Esercizio (tratto dal Problema 1.3 del Mazzoldi)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizio (tratto dal Problema 1.3 del Mazzoldi)"

Transcript

1 Esercizio tratto dal Problema.3 del Mazzoldi) In un rally automobilistico un pilota deve percorrere nel minor tempo possibilie un tratto d Km, partendo ed arrivando da fermo. Le caratteristiche dell auto sono tali che l accelerazione massima è a.5 m/s, mentre il sistema di freni permette una decelerazione massima a 3.8 m/s. Supponendo che il moto sia rettilineo, determinare il tempo t f ottenuto nella prova.

2 SOLUZIONE DATI INIZIALI d 000 m a.5 m/s a 3.8 m/s Per poter minimizzare il tempo, il pilota accelera al massimo finché è possibile, fino ad un certo istante t ancora ignoto) per poi frenare in modo da poter arrivare al traguardo con velocità nulla, come richiesto. Denotando con t f l istante finale di arresto ancora ignoto), osserviamo che il moto si compone di due fasi: fase : 0 t t moto uniformemente accelerato con accelerazione a ) fase : t t t f moto uniformemente accelerato con accelerazione a negativa) Scegliamo l origine x 0 nel punto di partenza dell auto. Possiamo risolvere il problema in due modi:. PRIMO MODO a) Scriviamo la legge oraria dell automobile per ciascuna delle due fasi del moto: Fase Si tratta di un moto uniformemente accelerato con accelerazione a, di cui sappiamo che l auto parte dall origine e da ferma con velocità nulla). Pertanto abbiamo xt) a t vt) a t at) a 0 t t ) da cui possiamo ricavare la posizione e la velocità dell auto all istante t istante finale di questa prima fase del moto), ossia x xt ) a t 3) v vt ) a t Fase Si tratta di un moto uniformemente accelerato con accelerazione a, che inizia all istante t in cui l auto si trova alla posizione x ed ha velocità v. Pertanto abbiamo xt) x + v t t ) + a t t ) vt) v + a t t ) t t t f 4) at) a Sostituendo le espressioni per x e v trovati nella 3) otteniamo in particolare xt) a t + a t t t ) + a t t ) t t t f 5) vt) a t + a t t )

3 3 La legge oraria delle due fasi è rappresentata in Fig., in cui la prima fase ) è descritta da una parabola con concavità verso l alto e la seconda fase 4) da un tratto parabolico con concavità verso il basso. x d x t t f t Figure : Grafico della legge oraria della posizione, composta dalle due fasi del moto ) e 4). b) Sappiamo ora che, all istante finale t f della seconda fase, l auto si trova alla posizione d e che ha velocità nulla. Pertanto imponiamo che xt f ) d 6) vt f ) 0 ossia, usando la 5) e sostituendovi come input l istante t t f : xt f ) a t + a t t f t ) + a t f t ) d vt f ) a t + a t f t ) 0 7) che è un sistema di due equazioni nelle due incognite t e t f mentre tutti gli altri sono dati noti). c) Per risolvere il sistema 7), ricaviamo dalla seconda equazione e lo sostituiamo nella prima delle 7) t f t a t a 8) a t a t a t + a a a a t d 9) a t a t a d 0) a t a ) a d )

4 4 da cui otteniamo Dalla 8) ricaviamo ora t f d t ) ) a a a a ) a t a ) d ) a a a a d a ) a a 3) e ricordando che a a si ha t f d + a ) a a 4) Sostituendo ora i dati t f 000 m/.5 m/ +.5 m ) / s 3.8 m / s s 000 s s 5). SECONDO MODO a) Scriviamo le leggi orarie della velocità nelle due fasi del moto a t 0 t t vt) t t t f 6) v a t t ) t t t f rappresentata graficamente in Fig.. Dal significato di accelerazione come pendenza della legge oraria della velocità ricaviamo a v t v a t Uguagliando le espressioni per v si ottiene a v t f t v a t f t ) 7) a t a t f t ) 8) a + a ) t a t f 9) t a a + a t f 0)

5 5 v v t t f t Figure : Grafico della legge oraria della velocità, composta dalle due fasi del moto ) e 4). 3. Sfruttiamo ora il significato geometrico dell area sottesa dalla legge oraria della velocità tf vt) dt 0 }{{} area sottesa xt f ) x0) }{{} spazio percorso ) Sfruttando l espressione dell area del triangolo otteniamo t f v t f a t d [uso la prima delle 7)] d t f a a a + a t f d [inserisco la 0)] t f d a + a a a d t f + a ) a a ) che coincide col risultato 4) trovato nel primo modo.

