STEREOISOMERIA carbonio ibridizzato sp3 è legato a quattro atomi o gruppi tutti diversi fra loro

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STEREOISOMERIA carbonio ibridizzato sp3 è legato a quattro atomi o gruppi tutti diversi fra loro"

Transcript

1 STEREOISOMERIA i sono oggetti che sono sovrapponibili alla loro immagine speculare: tutti gli oggetti di forma piana, ad esempio. osì, se prendo un alchene e lo confronto con la sua immagine allo specchio: 3 3 F F vedo che si tratta della stessa molecola, perché basta girarla sull altro lato per ottenere la sua immagine. iò non è sempre vero per oggetti tridimensionali; un caso tipico è quello delle mani: la destra e la sinistra sono speculari fra loro, ma non sono uguali, tant è vero che il guanto destro e il sinistro non sono intercambiabili. Questo è perché sono oggetti privi di elementi di simmetria: il palmo della mano e il dorso non sono uguali, mentre le due facce dell alchene sopra rappresentato lo sono. Fra le molecole organiche non sovrapponibili alla loro immagine speculare ci sono quelle in cui un atomo di carbonio, ibridizzato sp 3, è legato a quattro atomi o gruppi tutti diversi fra loro.

2 Ma quali sono le caratteristiche chimiche e fisiche di una sostanza di questo genere? Una molecola non sovrapponibile alla propria immagine speculare si dice IRALE, un termine che deriva dalla parola greca che significa mano. Un atomo di carbonio legato a 4 sostituenti diversi è un carbonio asimmetrico; non tutte le molecole chirali hanno un atomo di asimmetrico (alcune sono intrinsecamente asimmetriche per la loro forma complessiva, come si vedrà in seguito), ma tutte le molecole con un atomo di asimmetrico sono chirali (non è detto che lo siano se ne hanno più di uno: vedremo anche questo). Per quanto riguarda le caratteristiche chimiche e fisiche bisogna distinguere se la sostanza che abbiamo è una miscela delle due immagini speculari (dette enantiomeri) in uguale quantità, o se si tratta di un solo enantiomero puro. I due enantiomeri puri, separati, hanno le stesse caratteristiche fisiche e chimiche, tranne nel caso che debbano interagire con qualcosa che sia a propria volta asimmetrico (un guanto destro e uno sinistro di uno stesso paio hanno lo stesso colore, la stessa massa, la stessa lunghezza, ma non si infilano allo stesso modo su una mano destra). La miscela dei due enantiomeri in quantità uguali si chiama RAEMO o miscela racema, e non ha le stesse proprietà fisiche di ciascuno dei due enantiomeri da solo (in genere ha comunque proprietà fisiche molto simili). La reattività chimica con sostanze non chirali è uguale sia per ciascun enantiomero che per il racemo. L unico modo per distinguere due enantiomeri è quello di farli interagire con un mezzo chirale. Un modo molto usato prevede l utilizzo di luce polarizzata. Normalmente la luce è composta di onde elettromagnetiche che si propagano lungo tutti i piani; nella luce polarizzata l onda elettromagnetica si propaga lungo un solo piano (vedi figura): il filtro polarizzatore 1 elimina tutte le onde che vibrano su piani non paralleli alle sue fenditure; il secondo filtro 2, se ha le fenditure parallele al primo, lascia passare il raggio polarizzato, altrimenti lo blocca.

