Determinazione del Flusso respiratorio del paziente (

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Determinazione del Flusso respiratorio del paziente ("

Transcript

1 Determinazione del Flusso respiratorio del paziente (Φ Resp ) nel caso di terapia denominata High Flow Nasal Cannula (HFNC) in presenza di un flusso di perdita dal sistema di monitoraggio Per determinare il flusso respiratorio del paziente (Φ Resp ) durante la somministrazione della terapia denominata High Flow Nasal Cannula (HFNC) è necessario adottare un modello fisico costituito da un circuito fluidodinamico (CF) che comprende il sistema HFNC, le vie aeree del paziente e una maschera oronasale (Mask), attraverso la quale poter valutare i flussi (Φ) di gas afferenti ed efferenti al paziente, nonchè la pressione interna alla Mask (P Mask ) (Figura 3). Il comportamento del CF durante il trattamento con l HFNC può essere efficacemente studiato e risolto attraverso il circuito equivalente-elettrico (CEE) (Figura 4). L applicazione del CEE risulta essere corretto e giustificato, in questo contesto, in base alle seguenti motivazioni. La correttezza deriva dalla ben nota equivalenza di comportamento tra i circuiti elettrici ed i circuiti fluidodinamici, per cui la differenza di potenziale elettrico, la corrente elettrica, la carica elettrica, la resistenza elettrica, la capacità elettrica e la induttanza elettrica possono essere sostituite dalla pressione, dal flusso, dal volume, dalla resistenza fluidodinamica, dalla compliance elastica e dall inerzia fluidodinamica/elastica. Nel nostro caso, l induttanza elettrica non compare nel CEE poiché sia l inerzia dei flussi che attraversano le vie aeree sia quella dei tessuti che costituiscono le vie aeree, i polmoni, il torace e l addome sono entrambe trascurabili alle basse frequenze respiratorie in gioco (tipicamente < 100 Hz). Per quanto riguarda la giustificazione, essa deriva dall opportunità di applicare i ben noti teoremi e i metodi disponibili per risolvere i problemi associati ai circuiti elettrici ed, in particolare, le leggi di Kirchhoff. Nelle Figura 3 e nella Figura 4 compaiono le grandezze definite a seguire: A) Pressione 1) pressione interna alla Mask (P Mask ); 2) pressione esterna alla Mask, od atmosferica (P Atm ); Come è noto, nella meccanica respiratoria la pressione in un qualsiasi comparto esterno o interno al paziente è espressa non in termini assoluti bensì in termini relativi alla P Atm che viene considerata pari a zero, in accordo con la seguente espressione: P Atm = 0 (1) B) Flussi 3) flusso erogato dal sistema HFNC al paziente e monitorato dal PNT-A (Φ HFNC_PNT-A ); 4) flusso che attraversa la cavità orofaringea (Φ Far ); 1

2 5) flusso di perdita dalle narici esternamente alle NC (Φ In_out_Naso ); 6) flusso di perdita dalla bocca (Φ In_out_Bocca ); 7) flusso complessivo di perdita dal naso o dalla bocca (Φ In_out_NB ) 8) flusso complessivo di perdita dal naso e dalla bocca, intercettato dalla Mask e monitorato dal PNT-B (Φ Mask_PNT-B ); 9) flusso di perdita dal bordo della Mask (Φ Mask_Leak ); 10) flusso respiratorio del paziente (Φ Resp ). Le frecce mostrate in Figura 3 e in Figura 4 indicano il verso di ogni specifico Φ che può essere monodirezionale (freccia singola) o bidirezionale (freccia doppia). Dalla Figura 3 (o dalla Figura 4), applicando la legge di continuità (o la prima legge di Kirchhoff) al nodo_1 ed al nodo_2, è possibile scrivere le seguenti due equazioni: Φ Far = Φ HFNC_PNT-A - Φ In_out_Naso (nodo 1) (2) Φ Resp = Φ Far - Φ In_out_Bocca (nodo 2) (3) Sostituendo la (2) nella (3), si ottengono le seguenti espressioni: Φ Resp = (Φ HFNC_PNT-A - Φ In_out_Naso ) - Φ In_out_Bocca (4) Φ Resp = Φ HFNC_PNT-A - (Φ In_out_Naso + Φ In_out_Bocca ) (5) Applicando la legge di continuità (o la prima legge di Kirchhoff) al nodo_3, è possibile scrivere la seguente equazione: Φ In_out_NB = Φ In_out_Naso + Φ In_out_Bocca (nodo 3) (6) Applicando la legge di continuità (o la prima legge di Kirchhoff) al nodo_4, è possibile scrivere la seguente equazione: Φ In_out_NB = Φ Mask_PNT-B + Φ Mask_Leak (nodo 4) (7) Infine, sostituendo la (6) e la (7) nella (5), si ottiene la seguente espressione: 2