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo;

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo; 1 Esercizio Un sasso di massa m.5 Kg viene lanciato dalla cima di una torre alta h 2 m con velocità iniziale di modulo v 12 m/s, ad un angolo ϕ 6 o rispetto all orizzontale. La torre si trova in prossimità

Dettagli

Problema 1. D= 1 2 at2 1 v f = at 1

Problema 1. D= 1 2 at2 1 v f = at 1 1 Problema 1 Una vettura di Formula 1 parte da fermo, con accelerazione costante a per un tratto D=400 m in cui raggiunge la velocitá massima v f. Al tempo T = 16.5 s ha percorso L=1 km (tutto in rettilineo).

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

L α. α d. 1. calcolare la velocità con cui il corpo raggiunge la sommità del piano [8 punti]

L α. α d. 1. calcolare la velocità con cui il corpo raggiunge la sommità del piano [8 punti] Problema E1 Una molla di costante elastica 500 Nm 1 e di lunghezza a riposo l 0 10 cm si trova in fondo ad un piano lungo L m, con coefficiente di attrito trascurabile e inclinato di un angolo α 30 o rispetto

Dettagli

Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? Soluzione. Dalla relazione = +

Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? Soluzione. Dalla relazione = + MOTO RETTILINEO UNIFORMEMENTE ACCELERATO Esercizi Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? = + si ottiene 240=0+ 12 ; 12=240 ; =20. Pertanto

Dettagli

Esercitazione 1: 09/03/2017

Esercitazione 1: 09/03/2017 Esercitazione 1: 09/03/017 Luigi Pilo a,b a Dipartimento di Fisica, Università di L Aquila, I-67010 L Aquila, Italy b INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, Italy luigi.pilo@aquila.infn.it

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

Fisica 1 Anno Accademico 2011/2011

Fisica 1 Anno Accademico 2011/2011 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 011/011 (1 Marzo - 17 Marzo 01) Sintesi Abbiamo introdotto lo studio del moto di un punto materiale partendo da un approccio cinematico.

Dettagli

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie

Soluzione. Per x da 0 a l 1 = 16 m accelerazione a 1 = costante Per x > l 1 fino a x = 100m accelerazione a 2 = 0. Leggi orarie Problema n. 1: Un velocista corre i 100 m piani in 10 s. Si approssimi il suo moto ipotizzando che egli abbia un accelerazione costante nei primi 16 m e poi un velocità costante nei rimanenti 84 m. Si

Dettagli

Cap 1 - Cinematica (Mazzoldi)

Cap 1 - Cinematica (Mazzoldi) 1 DEFINIZIONI COMUNI NELLA MECCANICA Cap 1 - Cinematica (Mazzoldi) Cap 1 - Cinematica (Mazzoldi) La meccanica è la parte della fisica che studia il moto dei corpi e le cause del loro moto. Per trovare

Dettagli

4. a quale distanza d l oggetto cade rispetto alla posizione orizzontale del punto di lancio;

4. a quale distanza d l oggetto cade rispetto alla posizione orizzontale del punto di lancio; 1 Esercizio Un oetto viene lanciato dal balcone di una finestra con velocità iniziale di modulo v 0 15 m/s, ad un anolo θ 60 o rispetto all orizzontale. La finestra si trova ad un altezza h di 8 m dal

Dettagli

Cinematica 1-dimensionale

Cinematica 1-dimensionale Alfonso Monaco Cinematica 1-dimensionale Fisica Medica - CINEMATICA 1D 1 MOTO UNIFORME a = 0, v = cost, x = x0 +vt Posizione iniziale Istante iniziale t 0 = 0 v Istante successivo t v x 0 x Fisica con

Dettagli

Cap 1 - Cinematica (Mazzoldi)

Cap 1 - Cinematica (Mazzoldi) 1 DEFINIZIONI COMUNI NELLA MECCANICA Cap 1 - Cinematica (Mazzoldi) Cap 1 - Cinematica (Mazzoldi) La meccanica è la parte della fisica che studia il moto dei corpi e le cause del loro moto. Per trovare

Dettagli

1 Cap 1 - Cinematica (Mazzoldi)

1 Cap 1 - Cinematica (Mazzoldi) 2 DEFINIZIONI COMUNI NELLA MECCANICA 1 Cap 1 - Cinematica (Mazzoldi) La meccanica è la parte della fisica che studia il moto dei corpi e le cause del loro moto. Per trovare le relazioni esistenti tra cause

Dettagli

La Cinematica. Problemi di Fisica. Moti unidimensionali

La Cinematica. Problemi di Fisica. Moti unidimensionali Problemi di Fisica Moti unidimensionali Sei in un automobile che sta andando in autostrada. Quale sarà la tua traiettoria rispetto al sistema di riferimento automobile che sta sorpassando? Il moto è un

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA Sommario INTRODUZIONE ALLA CINEMATICA... 3 MOTO RETTILINEO UNIFORMEMENTE ACCELERATO...