3 Se un raggio di luce polarizzata viene fatto passare attraverso un cristallo trasparente di una sostanza chirale (un solo enantiomero) oppure attraverso una soluzione contenente un solo enantiomero, l effetto è quello di far ruotare di un certo numero di gradi il piano in cui vibra la luce: un filtro 2 con le fenditure parallele a quelle del filtro 1 a questo punto non lascerebbe più passare la luce. Il motivo di questo è che in una molecola, gli elettroni non sono liberi di oscillare ugualmente in tutte le direzioni (la polarizzabilità delle molecole è anisotropa). Interagendo con gli elettroni oscillanti, le radiazioni elettromagnetiche polarizzate ruotano sempre lievemente il proprio piano di oscillazione; in un grande insieme di molecole achirali, però, per ogni molecola che incontra la luce ce n è una identica, orientata come la sua immagine speculare, che annulla esattamente il suo effetto. In un campione puro di un solo enantiomero nessuna molecola può servire da immagine speculare di un altra, non c è annullamento delle rotazioni e si ha attività ottica. sorgente luminosa cella portacampione filtro polarizzatore filtro analizzatore In uno strumento in grado di analizzare questo effetto, detto polarimetro, il raggio di luce viene ruotato di un angolo che dipende dalle caratteristiche intrinseche della sostanza analizzata (potere rotatorio), dalla concentrazione della soluzione e dalla lunghezza della cella. Se all inizio i due filtri sono paralleli, si deve ruotare il filtro analizzatore finché si vede emergere il raggio di luce: l angolo così osservato, α, per i due enantiomeri di una stessa sostanza ha valore uguale e segno contrario (uno ruota la luce a destra, l altro a sinistra di un angolo uguale). La miscela racema non ruota la luce: i due effetti si annullano. Una miscela dei due enantiomeri in quantità disuguali non è un racemo, ma ruota la luce di un angolo che dipende dall eccesso enantiomerico, cioè dalla differenza tra le due quantità. Ogni sostanza chirale è caratterizzata da una proprietà detta rotazione specifica [α] = α / L c in cui L = lunghezza della cella (dm) e c = concentrazione della soluzione (g cm -3 ). La rotazione specifica dipende dal solvente, da T e dalla

4 λ della luce polarizzata( indica la lunghezza d onda della linea del sodio, pari a 5893 Å). Per liquidi puri, c corrisponde alla densità. Se una sostanza è presente in due enantiomeri, occorre un modo per denominarli distinguendone la ONFIGURAZIONE ASSOLUTA, cioè la disposizione degli atomi intorno al carbonio asimmetrico; la correlazione fra verso di rotazione (per convenzione il segno + indica rotazione verso destra e verso sinistra) e configurazione assoluta non è ne ovvia ne immediata, ma si determina solo sperimentalmente. La configurazione assoluta dell enantiomero viene specificata attraverso la nomenclatura R-S. Si procede come segue: si identificano i quattro diversi gruppi legati al carbonio chirale si numerano in ordine decrescente di priorità in base alla massa dell atomo direttamente legato e, se uguale, man mano di quelli successivi si orienta la molecola in modo da guardarla lungo la direzione che va dal asimmetrico al sostituente con priorità minore. stabilire se gli altri tre sostituenti sono disposti in ordine decrescente in senso orario (enantiomero R, rectus) oppure antiorario (enantiomero S, sinister). A In questo esempio, l enantiomero è R perché la sequenza A,, si determina in senso orario. L altro enantiomero si chiama S. Un modo schematico per rappresentare queste molecole è costituito dalle PROIEZIONI I FISER, molto usate per gli zuccheri. In esse le linee orizzontali rappresentano legami diretti verso l osservatore e quelle verticali legami diretti lontano dall osservatore. A A A In questa proiezione il sostituente a minor priorità sarebbe : disponendolo come nella figura sopra, la sequenza A,, sarebbe antioraria, cioè sinistra, S.

5 Per trasformare una proiezione di Fischer in un altra equivalente dello stesso enantiomero si possono scambiare fra loro due coppie di sostituenti a piacere. Scambiandone una sola si ottiene l enantiomero opposto. Una molecola può avere più di un atomo asimmetrico. Nel caso in cui ne abbia due, i due carboni asimmetrici possono essere entrambi speculari fra loro, oppure uno uguale e uno speculare: 3 r r 3 r r 2S, 3R 2R, 3S enantiomeri 2R, 3R 2S, 3S enantiomeri Il 2-cloro-3-bromobutano qui illustrato, nella sua forma 2S, 3R è enantiomero della forma 2R, 3S mentre non è ne enantiomero ne uguale rispetto alla 2R, 3R, in quanto il che porta il bromo è uguale mentre quello col cloro è speculare. Queste due forme quindi si dicono fra loro IASTEREOISOMERE: si tratta di molecole chimicamente e fisicamente diverse, e si possono quindi separare fra loro con normali metodi fisici o chimici, senza l aiuto di mezzi chirali. In generale, il massimo numero di stereoisomeri possibili per un composto che ha n atomi asimmetrici è 2 n. Vi può essere anche un numero di stereoisomeri minore del massimo possibile, qualora alcuni siano uguali fra loro queste due molecole sono identiche, grazie alla presenza di un piano di simmetria piano di simmetria

