fisica ed Astronomia Galileo Galilei Università degli Studi di Padova 17 ottobre 17 Indice Richiami di matematica

Dettagli

Cinematica 1-dimensionale

Cinematica 1-dimensionale Alfonso Monaco Cinematica 1-dimensionale Fisica Medica - CINEMATICA 1D 1 MOTO UNIFORME a = 0, v = cost, x = x0 +vt Posizione iniziale Istante iniziale t 0 = 0 v Istante successivo t v x 0 x Fisica con

Dettagli

Fisica 2C. 3 Novembre Domande

Fisica 2C. 3 Novembre Domande Fisica 2C 3 Novembre 2006 Domande ˆ i) Si consideri un oscillatore armonico smorzato e forzato da una sollecitazione sinusoidale esterna, la cui equazione é tipicamente s + 2γṡ + ω0s 2 = F cos ωt m 1)

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizi di Cinematica Esercizio 1 3 La posizione di un punto materiale in moto è data dall equazione vettoriale r(t) = 6ti 3t 2 2 j + t k. Determinare la velocità e l accelerazione del punto. Esercizio

Dettagli

Curve nel piano ane euclideo e nello spazio ane euclideo

Curve nel piano ane euclideo e nello spazio ane euclideo Curve nel piano ane euclideo e nello spazio ane euclideo 13 Dicembre 2018 Federico Lastaria. Analisi e Geometria 1. Curve nel piano e nello spazio. 1/29 Curve parametrizzate regolari e biregolari. Denizione

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale È la parte più elementare della meccanica: studia il moto dei corpi senza riferimento alle sue cause Il moto è determinato se è nota la posizione del corpo in funzione del

Dettagli

Analisi e Geometria 1 Anno accademico 2018 / Federico Lastaria. Homepage:

Analisi e Geometria 1 Anno accademico 2018 / Federico Lastaria. Homepage: Analisi e Geometria 1 Anno accademico 2018 / 2019 Federico Lastaria federico.lastaria@polimi.it Homepage: https://home.aero.polimi.it/lastaria/ Dipartimento di Scienze e Tecnologie Aerospaziali (DAER)

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

()ˆ. t = i = v( t) ˆ di =0. se un punto materiale si muove in linea retta. ad es. lungo l asse x. l equazione oraria del moto sara.

()ˆ. t = i = v( t) ˆ di =0. se un punto materiale si muove in linea retta. ad es. lungo l asse x. l equazione oraria del moto sara. Moti in una dimensione se un punto materiale si muove in linea retta ad es. lungo l asse x l equazione oraria del moto sara derivando xt () rispetto al tempo x( t) = x( t) iˆ si ha dx v( ) ()ˆ t t = i

Dettagli

Fisica 2018/2019 Lezione 2 02/10/18. Meccanica (1) La cinematica e lo studio del moto senza occuparsi di ciò che lo ha causato

Fisica 2018/2019 Lezione 2 02/10/18. Meccanica (1) La cinematica e lo studio del moto senza occuparsi di ciò che lo ha causato Meccanica (1) Cinematica unidimensionale Lezione 2, 2/10/2018, JW 2.1-2.5, 2.7 1 Cinematica unidimensionale La cinematica e lo studio del moto senza occuparsi di ciò che lo ha causato Unidimensionale:

Dettagli

La lezione di oggi. La cinematica Velocità Accelerazione. Il moto del proiettile Salto verticale

La lezione di oggi. La cinematica Velocità Accelerazione. Il moto del proiettile Salto verticale 1 La lezione di oggi La cinematica Velocità Accelerazione Il moto del proiettile Salto erticale Meccanica e cinematica! Meccanica: studio del moto gli oggetti! forze esterne! dimensioni! massa! distribuzione

Dettagli

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32 GRAFICA E COMPUTER 19 giugno 2013 3 2 1 0 1 2 3 3 2 1 0 1 2 3 () PLS-Grafica 19 giugno 2013 1 / 32 Equazioni differenziali modellizzano fenomeni (fisici e non) che variano nel tempo partendo da dati noti,

Dettagli

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi FISICA CdS Scienze Biologiche Stefania Spagnolo Dip. di Matematica e Fisica Ennio De Giorgi http://www.dmf.unisalento.it/~spagnolo stefania.spagnolo@le.infn.it (please, usate oggetto/subject: CdSBiologia)

Dettagli

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v Forza viscosa 1 / 44 Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v attrito turbolento (2) Per entrambi i modelli l equazione