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione di gravità Moto di un proiettile

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione di gravità Moto di un proiettile Corsi di Laurea in Scienze motorie - Classe L- (D.M. 70/04) Prof. Maria Giovanna Guerrisi Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Accelerazione

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale La cinematica è quella parte della fisica (meccanica) che si occupa di descrivere il moto dei corpi, senza porsi il problema di identificare le cause che lo determinano.

Dettagli

Una particella si muove lungo l asse x seguendo la seguente legge oraria

Una particella si muove lungo l asse x seguendo la seguente legge oraria 1 Esercizio Una particella si muove lungo l asse x seguendo la seguente legge oraria 1. Determinare le unità di misura delle costanti α e b. Si supponga ora x 0 1 m, α 1 m/s 2 e b 1 m/s. x(t) x 0 + α t

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

2^A - FISICA compito n =20,0 s. 2. Un'automobile, inizialmente ferma, si muove con accelerazione costante percorrendo la distanza

2^A - FISICA compito n =20,0 s. 2. Un'automobile, inizialmente ferma, si muove con accelerazione costante percorrendo la distanza ^A - FISICA compito n - 013-014 1 Un moto è descritto dal grafico a fianco Determina le leggi che esprimono la velocità e la posizione in funzione del tempo (assumendo che la posizione iniziale sia x 0

Dettagli

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò 1 ESERCIZI CINEMATICA UNIDIMENSIONALE Dott.ssa Silvia Rainò CALCOLO DIMENSIONALE 2 Una grandezza G in fisica dimensionalmente si scrive [G] = [M a L b T g K d ] Ove a,b,g,d sono opportuni esponenti. Ad

Dettagli

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo;

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo; Esercizio Una particella si muove lungo una retta seguendo la legge oraria con u 3 m/s e 4 s.. Determinare in quali istanti la particella si trova nell origine;. Disegnare la legge oraria; x(t) u t ( sin

Dettagli

Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia

Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia Ninfa Radicella ninfa.radicella@sa.infn.it Università degli Studi del Sannio 30 Marzo 2016 Testi utilizzabili Principi di Fisica, Vol

Dettagli

θ h max Esercizio 1. l altezza massima h max a cui giunge l oggetto; 2. quanto tempo impiega per cadere al suolo;

θ h max Esercizio 1. l altezza massima h max a cui giunge l oggetto; 2. quanto tempo impiega per cadere al suolo; 1 Esercizio Un oetto viene lanciato dal balcone di una finestra con velocità iniziale di modulo v 0 15 m/s, ad un anolo θ 60 o rispetto all orizzontale. La finestra si trova ad un altezza di 8 m dal suolo.

Dettagli

Moto Rettilineo Uniformemente Accelerato

Moto Rettilineo Uniformemente Accelerato Moto Rettilineo Uniformemente Accelerato E il moto rettilineo con accelerazione costante. Per definizione: a(t) a Velocità e legge oraria sono: v(t)at+v 0 s(t)½at +v 0 t+s 0 (v 0 è la velocità iniziale

Dettagli

(a) Disegnare il segmento di parabola e determinare le costanti a e c; (b) Disegnare schematicamente il campo di forze lungo tale percorso;

(a) Disegnare il segmento di parabola e determinare le costanti a e c; (b) Disegnare schematicamente il campo di forze lungo tale percorso; 1 Esercizio Una particella di massa m 90 gr si muove sul piano verticale x-. E soggetta all azione della forza peso e a quella di una forza elettrica uniforme f e f e û x con f e 50 N. 1. onsiderare il

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Studia le cause del movimento dei corpi (cioè perchè essi si muovono)

Studia le cause del movimento dei corpi (cioè perchè essi si muovono) Studia il movimento dei corpi (cioè come essi si muovono) Studia le cause del movimento dei corpi (cioè perchè essi si muovono) Si occupa delle condizioni di equilibrio dei corpi (è un caso particolare