6 Il composto qui indicato è detto forma MESO, non è otticamente attiva perché non è chirale, in quanto le due metà della molecola sono immagini speculari l una dell altra. O OO O OO Acido (+)-tartarico, (R,R) T.Fus. 170 α = + 13,5 in acqua O OO O OO Acido (-)-tartarico, (S,S) T.Fus. 170 α = - 13,5 in acqua Acido (±)-tartarico racemo T.Fus. 210 (dec) OO O O OO O O OO OO Acido meso-tartarico, (R,S) T.Fus α = 0 Quindi l'acido tartarico esiste sotto forma di due coppie di enantiomeri, diastereoisomere fra loro, una delle quali otticamente inattiva perché le due immagini speculari sono uguali fra loro (ovvero perché la struttura possiede un piano di simmetria). Allo scopo di separare fra loro gli enantiomeri che compongono una miscela racema, uno dei metodi è quello di farli reagire con un altra sostanza chirale (un solo enantiomero) in modo da trasformare i due enantiomeri in diastereoisomeri. Se gli enantiomeri da separare hanno proprietà acide o basiche, si possono salificare con una base o un acido chirale: O SO 3 3 N 2 acido (+)-10-canforsolfonico S-(-)-α-(1-naftil)-etilammina

7 R-talidomide sonnifero S-talidomide teratogeno S-carvone cumino R-carvone menta Vi sono anche molecole inerentemente chirali, anche senza avere un carbonio asimmetrico: sono le molecole prive di elementi di simmetria perché, ad esempio, elicoidali, come gli eliceni: enantiomeri dell esaelicene

isomeria di struttura isomeria di posizione isomeria di catena stereoisomeria isomeria di conformazione isomeria di configurazione 'isomeria ottica

isomeria di struttura isomeria di posizione isomeria di catena stereoisomeria isomeria di conformazione isomeria di configurazione 'isomeria ottica ISOMERIA L'isomeria di struttura è connessa al diverso modo in cui gli atomi di due o più composti si legano tra loro in sequenza. Ci sono due forme: isomeria di posizione e isomeria di catena. La stereoisomeria

Dettagli

7.4 Proprietà delle Molecole Chirali: Attvità Ottica

7.4 Proprietà delle Molecole Chirali: Attvità Ottica 7.4 Proprietà delle Molecole Chirali: Attvità Ottica Una sostanza è attiva otticamente se ruota la luce polarizzata Attività Ottica Affinchè una sostanza esibisca attività ottica, essa deve essere chirale

Dettagli

L'ATTIVITA' OTTICA DEI COMPOSTI CHIRALI

L'ATTIVITA' OTTICA DEI COMPOSTI CHIRALI L'ATTIVITA' OTTICA DEI COMPOSTI CHIRALI Nei composti inorganici a ogni formula grezza, che esprime la composizione della molecola, corrisponde una sola formula di struttura. Nei composti organici, invece,

Dettagli

CHIRALITA' E' una proprietà relativa ad oggetti PRIVI DI UN PIANO DI SIMMETRIA.