3 Φ Resp = Φ HFNC_PNT-A - Φ Mask_PNT-B - Φ Mask_Leak (8) Dalla (8) risulta evidente che per determinare l andamento nel tempo (segnale) di Φ Resp, è necessario conoscere tutte e tre le seguenti grandezze: Φ HFNC_PNT-A, Φ Mask_PNT-B e Φ Mask_Leak. I segnali di Φ HFNC_PNT-A e Φ Mask_PNT-B sono ottenuti, rispettivamente, dal PNT-A e dal PNT-B, inseriti in serie al circuito dell HFNC che termina con le NC (PNT-A) e nell apertura principale della Mask (PNT-B). Come mostrato in Figura 2, entrambi i terminali dei PNT-A e PNT-B vengono poi collegati attraverso dei tubicini ai rispettivi terminali di due trasduttori di pressione differenziale (DPT-A e DPT-B). Determinazione di Φ Mask_Leak e quindi di Φ Resp Come si evince dalla Figura 4, la pressione all inizio e alla fine del ramo_1 e del ramo_2 sono uguali, ovvero P Mask all inizio e P Atm alla fine; di conseguenza la differenza di pressione ai capi di entrambi i rami (P Mask - P Atm ) coincide (connessione in parallelo). Quindi, tenendo conto che P Atm = 0, applicando la seconda legge di Kirchhoff ad entrambi i rami, è possibile scrivere la seguente espressione: P Mask - P Atm = P Mask = R Mask_PNT-B * Φ Mask_PNT-B = R Mask_Leak * Φ Mask_Leak (9) dove, R Mask_Leak e R Mask_Leak sono, rispettivamente, la resistenza fluidodinamica del PNT-B e quella del canale di perdita equivalente attraverso il quale si instaura Φ Mask_Leak. R Mask_PNT-B dipende dalle caratteristiche geometriche del PNT-B, che sono fornite dal costruttore, e dal valore di Φ Mask_PNT-B. Il valore di R Mask_PNT-B può essere comunque verificato applicando la (9) mediante la misura di P Mask e del Φ Mask_PNT-B. Approccio primario alla determinazione di Φ Mask_Leak Tale approccio si basa sull uguaglianza tra il secondo e il quarto membro della (9), dalla quale si possono ricavare le seguenti espressioni: Φ Mask_Leak = P Mask / R Mask_Leak (10) R Mask_Leak = P Mask / Φ Mask_Leak (11) 3

4 Come è mostrato in Figura 2, la misura di P Mask è ottenibile attraverso un tubicino che connette l interno della maschera con uno dei due terminali di un DPT (DPT-C); mentre per ottenere R Mask_Leak, ipotizzando che il suo valore rimanga costante in ogni condizione, è necessario identificare quella specifica condizione durante la quale Φ Mask_Leak sia direttamente misurabile. Tale condizione è rappresentata dallo stato di apnea del paziente, che è definita dalla seguente condizione: Φ Resp = 0 (12) Considerando la (12), la (8) e la (11), durante l apnea, assumono la seguente espressione: Φ^Mask_Leak = Φ^HFNC_PNT-A - Φ^Mask_PNT-B (13) R^Mask_Leak = P^Mask / Φ^Mask_Leak (14) dove il carattere ^ denota il valore assunto dalla relative grandezze durante l apnea. Sostituendo la (13) nella (14), si ottiene la seguente espressione: R^Mask_Leak = P^Mask / (Φ^HFNC_PNT-A - Φ^Mask_PNT-B ) (15) La (15) consente di determinare il valore di R^Mask_Leak, ovvero la resistenza del canale di perdita equivalente durante l apnea, che in base all ipotesi precedentemente detta, viene considerata pari a quella assunta durante l attività respiratoria del paziente, in accordo con la seguente condizione: R Mask_Leak = R^Mask_Leak (16) Durante l attività respiratoria del paziente (Φ Resp 0), quindi, considerando la (16), dalla (10) e dalla (15) è possibile dedurre la seguente espressione: Φ Mask_Leak = P Mask / R^Mask_Leak = [(Φ^HFNC_PNT-A - Φ^Mask_PNT-B ) / P^Mask ] * P Mask (17) La (17) fornisce una prima soluzione al problema della determinazione di Φ Mask_Leak. Sostituendo la (17) nella (8), si ottiene la seguente espressione: 4