Dettagli

Esercizio. Fabrizio Dolcini (http://staff.polito.it/fabrizio.dolcini/) Dipartimento di Fisica del Politecnico di Torino - Esercitazioni di Fisica I

Esercizio. Fabrizio Dolcini (http://staff.polito.it/fabrizio.dolcini/) Dipartimento di Fisica del Politecnico di Torino - Esercitazioni di Fisica I 1 Esercizio Un automobile sfreccia alla velocità costante v A = 180 Km/h lungo una strada, passando per un punto di appostamento di una volante della polizia stradale. La volante, dopo un tempo tecnico

Dettagli

Esercizi di Cinematica Unidimensionale. Fisica con Elementi di Matematica 1

Esercizi di Cinematica Unidimensionale. Fisica con Elementi di Matematica 1 Esercizi di Cinematica Unidimensionale 1 MOTO UNIFORME a = 0, v = cost,, x = x1 x +vt 2 Moto Uniformemente Moto Uniformemente Accelerato Accelerato a = cost. v = v 0 +at x = x 0 +v 0 t+at 2 /2 v 2 - v0

Dettagli

Piano cartesiano. O asse delle ascisse

Piano cartesiano. O asse delle ascisse Piano cartesiano E costituito da due rette orientate e perpendicolari tra di loro chiamate assi di riferimento. Il loro punto di intersezione O si chiama origine del riferimento. L asse orizzontale è detto

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Modulo di Fisica (F-N) A.A MECCANICA

Modulo di Fisica (F-N) A.A MECCANICA Modulo di Fisica (F-N) A.A. 2016-2017 MECCANICA COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA

Dettagli

Meccanica. Parte della fisica che studia il MOVIMENTO Si divide in

Meccanica. Parte della fisica che studia il MOVIMENTO Si divide in Meccanica Parte della fisica che studia il MOVIMENTO Si divide in Cinematica: descrive il movimento Dinamica: studia le cause del movimento Statica: studia quando non c è movimento Movimento Un oggetto

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza?

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza? ESERCIZI SUL MOTO Un'automobile compie un viaggio di 100 km in tre tappe: 20 km a 60 km/h, 40 km a 80 km/h e 40 km a 30 km/h. Calcolare il tempo impiegato nel viaggio e la velocità media dell'automobile.

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m Esercizio 1 Un corpo di massa, assimilabile ad un punto materiale, viene lanciato con velocità ~v 0 incognita, non parallela agli assi cartesiani. Quando il suo spostamento in direzione x rispetto alla

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

Il moto `e con accelerazione costante, per percorrere la distanza L=1m partendo avremo:

Il moto `e con accelerazione costante, per percorrere la distanza L=1m partendo avremo: Problema 1: Nel sistema mostrato nella figura, al primo corpo di massa = 1kg, che scende lungo il piano inclinato di un angolo, viene applicata una forza frenante F=2N; mentre il secondo di massa = 2kg

Dettagli

Esercizi svolti di dinamica

Esercizi svolti di dinamica Esercizi svolti di dinamica Problema Una cassa si trova in cima ad un piano inclinato di 30, ad un altezza di 5 m dal suolo Sul piano inclinato è presente attrito dinamico di coefficiente µ = 0, La cassa

Dettagli

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32

GRAFICA E COMPUTER. 19 giugno () PLS-Grafica 19 giugno / 32 GRAFICA E COMPUTER 19 giugno 2013 3 2 1 0 1 2 3 3 2 1 0 1 2 3 () PLS-Grafica 19 giugno 2013 1 / 32 Equazioni differenziali modellizzano fenomeni (fisici e non) che variano nel tempo partendo da dati noti,

Dettagli

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI LEGGI RARIE DI ALCUNI MTI PARTICLARI MT RETTILINE UNIFRME (1) v = costante; a = 0 Legge oraria: P(t) v x 0 è la posizione di P all istante t=0 (posizione iniziale) x 0 x(t) P(t=0) v x(t) = v t + x 0 Nel

Dettagli

Esercitazione 1. Soluzione

Esercitazione 1. Soluzione Esercitazione 1 Esercizio 1 - Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza

Dettagli

Lezione 1 Vettori e cinematica

Lezione 1 Vettori e cinematica Lezione 1 Vettori e cinematica 1.1 Vettori Componenti dati modulo e direzione: A x = A cos θ A y = A sin θ Modulo e direzione date le componenti: A = Ax + A y θ = arctan A y A x Serway, Cap 1 I.41 1 Una

Dettagli

Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Moto rettilineo uniforme

Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Moto rettilineo uniforme Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Problema 1. Moto rettilineo uniforme Una fanciulla A si muove da casa in bicicletta alla velocità costante di 36 km/h;

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Esercizi in preparazione all esonero

Esercizi in preparazione all esonero Esercizi in preparazione all esonero Andrea Susa Esercizio Un sasso viene lanciato verso l'alto a partire dall'altezza h = 50 rispetto al suolo con una velocità iniziale di modulo = 8,5/. Supponendo il

Dettagli

Cinematica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Cinematica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Cinematica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Si consideri un automobilista che, dopo aver percorso una strada rettilinea per 8.