CHIRALITA' E' una proprietà relativa ad oggetti PRIVI DI UN PIANO DI SIMMETRIA. CIRALITA' E' una proprietà relativa ad oggetti PRIVI DI UN PIANO DI SIMMETRIA. non simmetrica rispetto al piano piano di simmetria La mano destra non è sovrapponibile alla mano sinistra: ne è invece l'immagine

Dettagli

Stereochimica. Molecole nello spazio

Stereochimica. Molecole nello spazio Stereochimica Molecole nello spazio Stereoisomeri: definizioni Stereoisomeri: isomeri che hanno la medesima connettività tra gli atomi ma differente orientazione 3D degli atomi nello spazio. Stereoisomeri

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico Università degli studi di Messina facoltà di Scienze mm ff nn Progetto Lauree Scientifiche (FISICA) Prisma ottico Parte teorica Fenomenologia di base La luce che attraversa una finestra, un foro, una fenditura,

Dettagli

7.9 Reazioni che introducono un centro Stereogenico

7.9 Reazioni che introducono un centro Stereogenico 7.9 eazioni che introducono un centro tereogenico Molte reazioni convertono reagenti achirali a prodotti chirali. E importante ricordare, comunque che se tutti i i componenti iniziali (reagenti, catalizzatori,

Dettagli

La misura degli angoli

La misura degli angoli La misura degli angoli In questa dispensa introduciamo la misura degli angoli, sia in gradi che in radianti, e le formule di conversione. Per quanto riguarda l introduzione del radiante, per facilitarne

Dettagli

Polarimetria. Polarimetria

Polarimetria. Polarimetria Polarimetria Polarimetria La radiazione elettromagnetica viene considerata come una forma di energia radiante dotata di una doppia natura, ondulatoria e corpuscolare. In ogni momento il vettore campo elettrico

Dettagli

Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale...

Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale... IMMAGINI Sommario Ottica geometrica... 2 Principio di Huygens-Fresnel... 4 Oggetto e immagine... 6 Immagine reale... 7 Immagine virtuale... 9 Immagini - 1/11 Ottica geometrica È la branca dell ottica che

Dettagli

Le Biomolecole I parte. Lezioni d'autore di Giorgio Benedetti

Le Biomolecole I parte. Lezioni d'autore di Giorgio Benedetti Le Biomolecole I parte Lezioni d'autore di Giorgio Benedetti LE BIOMOLECOLE Le biomolecole, presenti in tutti gli esseri viventi, sono molecole composte principalmente da carbonio, idrogeno, azoto e ossigeno.

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Ragionamento spaziale visivo e percezione

Ragionamento spaziale visivo e percezione 2 Ragionamento spaziale visivo e percezione Serie e analogie figurali! In alcune batterie di test psicoattitudinali sono ampiamente rappresentati i quesiti che propongono un elenco di figure: in alcuni

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari.

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari. Spettrofotometria. Con questo termine si intende l utilizzo della luce nella misura delle concentrazioni chimiche. Per affrontare questo argomento dovremo conoscere: Natura e proprietà della luce. Cosa

Dettagli

Scuola/Classe Cognome Nome Data

Scuola/Classe Cognome Nome Data Università di Udine Unità di Ricerca in Didattica della Fisica Scuola/Classe Cognome Nome Data Scheda PotRot Mezzi otticamente attivi Attività A. Riconoscere i mezzi otticamente attivi. Si dispone un puntatore

Dettagli

VERIFICA DELLA LEGGE DI MALUS E MISURA DELLA CONCENTRAZIONE DI UNA SOLUZIONE CON DUE POLAROIDI

VERIFICA DELLA LEGGE DI MALUS E MISURA DELLA CONCENTRAZIONE DI UNA SOLUZIONE CON DUE POLAROIDI VERIFICA DELLA LEGGE DI MALUS E MISURA DELLA CONCENTRAZIONE DI UNA SOLUZIONE CON DUE POLAROIDI A) VERIFICA DELLA LEGGE DI MALUS L intensità luminosa trasmessa da un sistema costituito da due polaroidi

Dettagli

4 La Polarizzazione della Luce

4 La Polarizzazione della Luce 4 La Polarizzazione della Luce Per comprendere il fenomeno della polarizzazione è necessario tenere conto del fatto che il campo elettromagnetico, la cui variazione nel tempo e nello spazio provoca le

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica

Dettagli

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE Nell ultima notte di osservazione abbiamo visto bellissime immagini della Galassia, delle sue stelle e delle nubi di gas che la compongono.