5 Φ Resp = Φ HFNC_PNT-A - Φ Mask_PNT-B - [(Φ^HFNC_PNT-A - Φ^Mask_PNT-B ) / P^Mask ] * P Mask (18) La via percorsa finora presuppone la possibilità di poter individuare una fase di apnea tra i cicli respiratori del paziente, in cui misurare i valori di Φ^HFNC_PNT-A, Φ^Mask_PNT-B, P^Mask. Questa via è facilmente praticabile con il paziente collaborante, mentre risulta più complessa nei pazientini della prima infanzia che non riescono a trattenere volontariamente il respiro (apnea). Un altra soluzione praticabile per la determinazione di R Mask_Leak consiste nella rilevazione del valore di equilibrio associato a Φ HFNC_PNT-A, Φ Mask_PNT-B e P Mask attraverso il computo del valore medio di tali grandezze, calcolato nell intervallo di tempo corrispondente ad n atti respiratori consecutivi. Tale valore medio, essendo associato al valore di equilibrio coincide, con il valore assunto durante l apnea. A differenza del metodo dell apnea, quest ultima soluzione è applicabile a pazienti di ogni età, anche non collaboranti. Approccio secondario alla determinazione di Φ Mask_Leak Tale approccio si basa sull uguaglianza tra il secondo, terzo e quarto membro della (9), da cui si ricava la seguente espressione: P Mask = R Mask_Leak * Φ Mask_PNT-B (19) Applicando la (19) allo stato di apnea, si ottiene la seguente espressione: P^Mask = R^Mask_PNT-B * Φ^Mask_PNT-B (20) Se si ipotizza che la resistenza del PNT-B durante l attività respiratoria del paziente sia la stessa rispetto a quella durante l apnea, in accordo con la seguente condizione: R Mask_PNT-B = R^Mask_PNT-B (21) sostituendo la (19), la (20) e la (21) nella (17), si ottiene la seguente espressione: Φ Mask_Leak = [(Φ^HFNC_PNT-A - Φ^Mask_PNT-B ) / Φ^Mask_PNT-B ] * Φ Mask_PNT-B (22) La (22) fornisce quindi una seconda soluzione al problema della determinazione di Φ Mask_Leak. 5

6 Sostituendo la (22) nella (8), si ottiene la seguente espressione: Φ Resp = Φ HFNC_PNT-A - Φ Mask_PNT-B - [(Φ^HFNC_PNT-A - Φ^Mask_PNT-B ) / Φ^Mask_PNT-B ] * Φ Mask_PNT-B (23) Con semplici passaggi matematici, la (23) assume la seguente espressione: Φ Resp = Φ HFNC_PNT-A - (Φ^HFNC_PNT-A / Φ^Mask_PNT-B ) * Φ Mask_PNT-B (24) In sintesi, dal confronto tra la (18), relativa all approccio primario, e la (24), relativa all approccio secondario, si possono trarre le seguenti considerazioni. Con l approccio secondario, non occorre monitorare P Mask, né individuare il valore di equilibrio di quest ultima (P^Mask ), dal momento che la determinazione di Φ Resp presuppone il monitoraggio continuo solo di Φ HFNC_PNT-A e Φ Mask_PNT-B. Tale condizione è sufficiente applicando una procedura che individui i valori di equilibrio assunti dalle suddette grandezze, o attraverso la fase di apnea del paziente, o mediante la misura dei valori medi delle stesse. L approccio secondario prevede inoltre una ipotesi aggiuntiva che consiste nel considerare la resistenza del PNT-B (R Mask_PNT-B ) durante l attività respiratoria del paziente uguale a quella durante l apnea (R^Mask_PNT-B ). In conclusione, benchè l approccio secondario si basi su una procedura più semplice rispetto all approccio primario, dal momento che comprende un ipotesi aggiuntiva, potrebbe risultare meno efficace nell adattarsi a possibili variazioni delle caratteristiche del sistema. Pertanto, nel caso sia possibile monitorare senza interruzioni il segnale P Mask, compreso il suo valore di equilibrio (P^Mask ), l approccio primario è sicuramente raccomandabile. 6

7 7

8 8

9 9

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

Le lettere x, y, z rappresentano i segnali nei vari rami.

Le lettere x, y, z rappresentano i segnali nei vari rami. Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

Esercizi e problemi su circuiti elettrici elementari

Esercizi e problemi su circuiti elettrici elementari 28/01/10 Esercizi e problemi su circuiti elettrici elementari 1 Esercizi Esercizio (p.480 n.9). La resistenza totale di un circuito è 300Ω. In esso vi sono tre resistenze in serie: la seconda è tripla

Dettagli

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti Capitolo 5. Primo principio della Termodinamica nei sistemi aperti 5.1. I sistemi aperti I sistemi aperti sono quei sistemi termodinamici nei quali, oltre allo scambio di lavoro e calore è possibile lo

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente:

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente: PM PO N TNEE --- 9 MGGO 008 ECZO E..: Del circuito mostrato in figura, si desidera determinare: a) la corrente ; b) la potenza elettrica erogata dai tre generatori. Sono assegnati: Ω, 4 Ω, 6 Ω; ; E S 6

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita) dai generatori di tensione ed e quella assorbita

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Elettrotecnica Problema di analisi n 1 Risoluzione di circuiti complessi

Elettrotecnica Problema di analisi n 1 Risoluzione di circuiti complessi Determinare le correnti in intensità e verso in tutti i rami del circuito di figura. R 2 E 2 R 4 I 0 = 22 kω R 2 = 56 kω = 56 kω R 4 = 33 kω E 1 = 12 V E 2 = 5 V I 0 = 1 m E 1 1) Principi di KIRKHOFF.

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un

Dettagli

Bipoli Elettrici. Esercitazioni aggiuntive. = i I. + i A 'B ' v A 'B ' + v R. + v E v AB. = v D. = v A 'B ' = v I C + A + D + R d V R. V i.

Bipoli Elettrici. Esercitazioni aggiuntive. = i I. + i A 'B ' v A 'B ' + v R. + v E v AB. = v D. = v A 'B ' = v I C + A + D + R d V R. V i. sercitazioni aggiuntive sercizio. Tracciare la caratteristica esterna della rete in figura: V i ʼ ʼ i i i i ʼʼ D V D i D d V i D γ i V D γ i ʼ V d i D V ʼ D i D V D i i i V i g =.5 [v] d = [W] i = [kw]

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita)

Dettagli

Esercizi sui sistemi trifase

Esercizi sui sistemi trifase Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime C, frequenza 50 Hz, valore efficace

Dettagli

ALTRI CIRCUITI CON OPERAZIONALI 1 Sommatore invertente 1 Sommatore non invertente 3 Amplificatore differenziale 7 Buffer 11

ALTRI CIRCUITI CON OPERAZIONALI 1 Sommatore invertente 1 Sommatore non invertente 3 Amplificatore differenziale 7 Buffer 11 Altri circuiti con operazionali rev. del /06/008 pagina / ALT CCUT CON OPEAZONAL Sommatore invertente Sommatore non invertente Amplificatore differenziale 7 Buffer Altri circuiti con operazionali Sommatore

Dettagli

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori.

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. EEO 7.: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. 0 8e 3+ 4 ( 5 isulta necessario applicare le trasformazioni fra espressione polare ed

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 - Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

SISTEMI ELEMENTARI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari CA Prof.

SISTEMI ELEMENTARI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari CA Prof. SISTEMI ELEMENTARI Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sistemi Elementari CA 2017 2018 Prof. Laura Giarré 1 Principi di modellistica Problema: determinare il modello

Dettagli

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI CONSIGLI PER L RISOLUZIONE DEI CIRCUITI ELETTRICI In questa lezione lo scopo è quello di mostrare che, con i principi e i teoremi proposti, si possono ottenere i risultati richiesti. Per mostrare l efficacia

Dettagli

1.1 Assenza di generatori di tensione ideali

1.1 Assenza di generatori di tensione ideali ANALISI NODALE Questa dispensa presenta un metodo alternativo a quello presentato nel libro Circuiti Elettrici di C.K. Alexander, M.N.O.Sadiku - seconda edizione - traduzione a cura del Prof. P.Gubian