Dettagli

Cinematica del punto. Moto rettilineo. Dott.ssa Elisabetta Bissaldi

Cinematica del punto. Moto rettilineo. Dott.ssa Elisabetta Bissaldi Cinematica del punto Moto rettilineo Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 La meccanica Studia il MOTO DEI CORPI Spiega la relazione tra le CAUSE che generano

Dettagli

Esercizio (tratto dal problema 6.16 del Mazzoldi 2)

Esercizio (tratto dal problema 6.16 del Mazzoldi 2) Esercizio (tratto dal problema 6.6 del Mazzoldi ) Un proiettile di massa M viene sparato da terra all istante t 0 con velocità iniziale di modulo v 0 m/s ad un angolo θ 60 o con l orizzontale. Arrivato

Dettagli

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo FISICA Serie 3: Cinematica del punto materiale II I liceo Le funzioni affini Una funzione f è detta una funzione del tempo se ad ogni istante t associa il valore di una grandezza fisica f a quell istante,

Dettagli

Cinematica. A.Solano - Fisica - CTF

Cinematica. A.Solano - Fisica - CTF Cinematica Posizione, spostamento, traiettoria Velocità media e istantanea Accelerazione media e istantanea Moto rettilineo uniforme Moto rettilineo uniformemente accelerato Oggetti in caduta libera Moto

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccardo mail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

DUE MOTI UNIFORMEMENTE ACCELERATI PARTICOLARI

DUE MOTI UNIFORMEMENTE ACCELERATI PARTICOLARI DUE MOTI UNIFORMEMENTE ACCELERATI PARTICOLARI a cura di Vitali Marina realizzato con la supervisione del Prof. Fabio Breda I.S.I.S.S. M. Casagrande, Pieve di Soligo, a.s. 015-016 Abstract. Dati due corpi

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Esercizio (tratto dal problema 7.52 del Mazzoldi 2)

Esercizio (tratto dal problema 7.52 del Mazzoldi 2) 1 Esercizio (tratto dal problema 7.5 del Mazzoldi ) Un doppio piano è costituito da due rampe contrapposte, di materiali diversi, inclinate ciascuna di un angolo rispetto all orizzontale. Sulla rampa di

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Lezione 2 Sistemi di riferimento

Dettagli

2. discutere il comportamento dell accelerazione e della tensione nel caso m 1 m 2 ;

2. discutere il comportamento dell accelerazione e della tensione nel caso m 1 m 2 ; 1 Esercizio (tratto dal Problema 3.26 del Mazzoldi 2) Due masse m 1 e m 2 sono disposte come in figura. Il coefficiente di attrito dinamico tra il piano e m 2 vale µ D 0.2 e quello di attrito statico µ

Dettagli

Cap. 1 Il moto: ciò che tutti debbono sapere

Cap. 1 Il moto: ciò che tutti debbono sapere Cap. 1 Il moto: ciò che tutti debbono sapere 1.1 Essere fermi o essere in movimento? Se guardiamo la figura 1 noi possiamo dire che la barca in alto è ferma mentre quella in basso si è mossa Anche se guardiamo

Dettagli

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2 Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A. 2004-2005 Soluzioni proposte per il Foglio di Esercizi n. 2 2.1. Il proiettile ed il sasso cadono lungo y per effetto della accelerazione di gravità

Dettagli

Movimento dei corpi 1

Movimento dei corpi 1 Movimento dei corpi 1 1. Corpo in quiete e corpo in moto Un corpo rispetto a un sistema di riferimento si dice in moto se cambia la sua posizione nel tempo; si dice in quiete se non cambia la sua posizione

Dettagli

MECCANICA. Si occupa dei fenomeni connessi al MOVIMENTO dei corpi. CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA

MECCANICA. Si occupa dei fenomeni connessi al MOVIMENTO dei corpi. CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA MECCANICA Si occupa dei fenomeni connessi al MOVIMENTO dei corpi CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA DINAMICA: causa del movimento = Forza F STATICA: fenomeni di non alterazione

Dettagli

FISICA. Questi problemi si risolvono utilizzando la seconda legge di Newton F = m a che può scriversi, utilizzando le intensità. F = ma.

