Propulsione Aereospaziale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Propulsione Aereospaziale"

Transcript

1 UNIVERSITY OF NAPLES FEDERICO II 14 A.D. Propulsione Aereospaziale T. Astarita Versione del In figura è mostrata la numerazione delle sezioni in un motore turbogetto (Aerospace Recommended Practice 755), dove: m f e m sono la portata di combustibile e di aria, f = m f ; m p indica la pressione ambiente (nella sezione ) e non quella di ristagno; LPC e HPC indicano i compressore di bassa e alta pressione; LPT e HPT indicano le turbine di bassa e alta pressione. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it

2 Il motore è sostenuto da un supporto che non sarà considerato nell'analisi. Il volume di controllo considerato è indicato con la linea tratteggiata. Si considera solo la spinta netta. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 3 Un semplice bilancio di massa fornisce: ρ V A + m s + m f = m + m f + ρ V A A Semplificando: m s = m ρ V A L'equazione di bilancio della quantità di moto: F u = m + Sostituendo: F u = m + QM out QM in p out ρ V AV + m s V + p p A m f V + ρ V A A V m f V m V + p p A = m V m V + p p A Questa è l'espressione per la spinta non installata (uninstalled) cioè quella che non tiene conto dell'installazione del motore. Il primo ed il terzo (nullo in regime subsonico) termine sono la spinta generata dall'ugello, il secondo è la resistenza "ram" (ram drag D ram ). Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 4

3 La spinta generata dall'ugello viene anche chiamata spinta lorda (Gross thrust): F g = m V + p p A F u = F g D ram La spinta lorda è l'unica presente nel caso di motori a razzo, in questo caso si ha m = m p = m f + m ox : F r = m p V + p p A Introducendo una velocità equivalente c tale che: F r = quindi: m p c c = F r = V m + p p A p m p Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 5 L'estensione al caso di un TurboFan è banale: F u = m V + m 1 V 1 m V + p p A + p 1 p A 1 Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 6

4 In realtà la spinta "installata" F i è la spinta realmente trasferita dal motore al velivolo, comprensiva di eventuali perdite aggiuntive, attrito sulla gondola e l'eventuale resistenza di pressione. Mentre, normalmente, la resistenza associata ai piloni (supporti) entra nel bilancio della resistenza del velivolo. Conviene utilizzare un diverso volume di controllo. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 7 La spinta installata trascurando la resistenza dei piloni diventa: F i = m V m V + p p A න τ w dax න p p da x 1 Che può essere espressa anche in funzione della spinta non installata: F i = F u න τ w dax න 1 p p da x F u = m V m V + p p A Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 8

5 F i = F u න τ w dax න p p da x 1 Il secondo integrale può essere diviso in tre parti: න 1 p p da x = න M p p da x + න 1 p p da x + න M p p da x Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it In figura è mostrata la distribuzione delle pressioni, sulla parte esterna del volume di controllo, nell'ipotesi che sia presente un divergente esterno (i.e. la pressione ambiente è inferiore alla pressione all'ingresso del motore). න 1 p p da x = න M p p da x + න 1 p p da x + න M p p da x Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 1

6 1 p p da x Resistenza additiva (D add additive drag); Questo termine è negativo sia nel caso di un divergente che di un convergente esterno: Nel primo caso la pressione aumenta muovendosi dalla sezione alla sezione 1. Essendo da> il contributo all'integrale è positivo. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 11 1 p p da x Resistenza additiva (D add additive drag); Questo termine è negativo sia nel caso di un divergente che di un convergente esterno: Nel primo caso la pressione aumenta muovendosi dalla sezione alla sezione 1. Essendo da> il contributo all'integrale è positivo. Nel caso di un convergente la pressione diminuisce e da< creando ancora un contributo positivo all'integrale. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 1

7 1 p p da x Resistenza additiva (D add additive drag); 1 M p p da x Spinta associata con il bordo d'attacco; Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 13 1 p p da x 1 M p p da x M p p da x Resistenza additiva (D add additive drag); Spinta associata con il bordo d'attacco; Resistenza della parte posteriore della gondola. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 14

8 Il calcolo delle forze può essere fatto in modo più capillare considerando le differenze fra gli impulsi totali nelle diverse sezioni. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 15 Il calcolo delle forze può essere fatto in modo più capillare considerando le differenze fra gli impulsi totali nelle diverse sezioni. Per esempio la spinta generata dal compressore (positiva verso sinistra) è: F c = I 3 I Mentre quella generata all'interno del motore (spinta netta): F e = I I 1 = m V + p p A m 1 V 1 + p 1 p A 1 Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 16

9 F e = I I 1 = m V + p p A m 1 V 1 + p 1 p A 1 Normalmente le condizioni nella sezione 1 non sono note quindi è preferibile considerare la resistenza additiva ed effettuare il bilancio fra le sezioni e : F e = m V + p p A m V D add Chiaramente la resistenza additiva è data dalla differenza degli impulsi: D add = m 1 V 1 + p 1 p A 1 m V = න 1 p p da x Spinta specifica Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 17 Per gli esoreattori la spinta specifica è definita come il rapporto fra la spinta e la portata d'aria totale: F m Ns kg che è chiaramente una quantità dimensionale. In alcuni casi si utilizza, dividendola per la velocità del suono, una forma adimensionale: F m a Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 18

10 Consumo specifico Il consumo specifico è spesso espresso in termini di spinta (TSFC Thrust Specific Fuel Consumption): m f F kg m f a F kns Questa grandezza può essere adimensionalizzata rispetto alla velocità del suono. Per gli endoreattori al posto della m f si usa la portata totale data dalla somma della portata di combustibile e di quella di ossidante: m p F = m f + m ox F Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 1 Impulso specifico Più spesso, per gli endoreattori, si utilizza l'impulso specifico che ha le dimensioni di un tempo: I s = F 1 = m p g TSFC s g I s rappresenta il periodo di tempo per cui un assegnata massa di propellente è in grado di fornire una spinta pari al suo peso a livello del mare. Ricordando la definizione di velocità equivalente F r = m p c I s = c g Per gli esoreattori invece: I s = F 1 = m f g TSFC s g Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it

11 Impulso specifico Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 1 Rendimento termico (thermal efficiency) esoreattori Il rendimento termico è definito come il rapporto fra la potenza fornita al getto e quella intrinsecamente contenuta nel combustibile: η th = ΔK E P t = m V m V = m + m f Q R m f V m V = 1 + f V m f Q R fq R V dove f è il rapporto fra la portata di combustibile e quella d'aria e Q R è il potere calorifico del combustibile (fuel heating value). kj kg Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it

12 Rendimento termico (thermal efficiency) esoreattori Valori tipici del potere calorifico per combustibili di tipo aeronautico sono: Q R = 4,8 kj kg = 1,3 kcal kg mentre per l'idrogeno si ha: Q R = 18, kj kg = 3,6 kcal kg BTU = 18,4 lb BTU = 55, lb Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 3 Rendimento termico (thermal efficiency) esoreattori Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 4

13 Rendimento termico (thermal efficiency) esoreattori Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 5 Rendimento termico (thermal efficiency) esoreattori Il rendimento termico per un turbofan è invece definito come: η th = m V m 1V 1 + m f Q R m V Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 6

14 Rendimento termico (thermal efficiency) esoreattori Il rendimento termico per un turboprop è invece definito come: η th = ΔK E + P s m f Q R dove P s è la potenza all'albero (shaft). Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 7 Rendimento termico (thermal efficiency) esoreattori Spesso il contributo cinetico è trascurabile (il che è certamente vero per i turboshaft) quindi: η th = P s m f Q R Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 8

15 Rendimento propulsivo esoreattori Il rendimento propulsivo è definito come il rapporto fra la potenza propulsiva e quella fornita al getto: η p = F iv ΔKE Per semplificare la relazione precedente è possibile utilizzare la F u e nell'ipotesi di funzionamento corretto dell'ugello: η p m + m f V m + m f V m V V m V Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it Rendimento propulsivo esoreattori Supponendo inoltre che m + m f V m f sia trascurabile rispetto a m V V m : η p m + m f V m V V V V V V = V = V + V 1 + V V Per un osservatore fisso il propulsore oltre a produrre un lavoro utile (FV ) accelera inutilmente anche l'aria producendo una velocità residua (V V ). η p è proprio il rapporto fra il lavoro utile e quello totale : η p m V V V m V V V + = V V V V V = 1 + V V V m V = V V V V V V + V + V V V Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 3

16 Rendimento propulsivo esoreattori η p 1 + V V Il rendimento è unitario quando V = V 1 ed è una funzione decrescente di V /V. Conviene utilizzare piccole differenze di velocità e grandi portate. L'utilizzo di TurboProp o TurboFan ad alto bypass vanno in questa direzione. Per un turboprop si ha: η p = F iv F iv ΔKE + P s P s In questo caso però si deve aggiungere anche il rendimento dell'elica ed eventualmente del sistema di riduzione. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 31 Rendimento propulsivo endoreattori In modo analogo il rendimento propulsivo di un endoreattore è definito come il rapporto fra la potenza propulsiva e la somma della potenza propulsiva con la potenza residua nel getto: FV η p = FV + m p c V / Ricordando la definizione di spinta equivalente F r = η p = cv cv + c V / = cv V c + V = c 1 + V c m p c si ha: Chiaramente negli endoreattori il rapporto V/c può essere anche maggiore di 1. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 3

17 Rendimento propulsivo endoreattori η p = cv cv + c V / = cv V c + V = c 1 + V c Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 33 Rendimento globale esoreattori Il rendimento globale è dato dal prodotto dei singoli rendimenti, per gli esoreattori: η = η p η th = F iv m f Q R Mentre per gli endoreattori: F i V η = m p Q R + m p v inj / cv Q R dove il secondo membro è l'energia cinetica agli iniettori. Propulsione Aerospaziale PA Spinta e prestazioni - astarita@unina.it 34

Propulsione Aereospaziale

Propulsione Aereospaziale UNIVERSITY OF NAPLES FEDERICO II 1224 A.D. Propulsione Aereospaziale T. Astarita astarita@unina.it www.docenti.unina.it Versione del 29.3.2019 Generatore di gas Propulsione Aerospaziale PA3 Ciclo TJ -

Dettagli

Propulsione Aerospaziale Prova Scritta dell 8 Luglio 2003

Propulsione Aerospaziale Prova Scritta dell 8 Luglio 2003 D : H Propulsione Aerospaziale Prova Scritta dell 8 Luglio 2003 Esercizio n. 1 Confrontare le prestazioni (spinta specifica, TSFC, rendimenti) di un turbogetto, un turbogetto con postbruciatore ed un turbofan

Dettagli

Propulsione Aereospaziale

Propulsione Aereospaziale UNIVERSITY OF NAPLES FEDERICO II 14 A.D. Propulsione Aereospaziale T. Astarita astarita@unina.it www.docenti.unina.it Versione del 5.4.019 Post Bruciatore Spesso, in particolare per applicazioni militari,

Dettagli

Propulsione Aerospaziale Prova Scritta del 26 Giugno 2002

Propulsione Aerospaziale Prova Scritta del 26 Giugno 2002 + IH O 0 + Propulsione Aerospaziale Prova Scritta del 26 Giugno 2002 Esercizio n. 1 Un turbofan a flussi separati ha le seguenti caratteristiche assegnate: Quota di volo ; Mach di volo ; Rapporto di compressione

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezioni n. 11 Caratteristiche propulsive

Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezioni n. 11 Caratteristiche propulsive Corso di MECCANICA DEL OLO Modulo Prestazioni Lezioni n. 11 Caratteristiche propulsive Corso di Meccanica del olo - Mod. Prestazioni - Prof. Coiro / Nicolosi 1 - Razzi (Rockets) -Ramjet - Turbojet - Turbofan

Dettagli

Cap.6 Caratteristiche propulsive. - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica

Cap.6 Caratteristiche propulsive. - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica - Razzi (Rockets) - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica - Razzi (Rockets) (o anche Endoreattori) - Ramjet Motoelica Motoelica Turbogetto Turboprop (tipo ATR42) Turbofan BPR (By-Pass

Dettagli

Ciclo di Turbofan a Flussi Associati

Ciclo di Turbofan a Flussi Associati Lezione 5 1 Ciclo di Turbofan a Flussi Associati Abbiamo visto Turbofan a flussi separati. Dal punto di vista delle prestazioni conviene miscelare i due getti prima dell espansione. Bisogna tener conto

Dettagli

Caratteristiche propulsive - Razzi (Rockets) - Ramjet - Turbojet - Turbofan - Turboprop. Corso PGV - Meccanica del Volo- MOTORI

Caratteristiche propulsive - Razzi (Rockets) - Ramjet - Turbojet - Turbofan - Turboprop. Corso PGV - Meccanica del Volo- MOTORI - Razzi (Rockets) - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica 1 - Razzi (Rockets) (o anche Endoreattori) - Ramjet 2 3 4 Cap.6 Caratteristiche propulsive Motoelica 5 Turbogetto 6 Turboprop (tipo

Dettagli

Propulsione Aereospaziale

Propulsione Aereospaziale UNIVERSITY OF NAPLES FEDERICO II 1224 A.D. Propulsione Aereospaziale T. Astarita astarita@unina.it www.docenti.unina.it Versione del 2.4.2019 Prese d'aria I requisiti primari delle prese d'aria (Fig A380)

Dettagli

Introduzione. Principio comune nella propulsione aeronautica e astronautica:

Introduzione. Principio comune nella propulsione aeronautica e astronautica: Lezione 1 1 Introduzione Significato di propulsione ( Spinta in avanti ): azione con la quale una macchina ( convertitore di energia ) imprime ad un veicolo il moto desiderato. Concetto di reazione (tutti

Dettagli

Impianti a turbogas. Scheda riassuntiva 8 capitolo 15. Il ciclo ideale di riferimento. Impianto a turbogas. Volume 2 (cap. 15) Impianti a turbogas

Impianti a turbogas. Scheda riassuntiva 8 capitolo 15. Il ciclo ideale di riferimento. Impianto a turbogas. Volume 2 (cap. 15) Impianti a turbogas Scheda riassuntiva 8 capitolo 5 Impianti a turbogas Il ciclo ideale di riferimento È il ciclo Brayton-Joule ad aria, costituito da due adiabatiche isoentropiche e due scambi termici a pressione costante.

Dettagli

Turbomacchine Impiegate in Aeronautica

Turbomacchine Impiegate in Aeronautica Lezione 11 1 Turbomacchine Impiegate in Aeronautica Ci si occuperà ora in maggior dettaglio delle turbomacchine più diffuse nel campo aeronautico. Esse sono: Tra i compressori Compressore radiale centrifugo

Dettagli

L Unità didattica in breve

L Unità didattica in breve L Unità didattica in breve Ciclo ideale Brayton-Joule Il ciclo Brayton-Joule costituisce il principio di funzionamento delle turbine a gas; esse trovano applicazione in campo sia industriale e civile sia

Dettagli

FLUSSO COMPRIMIBILE NEI CONDOTTI FISSI

FLUSSO COMPRIMIBILE NEI CONDOTTI FISSI FLUSSO COMPRIMIBILE NEI CONDOTTI FISSI La seguente trattazione riguarda tutti i condotti fissi a sezione variabile la cui lunghezza è confrontabile con la loro dimensione trasversale. Tali condotti possono

Dettagli

Nome Cognome Matricola Esercitazione N. 1 Grandezza Simbolo Unità di Misura Nome dell unità di dimensionale misura

Nome Cognome Matricola Esercitazione N. 1 Grandezza Simbolo Unità di Misura Nome dell unità di dimensionale misura R. BARBONI FONDAMENTI DI AEROSPAZIALE 1 Nome : Cognome: Matricola: Esercitazione N. 1 1) Scrivere il simbolo dimensionale e l unità di misura, precisandone il nome, delle grandezze in tabella nei due sistemi

Dettagli

Corso di Motori Aeronautici

Corso di Motori Aeronautici Corso di Motori Aeronautici Mauro Valorani Laurea Magistrale in Ingegneria Aeronautica (MAER) Sapienza, Università di Roma Anno Accademico 2011-12 Sett. 3: Parametri di prestazione di un motore 1 SPINTA

Dettagli

Compressore e turbina [1-19]

Compressore e turbina [1-19] Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 4 sezione c Compressore e turbina

Dettagli

Introduzione ai propulsori aeronautici pt1

Introduzione ai propulsori aeronautici pt1 Introduzione ai propulsori aeronautici pt1 Appunti del corso di Propulsione Aerospaziale tenuto dal Professore Raffaele Savino Sommario INTRODUZIONE AL CORSO... 1 INTRODUZIONE AI PROPULSORI AERONAUTICI...

Dettagli

ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SECONDA SESSIONE 2017 PRIMA PROVA SCRITTA Sezione B 23 NOVEMBRE 2017

ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SECONDA SESSIONE 2017 PRIMA PROVA SCRITTA Sezione B 23 NOVEMBRE 2017 ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SECONDA SESSIONE 2017 PRIMA PROVA SCRITTA Sezione B 23 NOVEMBRE 2017 Sotto-settore ELETTRICA Le metodologie e gli strumenti

Dettagli

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Esame di Stato. Ingegneria Gestionale - Settore Industriale. Laurea Specialistica. Prova del 28/11/2008

Esame di Stato. Ingegneria Gestionale - Settore Industriale. Laurea Specialistica. Prova del 28/11/2008 Esame di Stato Ingegneria Gestionale - Settore Industriale Laurea Specialistica Prova del 28/11/2008 Seconda prova Tema 1 Impostare una metodologia per la progettazione del layout di un sistema produttivo,

Dettagli

ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SECONDA SESSIONE 2017 PRIMA PROVA SCRITTA Sezione A 15 NOVEMBRE 2017

ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SECONDA SESSIONE 2017 PRIMA PROVA SCRITTA Sezione A 15 NOVEMBRE 2017 ESAMI DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI INGEGNERE SECONDA SESSIONE 2017 PRIMA PROVA SCRITTA Sezione A 15 NOVEMBRE 2017 Sotto-settore AUTOMAZIONE Il candidato illustri una o

Dettagli

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Fondamenti di Aerospaziale

Fondamenti di Aerospaziale Fondamenti di Aerospaziale Prof. Renato Barboni Forme di Energia Muscolare (0,07 kw) Meccanica: a)cinetica; b)potenziale. Gravitazionale: attrazione newtoniana. Termica: è l energia cinetica caotica legata

Dettagli

Studio di un bruciatore intermedio per un motore aeronautico turbocompound

Studio di un bruciatore intermedio per un motore aeronautico turbocompound ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA Studio di un bruciatore intermedio per un motore aeronautico turbocompound Tesi di laurea di: Davide

Dettagli

Studio di fattibilità di un velivolo supersonico a decollo verticale dotato di motori alternativi

Studio di fattibilità di un velivolo supersonico a decollo verticale dotato di motori alternativi Alma Mater Studiorum Università di Bologna Seconda Facoltà di Ingegneria Corso di Laurea in Ingegneria Aerospaziale Studio di fattibilità di un velivolo supersonico a decollo verticale dotato di motori

Dettagli

Turbine a gas per applicazioni aeronautiche [1-14]

Turbine a gas per applicazioni aeronautiche [1-14] Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 5 sezione b Turbine a gas per

Dettagli

Lecture 9 Ciclo Turbo-Gas Text:

Lecture 9 Ciclo Turbo-Gas Text: Lecture 9 Text: Motori Aeronautici Mar. 8, 205 Mauro Valorani Univeristà La Sapienza 9.42 Agenda 2 3 4 9.43 Architettura Modulare dei Motori a Turbina a Gas The core of the engine (turbo-gas) can be thought

Dettagli

PROPULSIONE AEROSPAZIALE D. Lentini a.a. 2017/18 1. INTRODUZIONE

PROPULSIONE AEROSPAZIALE D. Lentini a.a. 2017/18 1. INTRODUZIONE Propulsione Aerospaziale 2017/18, D. Lentini, Sapienza Università di Roma 1 PROPULSIONE AEROSPAZIALE D. Lentini a.a. 2017/18 1. INTRODUZIONE www.dima.uniroma1.it:8080/staff2/lentini.html (sotto la voce

Dettagli

Approfondimenti: PROBLEMATICHE TECNICHE di FISICA APPLICATA

Approfondimenti: PROBLEMATICHE TECNICHE di FISICA APPLICATA Approfondimenti: PROBLEMATICHE TECNICHE di FISICA APPLICATA CASO A): dilatazione termica dei tubi in acciaio e compensazione degli sforzi CASO B): misurazione dell energia termica e dimensionamento preliminare

Dettagli

Fisica 2018/2019 Lezione 6 15/10/2018. Meccanica (5)

Fisica 2018/2019 Lezione 6 15/10/2018. Meccanica (5) Meccanica (5) Lavoro ed energia cinetica Lezione 6, 16/10/2018, JW 7.1-7.4 1 Lavoro ed energia Molti processi fisici si possono descrivere tramite il trasferimento di energia Energia cinetica (velocità)

Dettagli

SISTEMI APERTI CON PICCOLO SCAMBIO DI CALORE

SISTEMI APERTI CON PICCOLO SCAMBIO DI CALORE CAPITOLO DODICESIMO SISTEMI APERTI CON PICCOLO SCAMBIO DI CALORE Sistemi aperti con piccolo scambio di calore In alcune applicazioni il fluido che viene trattato da una macchina ovvero viene trasportato

Dettagli

061473/ Macchine (a.a. 2016/17)

061473/ Macchine (a.a. 2016/17) 061473/090856 - Macchine (a.a. 2016/17) Nome: Matricola: Data: 01/02/2017 Prova da sostenere: I parte II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova

Dettagli

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

8. PRESTAZIONI (Parte 1) - Polare, Crociera, Salita, Decollo. Prestazioni (parte I) 1

8. PRESTAZIONI (Parte 1) - Polare, Crociera, Salita, Decollo. Prestazioni (parte I) 1 8. PRESTAZIONI (Parte 1) - Polare, Crociera, Salita, Decollo Prestazioni (parte I) 1 POLARE PARABOLICA Prestazioni (parte I) 2 POLARE PARABOLICA Prestazioni (parte I) 3 POLARE PARABOLICA Prestazioni (parte

Dettagli

Promemoria lezione AA

Promemoria lezione AA Promemoria lezione AA 2012-2013 Rendimento propulsivo Tipi di propulsione Teorema di Froude Teoria dell elica Classificazione Una classificazione utile dei propulsori aeronautici distingue i sistemi che

Dettagli

UNIVERSITA DEGLI STUDI DI BOLOGNA

UNIVERSITA DEGLI STUDI DI BOLOGNA UNIVERSITA DEGLI STUDI DI BOLOGNA FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria meccanica sede di Bologna Elaborato finale di laurea in Disegno Tecnico Industriale STUDIO DELLA SISTEMAZIONE DEL GRUPPO

Dettagli

PRESTAZIONI. Parte 1. Polare, Crociera, Salita, Decollo

PRESTAZIONI. Parte 1. Polare, Crociera, Salita, Decollo PRESTAZIONI Parte 1 Polare, Crociera, Salita, Decollo POLARE PARABOLICA POLARE PARABOLICA POLARE PARABOLICA POLARE PARABOLICA Si capisce perché alle alte velocità il sistema propulsivo ad elica non è efficace

Dettagli

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti Capitolo 5. Primo principio della Termodinamica nei sistemi aperti 5.1. I sistemi aperti I sistemi aperti sono quei sistemi termodinamici nei quali, oltre allo scambio di lavoro e calore è possibile lo

Dettagli

Densità e volume specifico

Densità e volume specifico Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare

Dettagli

Cap.6 Caratteristiche propulsive. - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica

Cap.6 Caratteristiche propulsive. - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica - Razzi (Rockets) - Ramjet - Turbojet - Turbofan - Turboprop - Motoelica 1 - Razzi (Rockets) (o anche Endoreattori) - Ramjet 2 3 4 Motoelica 5 Motoelica Il disegno riporta il caso del motore alternativo

Dettagli

RICHIAMI SULL EQUAZIONE DI CONSERVAZIONE DELL ENERGIA

RICHIAMI SULL EQUAZIONE DI CONSERVAZIONE DELL ENERGIA RICHIAMI SULL EQUAZIONE DI CONSERVAZIONE DELL ENERGIA Equazione di conservazione dell energia per i sistemi aperti senza reazioni chimiche In assenza di reazioni chimiche e con riferimento all unità di

Dettagli

Sistema di Propulsione. Lanciatori. Trieste, 09 Giugno

Sistema di Propulsione. Lanciatori. Trieste, 09 Giugno Sistema di Propulsione Lanciatori Trieste, 09 Giugno 2008 1 SOTTO-SISTEMI SISTEMI Trieste, 09 Giugno 2008 2 Utilizzo Operazioni di lancio Trasferimenti orbitali Mantenimento della missione Controllo di

Dettagli

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Scritto di Analisi II e Meccanica razionale del

Scritto di Analisi II e Meccanica razionale del Scritto di Analisi II e Meccanica razionale del 06.09.01 Meccanica razionale. Esercizio 1 Un recipiente cilindrico omogeneo, di massa m, area di base A e altezza h, completamente chiuso, poggia sul piano

Dettagli

Capitolo 1 Misure e grandezze

Capitolo 1 Misure e grandezze Capitolo 1 Misure e grandezze 1. Il Sistema Internazionale di Unità di misura 2. Grandezze estensive e grandezze intensive 3. Energia, lavoro e calore 4. Temperatura e calore 5. Misure precise e misure

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

Corso di MECCANICA DEL VOLO. Prof. F. Nicolosi. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1

Corso di MECCANICA DEL VOLO. Prof. F. Nicolosi. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1 Corso di MECCANICA DEL VOLO Modulo Prestazioni INTRO- Il Velivolo l Prof. F. Nicolosi Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1 Il volo, come è possibile?

Dettagli

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Ingegneria Meccanica e Aerospaziale Corso di MECCANICA DEL VOLO

A Nome: Cognome: Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Ingegneria Meccanica e Aerospaziale Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Ingegneria Meccanica e Aerospaziale Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del

Dettagli

IL LAVORO E L ENERGIA. che si possono trasformare tra loro lasciando invariata la quantità totale di energia.

IL LAVORO E L ENERGIA. che si possono trasformare tra loro lasciando invariata la quantità totale di energia. IL LAVORO E L ENERGIA ENERGIA: Grandezza scalare associata allo stato di un corpo Esistono varie forme: Energia cinetica Energia potenziale Energia elettrica Energia chimica Energia termica Energia elastica..

Dettagli

Propulsione Aereospaziale

Propulsione Aereospaziale UNIVERSITY OF NAPLES FEDERICO II 1224 A.D. Propulsione Aereospaziale T. Astarita astarita@unina.it www.docenti.unina.it Versione del 31.5.2019 Cenni sul sistema tecnico Americano Propulsione Aerospaziale

Dettagli

POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE. II Sessione Sezione A Settore industriale

POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE. II Sessione Sezione A Settore industriale POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE II Sessione 2012 - Sezione A Settore industriale Classi 25/S-LM-20 Ingegneria Aerospaziale Prova pratica

Dettagli

Propulsione Aereospaziale

Propulsione Aereospaziale UNIVERSITY OF NAPLES FEDERICO II 1224 A.D. Propulsione Aereospaziale T. Astarita astarita@unina.it www.docenti.unina.it Versione del 3.5.2019 Camere di combustione I requisiti primari delle camere di combustione

Dettagli

I propulsori aerospaziali

I propulsori aerospaziali I propulsori aerospaziali 1. Generalità Durante ogni fase del volo di un aeromobile, occorre generare delle forze che devono vincere le forze aerodinamiche che si oppongono al suo avanzamento nell'aria.

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 28-02 - 22 Esercizio 1. Un asta di lunghezza 2L e massa m uniformemente distribuita scorre senza attrito in una guida incernierata nel punto O. L estremo A

Dettagli

Rendimento globale: Assegnati combustibile. rapporto

Rendimento globale: Assegnati combustibile. rapporto Esoreattore (turbogetti o ramjets) Spinta: Velocità efficace: Resistenza ram Spinta del getto: Spinta netta (condizioni adattamento: ): Impulso specifico all aria: Consumo specifico di combustibile (TSFC):

Dettagli

Esercitazione di Fisica Tecnica

Esercitazione di Fisica Tecnica Anno Accademico 2016-2017 Prof. Ing. L. Maffei 1 Anno Accademico 2016-2017 - PARTE 1 Grandezze e unità di misura Consumi energetici 2 Grandezze e unità di misura 3 Convertire le seguenti misure usando

Dettagli

Analisi termodinamica dei gruppi turbogas complessi

Analisi termodinamica dei gruppi turbogas complessi Analisi termodinamica dei gruppi turbogas complessi Giulio Cazzoli Aprile 0 Ciclo con rigenerazione I gas scaricati dalla turbina possiedono un elevato contenuto entalpico che viene totalmente disperso

Dettagli

LAVORO, POTENZA ED ENERGIA

LAVORO, POTENZA ED ENERGIA LAVORO, POTENZA ED ENERGIA Giuseppe Frangiamore con la collaborazione di Leonardo Zaffuto Solitamente si dice di compiere un lavoro ogni volta che si esegue un attività di tipo fisico o mentale. Quando

Dettagli

Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale

Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo I Rassegna di sistemi per la

Dettagli

1 Ciclo Rankine inverso.

1 Ciclo Rankine inverso. 1 Ciclo Rankine inverso. Il ciclo rappresentato, detto ciclo di Rankine inverso, viene modificato attraverso lo scambiatore di calore introdotto nello schema della macchina e che permette la cessione di

Dettagli

Macchina a regime periodico

Macchina a regime periodico Macchina a regime periodico rev. 1.2 J m J v τ, η t r φ motore l m F x, ẋ, ẍ (P.M.E.) p m p a Figura 1: Schema dell impianto di pompaggio Della pompa volumetrica a stantuffo a singolo effetto rappresentata

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA Commento ai problemi proposti nell incontro del 17 febbraio 2016 Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 I problemi proposti TRACCE

Dettagli

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Anno Accademico

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Anno Accademico Facoltà di Ingegneria ed Architettura Anno Accademico 2015 2016 A.A. Settore Scientifico Disciplinare CFU Insegnamento Ore di aula Mutuazione 2015/16 ING-IND/07 Propulsione aerospaziale 09 Motori per aeromobili

Dettagli

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora

Dettagli

5. Indicare quale figura rappresenta i triangoli di velocitá di uno stadio di turbina assiale a reazione (χ =0.5) ideale, simmetrico ed ottimizzato:

5. Indicare quale figura rappresenta i triangoli di velocitá di uno stadio di turbina assiale a reazione (χ =0.5) ideale, simmetrico ed ottimizzato: Nome Cognome Matr. 1. Il rischio di cavitazione in una turbopompa é maggiore nella seguente condizione: basse perdite nel condotto di aspirazione posizionamento sotto battente della pompa elevate perdite

Dettagli

Esercizi di Esame.mcd (1/8)

Esercizi di Esame.mcd (1/8) Esercizi di Esame.mcd (/8) Un ugello convergente è collegato ad un condotto circolare (D : 3.99mm) nel quale è imposto un flusso di energia nel modo calore Q 2. All'uscita del condotto vi è un ugello divergente

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria PRIMA PROVA SCRITTA DEL 22 giugno 2011 SETTORE INDUSTRIALE TEMA N. 1 Il candidato fornisca una panoramica generale sugli scambiatori di calore, indicandone le principali tipologie e caratteristiche. Ne

Dettagli

Presa dinamica. Istituto Tecnico G. P. Chironi - Nuoro - A.S. 2012/2013. Insegnamento di Aerotecnica e Costruzioni Aeronautiche

Presa dinamica. Istituto Tecnico G. P. Chironi - Nuoro - A.S. 2012/2013. Insegnamento di Aerotecnica e Costruzioni Aeronautiche Presa dinamica Istituto Tecnico G. P. Chironi - Nuoro - A.S. 2012/2013 Insegnamento di Aerotecnica e Costruzioni Aeronautiche Prof. Giuliano Settore Deledda Tecnologico Indirizzo Trasporti e Logistica

Dettagli

Prof. Luigi Puccinelli IMPIANTI E SISTEMI AEROSPAZIALI SS SISTEMI SPAZIALI

Prof. Luigi Puccinelli IMPIANTI E SISTEMI AEROSPAZIALI SS SISTEMI SPAZIALI Prof. Luigi Puccinelli IMPIANTI E SISTEMI AEROSPAZIALI SS SISTEMI SPAZIALI PROBLEMI INGEGNERIA SPAZIALE 2 Dinamicai Meccanica del volo spaziale Sistemi di propulsione Rientro atmosferico Strutture Controllo

Dettagli

AE-T100NG Micro Turbine DESCRIZIONE TECNICA

AE-T100NG Micro Turbine DESCRIZIONE TECNICA AE-T100NG Micro Turbine DESCRIZIONE TECNICA Marchio del Descrizione AET-100 L'unità turbina a gas Ansaldo AE-T100 è un sistema modulare progettato per generare elettricità e calore ad alta efficienza e

Dettagli

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Studio monodimensionale del motore FIAT 2.0 Multijet Avio

Studio monodimensionale del motore FIAT 2.0 Multijet Avio ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Seconda Facoltà di Ingegneria Sede di Forlì CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE A.A. 2009-2010 Studio monodimensionale del motore FIAT 2.0 Multijet Avio

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2007

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2007 OMPITO DI MENI DEI FLUIDI del 12 gennaio 2007 Docente TEM 1 0.5 m 1.0 m Δh ESERIZIO 1. Il serbatoio di figura, di profondità unitaria, contiene. La paratoia, incernierata in, è composta da due superfici

Dettagli

Esercitazione 3. Esercizio 1

Esercitazione 3. Esercizio 1 Esercitazione 3 Esercizio 1 Una pompa centrifuga opera con velocità di rotazione n d = 1450 rpm. Al punto di massimo rendimento la pompa elabora una portata volumetrica pari a V d = 0.153 m 3 /s di acqua,

Dettagli

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*.

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*. Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE Le tavole verranno consegnate e discusse in sede di esame. Lo studente è libero di redigerle manualmente o tramite

Dettagli

Esercizi sui Motori a Combustione Interna

Esercizi sui Motori a Combustione Interna Esercizi sui Motori a Combustione Interna 6 MOTORE 4TEMPI AD ACCENSIONE COMANDATA (Appello del 08.0.000, esercizio N ) Un motore ad accensione comandata a 4 tempi di cilindrata V 000 cm 3, funzionante

Dettagli

Impianti di Propulsione. Navale

Impianti di Propulsione. Navale A/A 2011/12 corso di: Impianti di Propulsione il motore diesel_2 Navale Il motore diesel: il diagramma delle fasi nel ciclo reale PMS 15-40 15-25 PMS 8-15 20-40 35-50 PMI PMI IPN072 Il motore diesel: le

Dettagli

CAPACITÀ DI UN CORPO A COMPIERE LAVORO

CAPACITÀ DI UN CORPO A COMPIERE LAVORO ENERGIA CAPACITÀ DI UN CORPO A COMPIERE LAVORO Molti sono i tipi di energia CINETICA POTENZIALE GRAVITÀ POTENZIALE ELASTICA POTENZIALE ELETTRICA TERMICA (CALORE) CHIMICA NUCLEARE ECC. Corso di fisica 1

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

STUDIO DI UN TURBOCOMPOUND PER APPLICAZIONI AERONAUTICHE

STUDIO DI UN TURBOCOMPOUND PER APPLICAZIONI AERONAUTICHE STUDIO DI UN TURBOCOMPOUND PER APPLICAZIONI AERONAUTICHE Candidato: Enrico Fagioli Relatore:Prof. Ing. Luca Piancastelli ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA Obbiettivi della tesi: il seguente lavoro

Dettagli

Ad uso didattico - Copia in lavorazione

Ad uso didattico - Copia in lavorazione Indice Lezioni di Meccanica del Volo La Salita - Parte II Prof. Giuliano Deledda Istituto Tecnico Commerciale ed Aeronautico G. P. Chironi Nuoro A.S. 203/204 Sommario Queste note riportano lo studio dei

Dettagli

Studio ed ottimizzazione di un fan per un velivolo a decollo verticale in configurazione tandem

Studio ed ottimizzazione di un fan per un velivolo a decollo verticale in configurazione tandem Studio ed ottimizzazione di un fan per un velivolo a decollo verticale in configurazione tandem Laureando: Francesco Giaccaglia Relatore: Prof. Ing. Luca Piancastelli Correlatore: Ing. Cristina Renzi Scopo

Dettagli

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO

Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO Facoltá di Ingegneria, Universitá di Roma La Sapienza Dipartimento di Meccanica e Aeronautica Corso di MECCANICA DEL VOLO A Nome: Cognome: Scrivere la risposta (A, B, C o D) a sinistra del simbolo circolare

Dettagli

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Anno Accademico

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Anno Accademico Facoltà di Ingegneria ed Architettura Anno Accademico 2016 2017 A.A. Settore Scientifico Disciplinare CFU Insegnamento Ore di aula Mutuazione 2015/16 ING-IND/07 Propulsione aerospaziale 09 Motori per aeromobili

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica Lavoro ed energia cinetica Servono a risolvere problemi che con la Fma sarebbero molto più complicati. Quella dell energia è un idea importante, che troverete utilizzata in contesti diversi. Testo di riferimento:

Dettagli

Pillole di Fluidodinamica e breve introduzione alla CFD

Pillole di Fluidodinamica e breve introduzione alla CFD Pillole di Fluidodinamica e breve introduzione alla CFD ConoscereLinux - Modena Linux User Group Dr. D. Angeli diego.angeli@unimore.it Sommario 1 Introduzione 2 Equazioni di conservazione 3 CFD e griglie

Dettagli

Impianti di Propulsione Navale

Impianti di Propulsione Navale A/A 2011/12 corso di: Impianti di Propulsione Navale introduzione agli impianti di propulsione navale IPN002 motore Mercury 2.5 altezza larghezza lunghezza peso 1.3 m 0.4 m 0.7 m 17 kg numero cilindri

Dettagli

MOTORI PER AEROMOBILI

MOTORI PER AEROMOBILI MOTORI PER AEROMOBILI Cap. 1 LA TURBINA A GAS INTRODUZIONE Le turbine a gas hanno iniziato ad essere sviluppate seriamente poco prima della II guerra mondiale, inizialmente per ottenere potenza meccanica

Dettagli

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti

Dettagli

Corso di MECCANICA DEL VOLO. Prof. F. Nicolosi. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1

Corso di MECCANICA DEL VOLO. Prof. F. Nicolosi. Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1 Corso di MECCANICA DEL VOLO Modulo Prestazioni INTRO- Il Vli Velivolol Prof. F. Nicolosi Corso di Meccanica del Volo - Mod. Prestazioni - Prof. F. Nicolosi - Intro Il Velivolo 1 Il volo, come è possibile?

Dettagli

Capitolo 1 Misure e grandezze

Capitolo 1 Misure e grandezze Capitolo 1 Misure e grandezze 1. Il Sistema Internazionale di Unità di misura 2. Grandezze estensive e grandezze intensive 3. Energia, lavoro e calore 4. Temperatura e calore 5. Misure precise e misure

Dettagli

Laboratorio Sperimentale di Aerodinamica

Laboratorio Sperimentale di Aerodinamica Dipartimento di Ingegneria Meccanica e Aerospaziale Laboratorio Sperimentale di Aerodinamica Giorgia Sinibaldi (giorgia.sinibaldi@uniroma1.it) A.A. 2017/2018 Info corso Idoneità Laboratorio (mercoledì

Dettagli

1) Si deve progettare un auto reattore per un missile che vola a M 1 := 1.8. Supponendo che

1) Si deve progettare un auto reattore per un missile che vola a M 1 := 1.8. Supponendo che Esercizi di Esame 1.mcd (1/9) 1) Si deve rogettare un auto reattore er un missile che vola a M 1 : 1.8. Suonendo che T 1 : 73.15 K, 1 : 0.7 atm, A : 0.0347 m, A 3 /A 1.34 e che la combustione roduce 196.7kJ/kg.

Dettagli

PROVA PARZIALE DEL 27 GENNAIO 2016

PROVA PARZIALE DEL 27 GENNAIO 2016 PROVA PARZIALE DEL 27 GENNAIO 2016 February 2, 2016 Si prega di commentare e spiegare bene i vari passaggi, non di riportare solo la formula finale. PROBLEMA 1) Due blocchi, collegati da uno spago privo

Dettagli

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2 MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata

Dettagli