Dettagli

RETI LINEARI R 3 I 3 R 2 I 4

RETI LINEARI R 3 I 3 R 2 I 4 RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

5.12 Applicazioni ed esercizi

5.12 Applicazioni ed esercizi 138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 1)

Esercizi sulle reti elettriche in corrente continua (parte 1) Esercizi sulle reti elettriche in corrente continua (parte ) Esercizio : eterminare la resistenza equivalente della rete in figura tra i terminali e (supponendo e isolati) e la conduttanza equivalente

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

Equilibrio statico sul piano inclinato

Equilibrio statico sul piano inclinato Esperienza 3 Equilibrio statico sul piano inclinato Obiettivi - Comprendere la differenza tra grandezze vettoriali e grandezze scalari attraverso lo studio delle condizioni di equilibrio statico di un

Dettagli

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove

Dettagli

Parallelo dei Trasformatori

Parallelo dei Trasformatori Parallelo dei Trasformatori Introduzione Il funzionamento in parallelo di due trasformatori, di uguale o differente potenza nominale, si verifica quando sono in parallelo sia i circuiti primari sia quelli

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

Esercitazione di Macchine Elettriche

Esercitazione di Macchine Elettriche di Macchine Elettriche Dimensionamento preliminare di un trasformatore monofase prof. Alfonso Damiano Universit degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica 13 Marzo 2017

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

Elettrotecnica - A.A Prova n gennaio 2012

Elettrotecnica - A.A Prova n gennaio 2012 ognome Nome Matricola Firma 1 Parti svolte: E1 E2 D Esercizio 1 V G1 1 2 3 I G6 ri 2 4 7 8 E D Supponendo noti i valori delle resistenze, della tensione V G1, della corrente I G6 e del parametro di trasferimento

Dettagli

Elementi a più terminali

Elementi a più terminali Elementi a più terminali Gli elementi circuitali che rappresentano modelli astratti di dispositivi fisici a più terminali sono chiamati, in generale, multipoli. Un elemento ad n morsetti si chiamerà n-polo

Dettagli

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI In questa Appendice, mostreremo come un impresa possa individuare la sua combinazione di minimo costo dei fattori produttivi attraverso il calcolo

Dettagli

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt . METODO SIMBOLIO, O METODO DEI FASORI..Introduzione Questo metodo applicato a reti lineari permanenti consente di determinare la soluzione in regime sinusoidale solamente per quanto attiene il regime

Dettagli

INTENSITÀ DI CORRENTE E LEGGI DI OHM

INTENSITÀ DI CORRENTE E LEGGI DI OHM QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

a = V p V T Proprieta generali dei sistemi pvt sistemi semplici sistemi composti da una o piu sostanze pure sono detti

a = V p V T Proprieta generali dei sistemi pvt sistemi semplici sistemi composti da una o piu sostanze pure sono detti Proprieta generali dei sistemi p sistemi composti da una o piu sostanze pure sono detti sistemi semplici o sistemi p in questi sistemi si definiscono il modulo di compressibilita isoterma il coefficiente

Dettagli

PROBLEMA N.2 Il motorino elettrico

PROBLEMA N.2 Il motorino elettrico PROBLEMA N.2 Il motorino elettrico Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della dinamica in presenza

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

D. METODI DI ANALISI CIRCUITALE

D. METODI DI ANALISI CIRCUITALE D. METODI DI ANALISI CIRCUITALE Generalità (problema fondamentale della Teoria dei Circuiti) Schema concettuale dell analisi circuitale Metodo basato sui Tagli (equilibrio delle correnti) Metodo dei Nodi

Dettagli

Esercitazione 7 Dicembre 2012 Potenze e rifasamento monofase

Esercitazione 7 Dicembre 2012 Potenze e rifasamento monofase Esercitazione 7 Dicembre 0 Potenze e rifasamento monofase Esercizio Con riferimento al circuito riportato in Fig, calcolare la potenze attiva P e la potenza reattiva Q erogate dal generatore o R C o 0

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13 Prova Scritta del 11/11/2013 - NOME 1) Un commerciante prepara palloncini colorati all interno di un magazzino di volume di

Dettagli

CONDENSATORE ELETTRICO

CONDENSATORE ELETTRICO CONDENSATORE ELETTRICO Il condensatore è un dispositivo a due terminali, nella sua forma più semplice (condensatore piano), è costituito da due piastre conduttrici (armature) piane e parallele, provviste

Dettagli

Equazioni simboliche

Equazioni simboliche 581 Alcuni quiz riportano lo schema classico di un equazione matematica o di un sistema di equazioni matematiche, utilizzando, tuttavia, in luogo delle comuni lettere, dei simboli come @, #,!, etc. o delle

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica

Dettagli

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t.