FISICA. Questi problemi si risolvono utilizzando la seconda legge di Newton F = m a che può scriversi, utilizzando le intensità. F = ma. Serie 9: Soluzioni FISICA I liceo Esercizio 1 Seconda legge di Newton Questi problemi si risolvono utilizzando la seconda legge di Newton F = m a che può scriversi, utilizzando le intensità Ricorda che

Dettagli

CINEMATICA. Prof Giovanni Ianne

CINEMATICA. Prof Giovanni Ianne CINEMATICA Il moto e la velocità L accelerazione Moto rettilineo uniforme Moto rettilineo uniformemente accelerato Moti periodici e composti il moto e la velocità Un corpo è in moto quando la sua posizione

Dettagli

CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA

CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA Sommario INTRODUZIONE... 3 MOTO DEL PROIETTILE... 3 MOTO CIRCOLARE UNIFORME... 5 MODULO DELL

Dettagli

CINEMATICA

CINEMATICA CINEMATICA CINEMATICA CINEMATICA CINEMATICA CINEMATICA CINEMATICA CINEMATICA NOZIONI INTRODUTTIVE NOZIONI INTRODUTTIVE! " NOZIONI INTRODUTTIVE! " NOZIONI INTRODUTTIVE! " NOZIONI INTRODUTTIVE NOZIONI INTRODUTTIVE

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Nozioni di meccanica classica

Nozioni di meccanica classica Nozioni di meccanica classica CORSO DI LAUREA IN TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA - Prof. Marco Maggiora Jacopo Pellegrino - jacopo.pellegrino@infn.it Introduzione Introduzione

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

Soluzione prova scritta Fisica Generale I Ing. Elettronica e Telecomunicazioni 01/02/2019

Soluzione prova scritta Fisica Generale I Ing. Elettronica e Telecomunicazioni 01/02/2019 Soluzione prova scritta Fisica Generale I Ing. Elettronica e Telecomunicazioni 01/0/019 Esercizio 1 1) Sull uomo agiscono la forza di gravità, la reazione della scala e le sue forze muscolari, mentre sulla

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA ESERCIZIO n. 1 - Equilibrio di mercato e spostamenti delle curve di domanda e di offerta La quantità domandata di un certo bene è descritta dalla seguente funzione: p (D) mentre la quantità offerta è descritta

Dettagli

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura: Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco

Dettagli

Se la velocità di un punto mobile in moto rettilineo è la stessa in qualunque istante il moto si definisce uniforme.

Se la velocità di un punto mobile in moto rettilineo è la stessa in qualunque istante il moto si definisce uniforme. Il moto uniforme Se la velocità di un punto mobile in moto rettilineo è la stessa in qualunque istante il moto si definisce uniforme. Tale definizione implica che: 1. il grafico (t, x) è una retta; 2.

Dettagli

LA PARABOLA. Prof. Walter Pugliese

LA PARABOLA. Prof. Walter Pugliese LA PARABOLA Prof. Walter Pugliese Che cos è la parabola Scegliamo sul piano un punto! e una retta ". Possiamo tracciare sul piano i punti equidistanti da! e da ". DEFINIZIONE Si chiama parabola la curva

Dettagli

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica CINEMATICA STUDIO del MOTO INDIPENDENTEMENTE dalle CAUSE che lo hanno GENERATO DINAMICA STUDIO del MOTO e delle CAUSE

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I 1. La tensione alla quale una lenza si spezza è comunemente detta resistenza della lenza. Si vuole calcolare la resistenza minima T min che deve

Dettagli

CINEMATICA DEL PUNTO: Caduta gravi

CINEMATICA DEL PUNTO: Caduta gravi CINEMATICA DEL PUNTO: Caduta gravi 1. Un proiettile viene sparato da un cannone a un angolo di 35 rispetto al piano orizzontale. Esso colpisce il suolo a 4 km dal cannone. Calcolare: (a) la velocità iniziale

Dettagli

x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( )

x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( ) Macerata 6 marzo 0 classe M COMPITO DI MATEMATICA SOLUZIONE QUESITO Considera il fascio di parabole di equazione: a) Trova eventuali punti base. y = k x + x + P ( 0;) Le curve sostegno del fascio sono

Dettagli