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Tecniche di microscopia

Tecniche di microscopia Tecniche di microscopia I microscopi permettono di vedere l estremamente piccolo I microscopi ottici utilizzano lenti di vetro in grado di deflettere e focalizzare i raggi luminosi per riprodurre le immagini

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

LA GRAFICA E LA GEOMETRIA OPERATIVA

LA GRAFICA E LA GEOMETRIA OPERATIVA LA GRAFICA E LA GEOMETRIA OPERATIVA La geometria operativa, contrariamente a quella descrittiva basata sulle regole per la rappresentazione delle forme geometriche, prende in considerazione lo spazio racchiuso

Dettagli

13 La temperatura - 8. Il gas perfetto

13 La temperatura - 8. Il gas perfetto La mole e l equazione del gas perfetto Tutto ciò che vediamo intorno a noi è composto di piccolissimi grani, che chiamiamo «molecole». Per esempio, il ghiaccio, l acqua liquida e il vapore acqueo sono

Dettagli

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA Poiché è impossibile contare o pesare gli atomi o le molecole che formano una qualsiasi sostanza chimica, si ricorre alla grandezza detta quantità

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

OTTICA TORNA ALL'INDICE

OTTICA TORNA ALL'INDICE OTTICA TORNA ALL'INDICE La luce è energia che si propaga in linea retta da un corpo, sorgente, in tutto lo spazio ad esso circostante. Le direzioni di propagazione sono dei raggi che partono dal corpo

Dettagli

Trasformazioni materia

Trasformazioni materia REAZIONI CHIMICHE Trasformazioni materia Trasformazioni fisiche (reversibili) Trasformazioni chimiche (irreversibili) È una trasformazione che non produce nuove sostanze È una trasformazione che produce

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

LIVELLO STUDENT S1. S2. S3. S4. S5.  S6. LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)

Dettagli

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare

Dettagli

CHIMICA ORGANICA: IBRIDAZIONE & RISONANZA IBRIDIZZAZIONE. un atomo compie all atto di formazione di un composto al fine di formare un maggior

CHIMICA ORGANICA: IBRIDAZIONE & RISONANZA IBRIDIZZAZIONE. un atomo compie all atto di formazione di un composto al fine di formare un maggior CHIMICA ORGANICA: IBRIDAZIONE & RISONANZA IBRIDIZZAZIONE L ibridizzazione o ibridazione è una ricombinazione dei propri orbitali atomici che un atomo compie all atto di formazione di un composto al fine

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini 1.1 Caratteristiche ottiche dei materiali oftalmici

1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini 1.1 Caratteristiche ottiche dei materiali oftalmici 1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini Esaminiamo in questo capitolo le principali caratteristiche dei vari materiali utilizzati nel campo dell'ottica oftalmica,

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione REAZIONI ORGANICHE Variazioni di energia e velocità di reazione Abbiamo visto che i composti organici e le loro reazioni possono essere suddivisi in categorie omogenee. Per ottenere la massima razionalizzazione

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo.

GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. GLI ANGOLI Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. A. Osserva questa linea spezzata aperta e continua tu a colorare gli angoli, come

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini

Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini SSIS indirizzo Fisico - Informatico - Matematico 2 anno - a.a.. 2006/2007 Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini LA LUCE La luce è un onda elettromagnetica Il principio

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

L influenza della corrente sulla barca si manifesta in due effetti principali: uno sul vento e uno sulla rotta percorsa.

L influenza della corrente sulla barca si manifesta in due effetti principali: uno sul vento e uno sulla rotta percorsa. CORRENTI e DIAGRAMMI POLARI Come la corrente trasforma le polari di una barca Durante una discussione nel corso di una crociera, è stata manifestata la curiosità di sapere come possano essere utilizzate

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

Guida all uso di Java Diagrammi ER

Guida all uso di Java Diagrammi ER Guida all uso di Java Diagrammi ER Ver. 1.1 Alessandro Ballini 16/5/2004 Questa guida ha lo scopo di mostrare gli aspetti fondamentali dell utilizzo dell applicazione Java Diagrammi ER. Inizieremo con