Dettagli

APPLICAZIONI DEL CONCETTO DI DERIVATA

APPLICAZIONI DEL CONCETTO DI DERIVATA ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA APPLICAZIONI DEL CONCETTO DI DERIVATA A. A. 2014-2015 L. Doretti 1 A. Significato geometrico di derivata 1. Dato il grafico di f, utilizzare il

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti CENNI DI CINEMATICA.1 GENERALITÀ La cinematica studia il moto dei corpi in relazione allo spazio ed al tempo indipendentemente dalle cause che lo producono. Un corpo si muove quando la sua posizione relativa

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizio 1 Esercizi di Cinematica Esercitazioni di Fisica LA per ingegneri - A.A. 2007-2008 Data la legge oraria: s(t) = a t 3 b t + c (con a = 3 ms 3, b = 2 ms 1, c = 1 m) calcolare la posizione e la

Dettagli

Lezione 2 - Lo studio del moto

Lezione 2 - Lo studio del moto Lezione 2 - Lo studio del moto Tradizionalmente lo studio del moto viene diviso in cinematica e dinamica Cinematica pura descrizione del moto Dinamica investigazione sulle cause del moto con l applicazione

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Esercizi su curvatura e torsione.

Esercizi su curvatura e torsione. Esercizi su curvatura e torsione. e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 016. 1 Indice 1 Curvatura e torsione 1.1 Curve parametrizzate alla lunghezza d arco................... 1.

Dettagli

Cinematica: considerazioni generali

Cinematica: considerazioni generali Cinematica: considerazioni generali La cinematica studia la descrizione del moto dei corpi (cioè la posizione di un oggetto nello spazio e nel tempo) senza considerare le cause che hanno prodotto il moto.

Dettagli

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie Problema n. 1: Un velocista corre i 100 m piani in 10 s. Si approssimi il suo moto ipotizzando che egli abbia un accelerazione costante nei primi 16 m e poi un velocità costante nei rimanenti 84 m. Si

Dettagli

Esercizi moto in due dimensioni. Prof. Francesco Di Capua a.a. 2018/19

Esercizi moto in due dimensioni. Prof. Francesco Di Capua a.a. 2018/19 Esercizi moto in due dimensioni Prof. Francesco Di Capua a.a. 2018/19 .lezione precedente: moto in due dimensioni Moto in caduta libera Per descrivere il moto in caduta libera si scelga l asse delle y

Dettagli

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m =

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m = DERIVATA DI UNA FUNZIONE IN UN PUNTO SIGNIFICATO GEOMETRICO. EQUAZIONE DELLA RETTA TANGENTE AL GRAFICO NEL PUNTO DI TANGENZA. REGOLE DI DERIVAZIONE. CONTINUITA E DERIVABILITA PUNTI DI NON DERIVABILITA

Dettagli

Matematica. Tutorato Attivo: Derivate. Alessio Bianchi. Matematica 20 maggio 2017

Matematica. Tutorato Attivo: Derivate. Alessio Bianchi. Matematica 20 maggio 2017 Matematica Tutorato Attivo: Derivate Alessio Bianchi email: alessio.bianchi02@universitadipavia.it Home page: https://bianchiunipv.wordpress.com/ Matematica 20 maggio 2017 Alessio Bianchi Tutorato Attivo:

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE Regole di derivazione per il prodotto scalare e per il prodotto vettore Sia v funzione di un parametro reale t, t.c. 5 v : R R 3 t 7 v (t). (1) Proprietà: 1. Limite. Il concetto

Dettagli

MECCANICA. Si occupa dei fenomeni connessi al MOVIMENTO dei corpi. CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA

MECCANICA. Si occupa dei fenomeni connessi al MOVIMENTO dei corpi. CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA MECCANICA Si occupa dei fenomeni connessi al MOVIMENTO dei corpi CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA DINAMICA: causa del movimento = Forza F STATICA: fenomeni di non alterazione

Dettagli

Esercitazione 1. Soluzione

Esercitazione 1. Soluzione Esercitazione 1 Esercizio 1 - Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza

Dettagli

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento Cinematica Velocità Riferimento Euleriano e Lagrangiano Accelerazione Elementi caratteristici del moto Tipi di movimento Testo di riferimento Citrini-Noseda par. 3.1 par. 3.2 par 3.3 fino a linee di fumo

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

Sistemi di coordinate

Sistemi di coordinate Sistemi di coordinate Servono a descrivere la posizione di una punto nello spazio. Un sistema di coordinate consiste in Un punto fisso di riferimento chiamato origine Degli assi specifici con scale ed

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli