Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ).

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 )."

Transcript

1 Impulso e quantità di moto: Lavori e Forze Impulso: l impulso di una forza variabile in un certo intervallo di tempo è definito come l integrale della forza rispetto al tempo nell intervallo considerato: I t 1,t 2 costante si ha I t 1,t 2 Lavoro: t = F 2 dt = F t. t 1 t = F 2 dt t 1, nel caso della forza La somma degli impulsi di tutte le forze agenti su un punto materiale è uguale all impulso della forza risultante. Siccome F = ma = d mv t I ( t 1,t 2 ) = m dv 2 dt. t 1 Teorema dell impulso: l impulso in un certo intervallo di tempo della forza risultante è uguale alla variazione in quell intervallo di tempo della quantità di moto del corpo sul quale agisce la forza: = mv I t 1,t 2 = m v ( t 2 ) v ( t 1 ) = t 2 ( t 1 ). Lavoro elementare di una forza: dl = F dr = Fdr cosϑ (prodotto scalare). L unità di misura del lavoro è Joule ( 1J = 1N 1m ), [ dl] = [ F] [ L]. La forza F in esame nella definizione di dl non è la risultante delle forze applicate al punto materiale, ossia non è la sola responsabile dello spostamento infinitesimo di r. Osservazione sull angolo ϑ : Se ϑ < π 2 Se ϑ > π 2 Se ϑ = π 2 dl > 0 si dice che la forza compie un lavoro motore. dl < 0 si dice che la forza compie un lavoro resistente. dl = 0, il lavoro compiuto è 0. Scomposizione di F in componenti cartesiane dl = F dr = F x dx + F y dy + F z dz. Scomposizione di F in coordinate T, N locali: dl = F dr = F T u T + FN u ( N ) dsu T = FT ds ossia non dipende da F N. (Nel moto circolare uniforme abbiamo un moto sottoposto ad una forza F N ma il lavoro è Ø). Il lavoro elementare della forza risultante di n forze agenti sullo stesso punto materiale è pari n n alla somma algebrica dei lavori elementari delle singole forze: F dr i = dl = dli = F dr i. i=1 i=1 Lavoro di una forza lungo un cammino finito: L = F dr, vado da a lungo la linea. Viene definito integrale di linea che va da a. (N: è l integrale di un prodotto scalare). 1

2 Sia nota la legge oraria r = r (t) e sia nota F (r ) r allora r L = F (r ) dr = F x (x, y, z)dx + F y (x, y, z)dy + F z (x, y, z)dz r, r r, r r, L dipende non solo dagli estremi e ma anche da ( altrimenti come vado da a?). Infatti sarebbe meglio scrivere δ L e non dl r r, df = F() F(), δ L L() L(). Potenza: Potenza istantanea di una forza: la potenza W sviluppata dalla forza all istante considerato è il rapporto tra il lavoro dl compiuto e l intervallo di tempo dt. W = dl dt = F dr dt J s 1 = W (watt). = F dr dt = F v dl = W (t)dt. L unità di misura è W [ ] = L [ ] T [ ] 1 si misura in Nota: 1 kwh lavoro compiuto dalla Forza della potenza di 1kW in 1 ora , J = 3, J. W m = L t = t t W (t)dt t t Energia cinetica: potenza media nell intervallo ( t,t ). Definizione: l energia cinetica di un punto materiale di massa m nella posizione P è la quantità scalare (indice di stato fisico) definita dalla relazione E C (P) = 1 2 mv 2 p + K con K costante arbitraria essendo v p la velocità del punto materiale in P. Definizione di Energia: l energia di un corpo è la misura del lavoro che il corpo può compiere in virtù del particolare stato in cui si trova. Hp: sia F la risultante di tutte le forze agenti sul punto materiale considerato. llora il lavoro elementare dl della forza risultante è legata alla energia cinetica del punto materiale. dl = F dr = ma dr = m dv dt dr = mdv dr dt = mv dv. Faccio il differenziale del prodotto scalare di v con sé stesso. d( v v ) = dv v + v dv = 2v dv dl = 1 2 mdv2 = d 1 2 mv2 = d( E C ). Integrando da r a r F dr = L = de C = d 1 2 mv2 = 1 2 mv2 1 2 mv2 Teorema delle forze vive o dell energia cinetica: il lavoro compiuto dalla forza risultante agente su un punto materiale quando questo passa da una posizione a un altra, è uguale alla differenza tra le energie cinetiche possedute dal punto materiale nella posizione finale e in quella iniziale, rispettivamente. L = F dr = E C () E C (). 2

3 Osservazione: [ E C ] = [ L] ossia si misura anch essa in Joule. Il teorema delle forze vive vale in qualunque sistema di riferimento (inerziale o no). La variazione di energia cinetica è uguale al rapporto complessivo fatto da tutte le forze agenti. Energia potenziale: = mgz Energia potenziale della forza peso: W dr = mg z z 0, E P O = mgz ( +K ) (scelgo di avere K tale che E P (O) = 0 allora K = 0 ), z è l altezza in cui si trova il punto materiale. L energia potenziale di un punto materiale di massa m soggetto ad una forza peso W in un punto non è altro che il lavoro compiuto dalla forza peso per spostare questo punto materiale dalla posizione in cui si trova all origine del sistema di riferimento. Con l energia potenziale si calcola facilmente il lavoro della forza cui è associata. L = W dr O = W dr O W dr = E P ( ) E P ( ) = E P ( ) E P ( ). E P ( ) E P ( O) = W dr O = E P, F dr = F dr 1, 2 E 3 l integrale di linea della forza di 1 è lo stesso 1 2 dell integrale di linea di 2, è quindi indipendente dalla linea l energia potenziale è quindi un energia conservativa. Energia potenziale (di una forza conservativa): E P ( ) = F dr con O un particolare punto di E 3 nel quale si assume per convenzione essere E P ( O) = 0, potrebbe non essere l origine del sistema di riferimento. L energia potenziale è un indice di stato fisico. La differenza tra due indirizzi di stato fisico genera una grandezza fisica (in questo caso un Lavoro) siccome le costanti degli indici si annullano. L energia potenziale E P ( ) può essere interpretata (o definita) come il lavoro compiuto dalla forza a cui è associata per spostare il punto materiale in esame dalla posizione ad una posizione di riferimento O ove si assume che essa si annulli. L energia potenziale gravitazionale di un corpo di massa m ad altezza h dal suolo è: U = mgh. Tipologie di campi: Campo scalare: è una funzione scalare definita su un sottoinsieme di uno spazio a più dimensioni f :Ω con Ω N. Esempio: lo spazio euclideo è isomorfo a 3 perché hanno la stessa dimensione. Le energie potenziali sono campi scalari. O 3

4 Campo vettoriale: è una funzione vettoriale (a valori vettoriali) definita su un sottoinsieme di uno spazio a più dimensioni f :Ω 3 con Ω N. Le forze sono campi vettoriali. Per un campo di forze conservative si ha che l integrale di linea del campo lungo un qualsiasi cammino chiuso è nullo: F dr = 0 F dr = F dr F dr = 0. Campo di forza: è una regione dello spazio in cui il punto materiale considerato risulta soggetto ad una forza. Un campo di forza è conservativo in una certa regione dello spazio se il lavoro compiuto dalla forza del campo, quando il punto di applicazione si sposta all interno di tale regione, dipende solo dalla posizioni del punto di partenza e del punto di arrivo e non dalla particolare traiettoria seguita. Modi equivalenti di definire una forza conservativa: È un campo di forze F tali che: F dr = F dr 1, 2 E 3 passanti per e. 1 2 L = F dr. F dr = 0 O E P ( ) campo scalare tale che E P ( ) = F dr Esempi di forze conservative: Forza peso: F = mg. Forza elastica (di Hooke): F = Kr u r r r F dr = Kr dr r = K 1 2 dr 2 = r r r r r r d ( r r ) = 1 2 dr r r dr F dr 1 r = 2 Kr 2 = 1 2 Kr Kr 2 = 1 2 Kr Kr 2 = ( E P ( ) E P ( ) ). Forze centrali: un campo di forze si dice centrale se assume la seguente forma funzionale: F r u r = F r, il suo modulo dipende solamente dalla distanza dal punto d origine e la direzione è quella radiale rispetto all origine del sistema di riferimento. Con r definito in un sistema di riferimento che ha l origine posta in un punto particolare dello spazio detto centro di volta del campo. 2 4

5 Forza gravitazionale: F = Mm r F dr = G Mm r r r r 2 u dr r = r r r 2 G Mm r 2 u r. dr = G Mm r G Mm r E P (r) = G Mm r E P (O) = 0 non è l origine del sistema di riferimento, ma è. = G Mm r G Mm r + K. Se K = 0 E P ( r ) = 0 Punto O di riferimento ove si assume Energia meccanica di un punto materiale: Indice di stato fisico dato dalla somma dell energia cinetica e dell energia potenziale del punto materiale: E = E C + E P Teorema di conservazione dell energia meccanica: un punto materiale soggetto a sole forze conservative conserva nel suo moto la propria energia meccanica. In altre parole sotto l azione di sole forze conservative, l energia meccanica è una costante del moto (si conserva, non varia). N Dimostrazione: L = L i, somma di tutti i lavori fatti dalle N forze agenti sul punto materiale. In base al teorema delle forze vive: L = E C (, ) = E C ( ) E C ( ). i=1 Poiché tutte le N forze agenti sul punto materiale sono conservative sarà L i, = L i, = E p,i (, ) = E p,i ( ) E p,i ( ) L i, = L = L i, i, = E p,i (, ) = E p,i = E p, N i=1 E p (, ) = E c, E(, ) = 0 C.V.D. N i=1 E p (, ) + E c (, ) = 0, E p + E c N i=1 = 0 Se sono in presenza di un sistema di forze o campo di forze conservativo, la risultante di tutte le forze agenti è una variazione di energia cinetica che avverrà a discapito dell energia potenziale: E c = E p. Se E c aumenta significa che E p diminuisce e viceversa (proporzionalità inversa). Se sono presenti anche forze non conservative come cambia l energia meccanica? L = L ( c) + L ( nc) = E c (, ). E p (, ) + L ( nc) = E c (, ) L ( nc) = E c, = L nc E,. + E p (, ) L energia meccanica non si conserva in generale, cioè quando sono presenti non solo forze conservative e tende in generale a diminuire perché le forze non conservative di solito compiono un lavoro resistente (negativo). Teorema di conservazione dell energia: l energia (totale, intesa in tutte le forme che può assumere) di un sistema fisico si conserva, non si crea né si distrugge, ma si trasforma da una forma ad un altra. 5

6 In generale l approccio energetico non consente di dare una soluzione completa al problema generale della dinamica del punto materiale (determinare r = r (t) ), spesso si riesce se è già nota la traiettoria. Tuttavia spesso siamo interessati ad un problema più particolare, ad una informazione parziale sul moto, che è a volte possibile dedurre con argomenti energetici. Esempi con energia meccanica: Forza peso: Ipotesi: abbiamo un punto materiale di massa m ad una certa altezza h con il modulo della velocità v i e lo lasciamo cadere al suolo. Siccome siamo in un sistema di forze conservative sappiamo che E i = E f quindi E p,i + E c,i = E p, f + E c, f. Sappiamo inoltre che quando raggiunge il suolo E p, f = 0, quindi possiamo riscrivere l equazione in questo modo mgh mv2 i = mv2 f 1 2 mv2 f = 1 2 mv2 i + mgh, la possiamo risolvere e ottenere v f = v 2 i + 2gh. Forza elastica (Hooke): Nota la legge oraria del punto materiale di massa m: x(t) = cos( ωt) con ω = verifichiamo che l energia meccanica E = E p + E c è costante: Determiniamo v(t) = dx(t) dt = ω sin( ωt) e la usiamo nella seguente equazione E = E p + E c = 1 2 kx2 (t) mv2 E = 1 2 k2 cos 2 ( ωt) m2 ω 2 sin 2 ωt l energia meccanica è indipendente dal tempo E = 1 2 k2 cos 2 ωt k m, dimostro che + sin 2 ( ωt) = 1 2 k2 (per il passaggio appena eseguito è utile ricordare che ω = k m ). Conclusione: in x = ± E c = 0 E = E p = 1 2 k2, invece in x = 0 E p = 0 E c = E = 1 2 k2. Linee di forza, superfici equipotenziali, gradiente (di un campo scalare): Linee di forza di un campo vettoriale: sono linee dello spazio sul quale è definito il campo vettoriale tale che: Siano tangenti ed equiverse al campo vettoriale in ogni punto del dominio. La loro densità sia proporzionale al modulo (intensità) del campo vettoriale in ogni punto del suo dominio. 6

7 Superfici equipotenziali di un campo vettoriale conservativo: sono luoghi geometrici dei punti x, y, z ove l energia potenziale associata al campo vettoriale assume lo stesso valore. ( x, y,z) = c è una superficie equipotenziale (di potenziale c ). E p Le superfici equipotenziali sono ovunque ortogonali alle linee di forza nei punti della superficie equipotenziale. Dimostrazione: dl =.de p per la conservatività del campo e de p = 0 su ogni superficie equipotenziale E p ( x + dx, y + dy, z + dz) E p ( x, y, z) = 0 se e solo se ( x + dx, y + dy, z + dz) alla stessa superficie potenziale di x, y, z dl = 0 lungo una superficie equipotenziale, ma dl = F dr per definizione di lavoro elementare; dr è incluso (giace) nella superficie equipotenziale considerata. F dr = 0 F è perpendicolare alla superficie equipotenziale considerata, quindi anche le linee di forza sono ortogonali alla superficie equipotenziale considerata. Gradiente: Con una dimensione in un campo di forze conservative noi sappiamo che F = F x u x, dl = F x dx = de p = E p ( x + dx) E p ( x) F x = E p ( x + dx) E p ( x) = de p x dx dx ossia la forza F x è la derivata dell energia potenziare rispetto allo spostamento con il segno opposto. uesta non è una novità siccome abbiamo detto in precedenza che E p ( x) = F x dx. Ma quando abbiamo a che fare con uno spazio multidimensionale (esempio a 3 dimensioni) F x = de p x dx non possiamo scrivere F : F y = de p ( y) siccome avremo raramente l energia potenziale dy F z = de p ( z) dz E p dipendente dai singoli vettori, ma avremo E p ( x, y,z). uindi scriveremo F x = E p x, y,z x F : F y = E p ( x, y,z) o in forma più compatta y F z = E p ( x, y, z) z F = Ep ( x, y,z) = E p x u E p x + y u E p y + z u z. Dove (de) è il simbolo della derivata parziale e (nabla) è un operatore detto operatore nabla o anche gradiente ( grad ). 7

8 Osservazione: per effettuare una derivata parziale rispetto ad una variabile x (esempio: F x = E p x, y,z ) si esegue una normale derivata assumendo come costanti le altri x variabili indipendenti (in questo caso y, z ). Il gradiente effettua una derivazione lungo la direzione ortogonale alla superficie equipotenziale. 8

Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza

Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza Lavoro ed Energia Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza F= F r cioè la forza agente sul punto dipende dalla sua posizione. Un campo di

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro di una forza Consideriamo una forza F applicata ad un punto materiale P che si sposti

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Moto uniformemente accelerato 1) v=v 0 +a(t-t 0 ) 2) s=s 0 +v 0 (t-t 0 )+½a(t-t 0 ) 2 s=s

Dettagli

Lavoro ed Energia. r A. < 0 --> lavoro resistente

Lavoro ed Energia. r A. < 0 --> lavoro resistente Lavoro ed Energia Lavoro di una forza 1) forza f indipendente dal punto di applicazione e dal tempo. Se il suo punto di applicazione effettua uno spostamento AB, si definisce lavoro della forza f = f AB

Dettagli

Lavoro ed energia. A.Solano - Fisica - CTF

Lavoro ed energia. A.Solano - Fisica - CTF Lavoro ed energia Lavoro Energia cinetica Teorema dell energia cinetica Forze conservative Energia potenziale Principio di conservazione dell energia meccanica Potenza Lavoro di una forza costante m F

Dettagli

Conservazione dell energia

Conservazione dell energia Conservazione dell energia gisce solo la gravità, trascuriamo l attrito er calcolare la velocità nel punto per mezzo del II principio della dinamica, oltre a conoscere la velocità iniziale v, è anche necessario

Dettagli

Lezione 5 Dinamica del punto

Lezione 5 Dinamica del punto ezione 5 Dinamica del punto rgomenti della lezione avoro Potenza Energia cinetica avoro forza peso avoro forza d attrito avoro Studiando cosa succede integrando la forza nel tempo siamo arrivati alla definizione

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

Lavoro compiuto da una forza :

Lavoro compiuto da una forza : v(t ) m Lavoro di una forza per uno spostamento infinitesimo v(t ) v(t 3 ) del suo punto di applicazione : dw cos Lavoro da a : W dw unità di misura del lavoro (S.I.): [W]= N m Joule Esempio: attr attr

Dettagli

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia

Lavoro ed energia. Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Lavoro ed energia Lavoro di una forza Teorema dell energia cinetica Forze conservative Conservazione dell energia Moto uniformemente accelerato 1) v=v 0 +a(t-t 0 ) 2) s=s 0 +v 0 (t-t 0 )+½a(t-t 0 ) 2 s=s

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 07-08 Dinamica del punto materiale 9 pprossimazioni per piccoli angoli v ± gl sin tan v gl Limite di piccoli angoli: 0 6 cos +... 3 tan + +... 3 3 sin +... Serie di Taylor: pprossimazioni per

Dettagli

Dinamica III. Lavoro ed Energia. A.Romero Restauro-Dinamica III-Lavoro 1

Dinamica III. Lavoro ed Energia. A.Romero Restauro-Dinamica III-Lavoro 1 Dinamica III Lavoro ed Energia.Romero Restauro-Dinamica III-Lavoro 1 Lavoro di una forza costante Se il punto materiale a cui è applicata una forza subisce uno spostamento ed esiste una componente della

Dettagli

Densità e volume specifico

Densità e volume specifico Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 6 Lavoro ed Energia

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 6 Lavoro ed Energia Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 6 Lavoro ed Energia 2 Il lavoro di una forza costante Il lavoro di una forza costante è il prodotto scalare tra il vettore forza

Dettagli

4a.Energia di un sistema

4a.Energia di un sistema 4a.Energia di un sistema In questo capitolo non ci concentriamo semplicemente su un corpo schematizzato come un punto materiale ma su una piccola porzione di universo detta sistema. Un sistema può essere:

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Lavoro. F=F(r) e in generale una funzione della posizione e

Lavoro. F=F(r) e in generale una funzione della posizione e Lavoro Consideriamo un corpo che si sposta da un punto ad un punto lungo una certa traiettoria l e sia F una forza agente sul corpo. Definiamo lavoro fatto dalla forza F sul corpo lungo la traiettoria

Dettagli

Dinamica del punto materiale parte seconda

Dinamica del punto materiale parte seconda Dinamica del punto materiale parte seconda a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci Dinamica del punto materiale parte seconda a.a. 2017-2018 Testo di riferimento:

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

Meccanica. 3 - Energia

Meccanica. 3 - Energia Meccanica 3 - Energia 1 Introduzione alla Fisica Classica Il lavoro 2 Lavoro Il lavoro misura l'effetto utile di una forza con uno spostamento. 1) Forza e spostamento paralleli (stessa direzione e verso).

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò 1 LAVORO ED ENERGIA Dott.ssa Silvia Rainò Lavoro ed Energia 2 Consideriamo il moto di un oggetto vincolato a muoversi su una traiettoria prestabilita, ad esempio: Un treno vincolato a muoversi sui binari.

Dettagli

E K = 1 2 mv 2. A.A. 2014/15 Fisica 1 1

E K = 1 2 mv 2. A.A. 2014/15 Fisica 1 1 Lavoro ed energia Le relazioni ricavate dalla cinematica e dalla dinamica permettono di descrivere il moto di un oggetto puntiforme note le variabili cinematiche e le forze applicate all oggetto in funzione

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica Lavoro ed energia cinetica Servono a risolvere problemi che con la Fma sarebbero molto più complicati. Quella dell energia è un idea importante, che troverete utilizzata in contesti diversi. Testo di riferimento:

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

LAVORO DI UNA FORZA. Se su un corpo agisce una forza F costante, si definisce lavoro compiuto dalla forza per uno spostamento s:

LAVORO DI UNA FORZA. Se su un corpo agisce una forza F costante, si definisce lavoro compiuto dalla forza per uno spostamento s: LAVORO DI UNA FORZA Se su un corpo agisce una forza F costante, si definisce lavoro compiuto dalla forza per uno spostamento s: L!! Fscos α F s F! α s! Il lavoro è una quantità scalare. LAVORO DI UNA FORZA

Dettagli

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_)

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Energia meccanica Lavoro Energia meccanica Concetto di campo in Fisica Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro potete

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v

Forza viscosa. Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v Forza viscosa 1 / 44 Abbiamo visto che la forza di attrito in un fluido può essere modellizzata come: F A = kv legge di Stokes (1) F = kv 2 v v attrito turbolento (2) Per entrambi i modelli l equazione

Dettagli

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4D 8 dicembre 008 EIFICA DI FISICA: lavoro ed energia Domande ) Forze conservative ed energia potenziale: (punti:.5) a) Dai la definizione di forza conservativa ed indicane le proprietà.

Dettagli

Cap 7 - Lavoro ed energia Lavoro di una forza costante

Cap 7 - Lavoro ed energia Lavoro di una forza costante N.Giglietto A.A. 2005/06-7.3 - Lavoro di una forza costante - 1 Cap 7 - Lavoro ed energia Abbiamo visto come applicare le leggi della dinamica in varie situazioni. Spesso però l analisi del moto spesso

Dettagli

Che cos è una macchina?

Che cos è una macchina? L ENERGIA Lavoro Energia Conservazione dell energia totale Energia cinetica e potenziale Conservazione dell energia meccanica Forze conservative e dissipative Potenza Rendimento di una macchina Che cos

Dettagli

Relazioni fondamentali nella dinamica dei sistemi

Relazioni fondamentali nella dinamica dei sistemi Relazioni fondamentali nella dinamica dei sistemi L. P. 2 Maggio 2010 1. Quantità di moto e centro di massa Consideriamo un sistema S costituito da N punti materiali. Il punto i (i = 1,..., N) possiede

Dettagli

Riassunto lezione 3. Principi della dinamica. Sistemi di riferimento inerziali. Legge di Newton: F = ma

Riassunto lezione 3. Principi della dinamica. Sistemi di riferimento inerziali. Legge di Newton: F = ma Riassunto lezione 3 Principi della dinamica Sistemi di riferimento inerziali Legge di Newton: F = ma Forza peso, forza elastica, tensione, forze d attrito 1 Obiettivo lezione 4 Energia e lavoro Capire

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

IL LAVORO E L ENERGIA. che si possono trasformare tra loro lasciando invariata la quantità totale di energia.

IL LAVORO E L ENERGIA. che si possono trasformare tra loro lasciando invariata la quantità totale di energia. IL LAVORO E L ENERGIA ENERGIA: Grandezza scalare associata allo stato di un corpo Esistono varie forme: Energia cinetica Energia potenziale Energia elettrica Energia chimica Energia termica Energia elastica..

Dettagli

LAVORO, POTENZA ED ENERGIA

LAVORO, POTENZA ED ENERGIA LAVORO, POTENZA ED ENERGIA Giuseppe Frangiamore con la collaborazione di Leonardo Zaffuto Solitamente si dice di compiere un lavoro ogni volta che si esegue un attività di tipo fisico o mentale. Quando

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 3B Appunti su Lavoro ed Energia Riccardo Fabbri 1 (Dispense ed esercizi su www.riccardofabbri.eu) Il Lavoro Il lavoro fatto

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att =

F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att = 2 ENERGIE POTENZIALI DI ALCUNE FORZE Parte I 1 4.5 - Forze conservative In generale il lavoro L = f i F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di

Dettagli

FORZE E PRINCIPI DELLA DINAMICA (1/29)

FORZE E PRINCIPI DELLA DINAMICA (1/29) FORZE E PRINCIPI DELLA DINAMICA (1/29) una forza applicata ad un corpo, libero di muoversi, lo mette in movimento o lo arresta (effetto dinamico della forza); una forza, applicata ad un corpo vincolato,

Dettagli

Teorema dell energia cinetica

Teorema dell energia cinetica Teorema dell energia cinetica L. P. 23 Marzo 2010 Il teorema dell energia cinetica Il teorema dell energia cinetica è una relazione molto importante in Meccanica. L enunceremo nel caso semplice di un punto

Dettagli

la forza peso e conservativa

la forza peso e conservativa La forza gravitazionale sulla superficie della terra P = mg e detta forza peso la forza peso e conservativa dimostrazione : se si utilizza la prima definizione di conservativita di un campo di forze occorrera

Dettagli

il luogo dei punti in cui un campo scalare assume un valore costante e detto superficie di livello ed e determinato dall equazione u(x,y,z) = c

il luogo dei punti in cui un campo scalare assume un valore costante e detto superficie di livello ed e determinato dall equazione u(x,y,z) = c Campo scalare e una regione di spazio dove punto per punto sia definibile una funzione scalare continua e derivabile ovunque ( una funzione da a ) n trascurando la dipendenza dal tempo e operando in coordinate

Dettagli

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze):

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): Forze Conservative In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): L = f i F d r, può dipendere dal percorso seguito dalla particella. Se il lavoro fatto da una forza

Dettagli

La lezione di oggi. Un altro modo di risolvere i problemi: Lavoro Energia Potenza

La lezione di oggi. Un altro modo di risolvere i problemi: Lavoro Energia Potenza 1 La lezione di oggi Un altro modo di risolvere i problemi: Lavoro Energia Potenza 2 ! Lavoro! Energia cinetica! Forze conservative! Energia potenziale! Conservazione dell energia meccanica 3 Le forze,

Dettagli

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro Energia e Lavoro Energia, Energia potenziale, Energia cineca Definizione di lavoro Conce7o di Energia Nella meccanica classica l energia è definita come quella grandezza fisica che può venire "consumata"

Dettagli

q = mv quantita di moto di un punto materiale di massa m unita di misura nel S. I. : Kg m s -1 e una grandezza vettoriale la quantita di moto

q = mv quantita di moto di un punto materiale di massa m unita di misura nel S. I. : Kg m s -1 e una grandezza vettoriale la quantita di moto Quantita di moto q mv quantita di moto di un punto materiale di massa m unita di misura nel S. I. : Kg m s -1 la quantita di moto e una grandezza vettoriale quindi in coordinate cartesiane q mv q q q x

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 208/209 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (6 ore): Matteo Avolio Lezione del 04/04/209 2 h (3:30-5:30, Aula G0, Golgi) - SOLUZIONI ESERCITAZIONI LAVORO

Dettagli

Costanti del moto. dove V(x) è una funzione della posizione, tale che. dx Fisica L E= 1 2 m v2 +V (x)

Costanti del moto. dove V(x) è una funzione della posizione, tale che. dx Fisica L E= 1 2 m v2 +V (x) Costanti del moto Nei diversi moti, a seconda del tipo e di modalità del moto, ci sono delle grandezze che si conservano, dette costanti o integrali del moto Se la forza dipende SOLO DALLA POSIZIONE e

Dettagli

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Mentre era su una piattaforma panoramica questa ragazza si accorse che i suoi capelli le si rizzavano in testa. Suo fratello, divertito, le scattò questa foto. Cinque minuti dopo un fulmine

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 18-19 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente (statico,

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 25 giugno 2001 Teoria 1. L energia potenziale é la funzione U tale che ovvero F = du dx U = F dx essendo F una forza che

Dettagli

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo;

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo; 1 Esercizio Un sasso di massa m.5 Kg viene lanciato dalla cima di una torre alta h 2 m con velocità iniziale di modulo v 12 m/s, ad un angolo ϕ 6 o rispetto all orizzontale. La torre si trova in prossimità

Dettagli

ENERGIA LAVORO ED ENERGIA

ENERGIA LAVORO ED ENERGIA ENERGIA Prima di definire l energia nelle sue diverse forme è conveniente fare un osservazione sulle differenze tra fisica newtoniana delle forze e fisica ce studia le trasformazioni energetice: APPROCCIO

Dettagli

F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att = B

F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att = B In generale il lavoro L = f i F ds dipende dal percorso effettuato. Basta infatti considerare il lavoro compiuto da una forza di attrito radente: F att = B A µ dnds = µ d N B A ds = µ dnl AB con Indipendendenza

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento angolare e delle forze Leggi

Dettagli

Equazioni del moto in 1 dimensione:

Equazioni del moto in 1 dimensione: Equazioni del moto in 1 dimensione: O Velocità media come rapporto incrementale tra spazio percorso e tempo In generale la velocità varia istante per istante 1 Velocità istantanea: limite del rapporto

Dettagli

L Energia. Energia Lavoro Potenza

L Energia. Energia Lavoro Potenza L nergia nergia Lavoro Potenza L nergia Cos è l energia? Le Forme dell nergia Fonti di nergia Lavoro nergia Cinetica nergia Potenziale Conservazione dell nergia Meccanica Conservazione dell nergia Totale

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Esempio: Lavoro compiuto dalla forza gravitazionale. Energia cinetica iniziale

Esempio: Lavoro compiuto dalla forza gravitazionale. Energia cinetica iniziale Esempio: Lavoro compiuto dalla forza gravitazionale Ø Consideriamo una pallina di massa m che viene gettata in aria verticalmente con una velocità iniziale v 0 v = 0 T = 0 Ø La pallina è soggetta alla

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Lezione 2 Sistemi di riferimento