Dettagli

Capitolo 3. L applicazione Java Diagrammi ER. 3.1 La finestra iniziale, il menu e la barra pulsanti

Capitolo 3. L applicazione Java Diagrammi ER. 3.1 La finestra iniziale, il menu e la barra pulsanti Capitolo 3 L applicazione Java Diagrammi ER Dopo le fasi di analisi, progettazione ed implementazione il software è stato compilato ed ora è pronto all uso; in questo capitolo mostreremo passo passo tutta

Dettagli

Capitolo 7. Le soluzioni

Capitolo 7. Le soluzioni Capitolo 7 Le soluzioni Come visto prima, mescolando tra loro sostanze pure esse danno origine a miscele di sostanze o semplicemente miscele. Una miscela può essere omogenea ( detta anche soluzione) o

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA Poiché la luce è energia trasportata da oscillazioni del campo elettrico (fotoni) e la materia è fatta di particelle elettricamente cariche (atomi

Dettagli

H1 Hrms Gestione eventi/scadenze automatiche

H1 Hrms Gestione eventi/scadenze automatiche Sintesi H1 Hrms Gestione eventi/scadenze automatiche Il presente documento nasce con lo scopo di illustrare la funzionalità all interno di H1 hrms relativa alla procedura di gestione degli eventi e delle

Dettagli

Interferenza e diffrazione

Interferenza e diffrazione Interferenza e diffrazione La radiazione elettromagnetica proveniente da diverse sorgenti si sovrappongono in ogni punto combinando l intensita INTERFERENZA Quando la radiazione elettromagnetica passa

Dettagli

Rette e curve, piani e superfici

Rette e curve, piani e superfici Rette e curve piani e superfici ) dicembre 2 Scopo di questo articolo è solo quello di proporre uno schema riepilogativo che metta in luce le caratteristiche essenziali delle equazioni di rette e curve

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di un solido (polvere) che diverrà il ceramico, con un

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Utilizzo ECG

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Utilizzo ECG a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Utilizzo ECG 27/4/2006 Cuore come dipolo elettrico Il cuore considerato come un generatore elettrico complesso, in cui sono presenti

Dettagli

Carichiamo il segnale contenuto nel file ecg_es_20121128.mat

Carichiamo il segnale contenuto nel file ecg_es_20121128.mat Esercitazione su analisi segnale ECG Carichiamo il segnale contenuto nel file ecg_es_20121128.mat Il file contiene due variabili - dt, che vale 0.004 - ecg, che è vettore lungo 6500 campioni La frequenza

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Relazione di Fisica. IV E a.s. 2011/2012. Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto.

Relazione di Fisica. IV E a.s. 2011/2012. Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto. Relazione di Fisica IV E a.s. 2011/2012 Badioli Federico, Ciprianetti Sofia, Pasqualini Roberto. Scopo: Misurare la lunghezza d onda (λ) di un laser HeNe attraverso un reticolo di diffrazione. Materiale

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Elementi di teoria dei segnali /b

Elementi di teoria dei segnali /b Elementi di teoria dei segnali /b VERSIONE 29.4.01 Filtri e larghezza di banda dei canali Digitalizzazione e teorema del campionamento Capacità di canale e larghezza di banda Multiplexing e modulazioni

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

Scheda n. 10: PCA - parte seconda

Scheda n. 10: PCA - parte seconda Scheda n. 10: PCA - parte seconda November 25, 2008 1 Il piano principale Con il comando: > biplot(pca) si ottiene un immagine del piano principale, con la proiezione dei dati e dei vecchi assi (le vecchie

Dettagli

SCHEDA TECNICA PER IL MONTAGGIO DELLE COPERTURE LA COPERTURA TOSCANA.

SCHEDA TECNICA PER IL MONTAGGIO DELLE COPERTURE LA COPERTURA TOSCANA. SCHEDA TECNICA PER IL MONTAGGIO DELLE COPERTURE LA COPERTURA TOSCANA. La COPERTURATOSCANA, prodotta da COTTOREF, è composta da tre articoli fondamentali: tegole, coppi e colmi, oltre ad una serie di pezzi

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè:

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè: 1 Limiti Roberto Petroni, 2011 Possiamo introdurre intuitivamente il concetto di limite dicendo che quanto più la x si avvicina ad un dato valore x 0 tanto più la f(x) si avvicina ad un valore l detto

Dettagli

CHIMICA. Una teoria è scientifica solo se è falsificabile (cioè se è possibile sperimentalmente smentire le sue previsioni)

CHIMICA. Una teoria è scientifica solo se è falsificabile (cioè se è possibile sperimentalmente smentire le sue previsioni) CHIMICA SCIENZA SPERIMENTALE: cioè si basa sul metodo sperimentale (Galileo è il precursore). Osservazione dei fenomeni (raccolta e interpretazioni dati) Formulazione ipotesi Verifica sperimentale (eventualmente

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Capitolo II. La forma del valore. 7. La duplice forma in cui si presenta la merce: naturale e di valore.

Capitolo II. La forma del valore. 7. La duplice forma in cui si presenta la merce: naturale e di valore. Capitolo II La forma del valore 7. La duplice forma in cui si presenta la merce: naturale e di valore. I beni nascono come valori d uso: nel loro divenire merci acquisiscono anche un valore (di scambio).

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

28/05/2009. La luce e le sue illusioni ottiche

28/05/2009. La luce e le sue illusioni ottiche La luce e le sue illusioni ottiche Cosa si intende per raggio luminoso? Immagina di osservare ad una distanza abbastanza elevata una sorgente di luce... il fronte d onda potrà esser approssimato ad un

Dettagli

EasyPrint v4.15. Gadget e calendari. Manuale Utente

EasyPrint v4.15. Gadget e calendari. Manuale Utente EasyPrint v4.15 Gadget e calendari Manuale Utente Lo strumento di impaginazione gadget e calendari consiste in una nuova funzione del software da banco EasyPrint 4 che permette di ordinare in maniera semplice

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Informatica per la comunicazione" - lezione 7 -

Informatica per la comunicazione - lezione 7 - Informatica per la comunicazione - lezione 7 - Campionamento La codifica dei suoni si basa sulla codifica delle onde che li producono, a sua volta basata su una procedura chiamata campionamento.! Il campionamento

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

APPUNTI SUL CAMPO MAGNETICO ROTANTE

APPUNTI SUL CAMPO MAGNETICO ROTANTE APPUTI UL CAPO AGETICO ROTATE Campo agnetico Rotante ad una coppia polare Consideriamo la struttura in figura che rappresenta la vista, in sezione trasversale, di un cilindro cavo, costituito da un materiale

Dettagli

Laboratorio di Fisica 3 Ottica 2. Studenti: Buoni - Giambastiani - Leidi Gruppo: G09

Laboratorio di Fisica 3 Ottica 2. Studenti: Buoni - Giambastiani - Leidi Gruppo: G09 Laboratorio di Fisica 3 Ottica 2 Studenti: Buoni - Giambastiani - Leidi Gruppo: G09 24 febbraio 2015 1 Lunghezza d onda di un laser He-Ne 1.1 Scopo dell esperienza Lo scopo dell esperienza è quello di

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica)

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica) Acidi e basi Per capire che cosa sono un acido e una base dal punto di vista chimico, bisogna riferirsi ad alcune proprietà chimiche dell'acqua. L'acqua, sia solida (ghiaccio), liquida o gassosa (vapore

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

All interno dei colori primari e secondari, abbiamo tre coppie di colori detti COMPLEMENTARI.

All interno dei colori primari e secondari, abbiamo tre coppie di colori detti COMPLEMENTARI. Teoria del colore La teoria dei colori Gli oggetti e gli ambienti che ci circondano sono in gran parte colorati. Ciò dipende dal fatto che la luce si diffonde attraverso onde di diversa lunghezza: ad ogni

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Scientifico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dettagli

Ottica fisiologica (2): sistemi ottici

Ottica fisiologica (2): sistemi ottici Ottica fisiologica (2): sistemi ottici Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it http://boccignone.di.unimi.it/pmp_2014.html

Dettagli