Correnti e circuiti. E' il rapporto tra la quantità di carica che attraversa una sezione del conduttore e l'intervallo di tempo impiegato. Q t. 1 Correnti e circuiti Correnti e circuiti corrente: la quantità di carica che attraversa una superficie nell unità di tempo i i Q t lim t 0 Q t dq dt 1 Ampere (A) 1 C/s E' il rapporto tra la quantità di

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE CIRCUITI IN REGIME SINUSOIDALE CIRCUITO PURAMENTE OHMICO Esaminiamo il comportamento dei circuiti in regime sinusoidale iniziando da un circuito puramente ohmico. Si consideri (figura 1) un circuito costituito

Dettagli

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1 2 nalisi delle reti sercitazioni aggiuntive sercizio 2 Calcolare la tensione ai capi e del seguente circuito, applicando il teorema di Millman: 0 [v] [] [] 0 [Ω] 2 20 [Ω] saminando il circuito si osserva,

Dettagli

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V ESECIZIO SUI DIODI (Metodo degli Scatti) Determinarelatranscaratteristicav out (v in ) del seguente circuito Dati del problema V = 5V o = 1 k Ω = 10 Ω V Z = -8V V in V ٧ = 0.7V r D = 0 Ω r Z = 0 Ω r i

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli II Appello - 30/01/2013 Soluzioni Esercizi - Compito B Ex. 1 Due condensatori di capacità C 1 = 20 µf e C 2

Dettagli

Soluzione verifica scritta dell 8/10/2013

Soluzione verifica scritta dell 8/10/2013 Soluzione verifica scritta dell 8/10/013 * * * Problema n. 1 a) Determinare l equazione della parabola con asse parallelo all asse y, avente il vertice nel punto V ; ) e passante per l origine degli assi

Dettagli

ESERCIZI svolti e non

ESERCIZI svolti e non ESERCIZI svolti e non Qualche ragionamento non ti convince? Qualche calcolo non torna? Consultami all indirizzo: sendtowally@virgilioit pag 1 di 7 Settore e I circuiti elettrici in corrente continua e

Dettagli

Circuito equivalente

Circuito equivalente rete lineare Circuito equivalente r th th R i 4 i 3 3 J J J 3 4 Teorema di Thevenin: Data una rete di elementi lineari e punti, (morsetti) della rete, rispetto a questi, essa si comporta come un unico

Dettagli

Trasformatore monofase

Trasformatore monofase Prova in corto circuito La prova in corto circuito permette di determinare il valore degli elementi circuitali connessi in serie al trasformatore ideale e cioè le reattanze di dispersione X 1d, X d e le

Dettagli

Teorema di Thevenin generalizzato

Teorema di Thevenin generalizzato Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui

Dettagli

Esercizi svolti. Elettrotecnica

Esercizi svolti. Elettrotecnica Esercizi svolti di Elettrotecnica a cura del prof. Vincenzo Tucci NOVEMBE 00 NOTA SUL METODO PE LA DEGLI ESECIZI La soluzione degli esercizi è un momento della fase di apprendimento nel quale l allievo

Dettagli

Soluzione Esercizi Trasporto Fluidi Incomprimibili

Soluzione Esercizi Trasporto Fluidi Incomprimibili Soluzione Esercizi Trasporto Fluidi Incomprimibili a. 1. La pressione in B vale: p B = gh + p A (1) 3. La velocità del fluido vale: [ ( k v = F 2.28 1.7 ln +.67ν )] F dove F ora è pari a: (11) e dall equazione

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

GLI AMPLIFICATORI OPERAZIONALI

GLI AMPLIFICATORI OPERAZIONALI GLI AMPLIFICATORI OPERAZIONALI Prof. Michele Burgarelli 0 Grazie agli studenti della 5 AM a.s. 2013/2014 dell'itis Rossi di Vicenza Grazie a chi ha dato un essenziale supporto per la stesura di tali dispense.

Dettagli

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1 Lez.6 Il modello circuitale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 6 Pagina 1 Legge di Kirchhoff Legge di Kirchhoff delle correnti per gli insiemi

Dettagli

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione) Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2

Dettagli

la velocità della massa d aria in camera di prova; la portata in massa in camera di prova.

la velocità della massa d aria in camera di prova; la portata in massa in camera di prova. Fluidodinamica Esercizi 1. Determinare la pressione dinamica e la pressione di arresto di una particella d aria avente densità 1,10 Kg/m 3 e pressione statica 98 000 a, in movimento con una velocità V

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) ESERCIZIO n. 1 - La produzione ed i costi di produzione (1 ) Un impresa utilizza una tecnologia descritta dalla seguente funzione di produzione: I prezzi dei fattori lavoro e capitale sono, rispettivamente,

Dettagli

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI)

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) 1 PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) Qui di seguito viene riportata la risoluzione dei problemi presentati nel file Unità omonimo (enunciati). Si raccomanda di prestare molta attenzione ai ragionamenti

Dettagli

Transitori del secondo ordine

Transitori del secondo ordine Università di Ferrara Corso di Teoria dei circuiti Transitori del secondo ordine Si consideri il circuito in figura e si supponga che all istante la corrente della serie e la tensione sul condensatore

Dettagli

RETI DI CONDOTTE PROBLEMI DI VERIFICA

RETI DI CONDOTTE PROBLEMI DI VERIFICA RETI DI CONDOTTE PROBLEMI DI VERIFICA Nei problemi che seguono, con il termine (D) si intende indicare la seguente quantità: γ(d) = 8λ D 5 gπ2 Dove λ è la funzione di resistenza, grandezza che in generale

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 12/09/2012.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 12/09/2012. Fisica Generale 1 per ng. Gestionale e Chimica (Prof. F. Forti).. 011/1 ppello del 1/09/01. Tempo a disposizione: h30. Scrivere solamente sui fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017 Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/017 Esercizio 1 1) Durante il salto dell uomo non sono presenti forze esterne impulsive, per cui la quantità di moto

Dettagli

Progetto di un solaio laterocementizio

Progetto di un solaio laterocementizio 1 Prima esercitazione progettuale Progetto di un solaio laterocementizio Lezione del 20/10/2015: Analisi delle sollecitazioni con il Metodo delle Forze 1 Definizione dei coefficienti di deformabilità 2

Dettagli

Elettronica Amplificatore operazionale ideale; retroazione; stabilità

Elettronica Amplificatore operazionale ideale; retroazione; stabilità Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Amplificatore operazionale

Dettagli

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico Esercitazione Misure su circuiti magnetici - 1 Esercitazione Misure su circuiti magnetici 1 - Oggetto Caratterizzazione di materiali magnetici. Strumento virtuale per il rilievo del ciclo di isteresi dinamico.

Dettagli

LEZIONE 4 L AMPLIFICATORE OPERAZIONALE LA RETROAZIONE RETROAZIONE NEGATIVA R 2 R 1. I 2 V out _ + I 1. V in. + V out =EV d IDEALE

LEZIONE 4 L AMPLIFICATORE OPERAZIONALE LA RETROAZIONE RETROAZIONE NEGATIVA R 2 R 1. I 2 V out _ + I 1. V in. + V out =EV d IDEALE LZION 4 LZION DI OGGI DOMANI Amplificatore operazionale Retroazione Stabilità Tabella 1: Caratteristiche dell amplificatore operazionale ideale Nome Simbolo Valore Guadagno di tensione = Vout Resistenza

Dettagli

motivi, quali ad esempio: aumento della potenza richiesta dal carico oltre il valore nominale della potenza

motivi, quali ad esempio: aumento della potenza richiesta dal carico oltre il valore nominale della potenza MACCHINE ELETTRICHE TRASFORMATORE Inserzione in parallelo di due trasformatori Esercizio sul parallelo di due trasformatori Due o più trasformatori si dicono collegati in parallelo quando hanno i rispettivi

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

Esercizio svolto 1 Dati: R 1

Esercizio svolto 1 Dati: R 1 Esercizio svolto = 4 = = I G = 4A = Determinare la corrente I e le potenze rispettivamente erogate dal generatore Ig e dal generatore αi. Per trovare la grandezza pilota uso la sovrapposizione degli effetti.

Dettagli