Dettagli

Campi conservativi ed energia potenziale

Campi conservativi ed energia potenziale Campi conservativi ed energia potenziale Definizione di campo conservativo Come abbiamo visto, la formula L= AB fornisce il lavoro compiuto dalla forza del campo nello spostamento di un corpo materiale

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

LAVORO. Prima di parlare del lavoro è necessario definire una funzione matematica cosθ

LAVORO. Prima di parlare del lavoro è necessario definire una funzione matematica cosθ LAVORO Prima di parlare del lavoro è necessario definire una funzione matematica cosθ Cos θ θ senθ senza soffermarci molto, in quanto non necessario, ai fini delle nostre applicazioni, diciamo solo che:

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

FISICA (modulo 1) PROVA SCRITTA 20/07/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 20/07/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 20/07/2015 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Una forza variabile nel tempo agisce su un corpo di massa M = 3 Kg in modo tale che il corpo si

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accademico 006-007 Esercizio n.: Un punto materiale di massa m e vincolato a muoversi lungo un binario orizzontale scabro. Siano µ s e µ d i coefficienti

Dettagli

Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37

Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37 Forze conservative Il nome forze conservative deriva dal fatto che le forze che appartengono a questa categoria sono tali da conservare l energia. Una forza è conservativa se il lavoro da essa compiuto

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

x(t) = R 0 + R(t) dx(t) dt v(t) = = dr(t) dt Moto circolare uniforme Principi della dinamica

x(t) = R 0 + R(t) dx(t) dt v(t) = = dr(t) dt Moto circolare uniforme Principi della dinamica Il moto con velocità scalare costante si dice moto. La traiettoria è una circonferenza, caratterizzata dunque da un punto centrale e da un raggio, e giacente su un piano. Si tratta quindi di un moto bidimensionale.

Dettagli

Formulario Meccanica

Formulario Meccanica Formulario Meccanica Cinematica del punto materiale 1 Cinematica del punto: moto nel piano 3 Dinamica del punto: le leggi di Newton 3 Dinamica del punto: Lavoro, energia, momenti 5 Dinamica del punto:

Dettagli

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Un punto materiale di massa m = 20 gr scende lungo un piano inclinato liscio. Alla fine del piano inclinato scorre su un tratto orizzontale scabro (µ

Dettagli

Fisica 2C. 3 Novembre Domande

Fisica 2C. 3 Novembre Domande Fisica 2C 3 Novembre 2006 Domande ˆ i) Si consideri un oscillatore armonico smorzato e forzato da una sollecitazione sinusoidale esterna, la cui equazione é tipicamente s + 2γṡ + ω0s 2 = F cos ωt m 1)

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA

METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE Meccanica e macchine 2 La Meccanica

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

L = F (x 2 x 1 ) (4.1)

L = F (x 2 x 1 ) (4.1) Capitolo 4 LAVORO ED ENERGIA 4.1 Il lavoro di una forza costante Nel linguaggio comune, una qualsiasi attività che necessita di uno sforzo viene indicata col termine lavoro. In fisica, tuttavia, non è

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

Moto uniforme. Moto dei proiettili

Moto uniforme. Moto dei proiettili Un corpo in assenza di accelerazione compie un moto detto. Come avviene di regola il moto di un corpo è determinato una volta note la posizione e la velocità iniziali e l accelerazione durante il moto.

Dettagli

Lezione del F t = componente lungo la tangente della forza lungo il percorso.

Lezione del F t = componente lungo la tangente della forza lungo il percorso. Lezione del 04.03.2016 Lavoro = lo si indica con W. Il lavoro prodotto da una forza F produce uno spostamento dal punto A al B punto lungo la linea γ. Il lavoro da A ad B è diverso da quello fatto da B

Dettagli

Forze conservative. Ø Il sistema deve consistere di due o più oggetti ed il corpo ed il resto del sistema devono interagire mediante una forza

Forze conservative. Ø Il sistema deve consistere di due o più oggetti ed il corpo ed il resto del sistema devono interagire mediante una forza Forze conservative Affinché si possa parlare di energia potenziale di un sistema, il sistema e le forze che agiscono su di esso devono avere determinate proprietà. Ø Il sistema deve consistere di due o

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

FISICA. MECCANICA: Principio conservazione energia meccanica. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. MECCANICA: Principio conservazione energia meccanica. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA MECCANICA: Principio conservazione energia meccanica Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica INTRODUZIONE Nei fenomeni che osserviamo vi sono molte grandezze che cambiano

Dettagli