SEGNALI E SISTEMI Ripasso per Io Compitino

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SEGNALI E SISTEMI Ripasso per Io Compitino"

Transcript

1 SEGNALI E SISTEMI Ripasso per Io Compitino Esercizio 1 Si consideri il segnale a tempo continuo x(t) = 2 ( 1) k 1 1 sin(kt), t R. k=1 k a. Trovare il periodo fondamentale T p di x(t) e dire se il segnale è ad energia finita sul periodo. b. Il segnale è reale? Il segnale è pari o dispari? c. Trovare il segnale y(t) = h(t) x(t), dove la risposta in frequenza vale H(jω) = rect ( ) ω 5. T p =. Il segnale è ad energia finita perchè a k 2 = 1 che è assolutamente k 2 sommabile. Vale x(t) = t, quindi il segnale è reale e dispari (si vede anche per ispezione e si vede anche dai coefficienti dispari e puramente immaginari). Essendo il filtro un passabasso ideale con H(jω) = rect ( ) ω 5, passano (inalterate) solo le prime due sinusoidi e si ha y(t) = 2 sin t sin 2t. Esercizio 2 1. Si trovi il periodo fondamentale e i corrispondenti coefficienti di Fourier del segnale x 1 (t) = cos 2 ( πt) + sin( π t), t R, dire se il seguente segnale ( è periodico ) e, se si, trovarne il periodo fondamentale x 2 (n) = e j( π π n 1) + 2 cos 2 n, n Z.. dire se il seguente segnale x(t) = 2 k= 2 j sin ( ) kπ e jk( π 1 t) è a) reale e b) pari. 1. Il primo addendo cos ( 2 π 2 t) = 1 (1 + cos(πt)) è periodico di periodo fondamentale T 2 1 = = 2, mentre il secondo addendo è periodico di periodo fondamentale T π 2 = = 4. Essendo i due periodi in rapporto razionale, x 1 (t) è periodico di periodo T = m.c.m.(t 1, T 2 ) = π/2 4 cui corrisponde ω = π. Applicando la formula di Eulero si trova 2 ( e jω t + e jω ) t 2 x 1 (t) = + ejω t e jω t 2 2j = ej2ω t + e j2ω t ejω t e jω t. 2j Per ispezione, si ricavano i coefficienti di Fourier cercati (notare la simmetria hermitiana): a = 1 2, a 1 = a 1 = j 2, a 2 = a 2 = 1 4, tutti gli altri a k sono nulli. 2. Il primo addendo e j( π n 1) è periodico poichè θ 1 = π/ = 1 Q. Il suo periodo fondamentale è quindi N 1 = 6. Il secondo addendo è periodico poichè θ 2 = π/2 = Q. 4 6 Il suo periodo fondamentale è quindi N 2 = 4. Il periodo fondamentale di x 2 (t) vale N = m.c.m.(n 1, N 2 ) = 12.

2 . Il segnale è reale se e solo se i suoi coefficienti di Fourier godono della simmetria hermitiana a k = a k.ora, per k > 2, a k = e la proprietà è verficata. Per k 2, ( ) kπ a k = j sin = j sin ( ) kπ = j sin ( ) kπ = a k. Quindi il segnale x(t) è reale. Il segnale è pari se e solo se la successione a k } è pari. Ma a k = a k, cioè la successione è dispari. Siccome il segnale non è identicamente nullo, x(t) non è pari, ma è piuttosto dispari. Esercizio Per i seguenti sistemi, dire se valgono le proprietà di: a. causalità, b. linearità, c. tempo invarianza, d. BIBO-stabilità: 1. y(t) = t e 2(t τ) x(τ)dτ + x(t + 1), 2. y(n) = max(x(n), 2 n ). 1. Si riconosce agevolmente che il sistema è convoluzionale, ovvero y(t) = h(t) x(t) con h(t) = e 2t 1l(t) + δ(t + 1). Il sistema è quindi lineare e tempo-invariante. Il sistema non è causale in quanto y(t) dipende dall ingresso al tempo futuro t + 1 (in alternativa, si può osservare che h(t) per t < visto che l impulso è centrato in 1). Il sistema è BIBO stabile poichè h(t) dt = e 2t dt + δ(t + 1)dt = = 2 <. 2. Il sistema è statico e quindi causale. Il sistema non è lineare. Ad esempio, quando x(n), la risposta è y(n) = 2 n. Ma un sistema lineare risponde al segnale nullo con il segnale nullo. Il sistema non è tempo invariante. Ad esempio, la risposta del sistema ai segnali 1l(t) e 1l(t 1) è sempre il segnale y(n) = 2 n. Quest ultimo esempio mostra anche che il sistema non è BIBO stabile. Esercizio 4 Un sistema lineare Σ a tempo discreto trasforma x 1 (n) = cos( 2n) in y 1 (n) = cos(2 2n) e x 2 (n) = sen( 2n) in y 2 (n) = sen( 2n). 1. Determinare l uscita y (n) corrispondente all ingresso x (n) = e j 2n. 2. Il sistema può essere di tipo convoluzionale? 1. Si scriva x (n) = e j 2n = cos( 2n)+j sen( 2n) = x 1 (n)+jx 2 (n). L uscita y (n) si calcola sfruttando la linearità, y (n) = Σ(x (n)) = Σ(x 1 (n) + jx 2 (n)) = Σ(x 1 (n)) + jσ(x 2 (n)) = cos(2 2n) + j sen( 2n). 2. Il sistema non può essere di tipo convoluzionale visto che x (n) = e j 2n non è un autofunzione del sistema ( cos(2 2n) + j sen( 2n) Ce j 2n ).

3 Esercizio 5 Per un sistema LTI con risposta impulsiva t h(t) = 2 1, se t < 1, altrimenti si calcoli l uscita y(t) corrispondente all ingresso x(t) = δ(t 2) δ(t + 2). Svolgimento y(t) = h(t) x(t) = h(t) (δ(t 2) δ(t + 2)) = h(t 2) h(t + 2). Poichè il supporto di h( ) è di lunghezza 2, non c è intersezione tra i supporti di h(t 2) ed h(t + 2). Risulta Esercizio 6 y(t) = 1 (t + 2) 2, se t 1 (t 2) 2 1, se 1 t, altrimenti Due sistemi in cascata hanno risposte impulsive h 1 (n) = 1l(n + 2) e h 2 (n) = δ(n) δ(n 1). 1. Calcolare la risposta impulsiva del sistema complessivo; 2. calcolare la risposta del sistema complessivo all ingresso x(n) = (1/2) n 1l(n). 1. La risposta impulsiva della cascata h è la convoluzione delle risposte impulsive dei due sistemi, ovvero h(n) = h 1 (n) h 2 (n) = 1l(n + 2) (δ(n) δ(n 1)) = 1l(n + 2) 1l(n + 1) = δ(n + 2). 2. y(n) = h(n) x(n) = δ(n + 2) x(n) = x(n + 2) = ( ) n l(n + 2). Esercizio 7 Si consideri x(t) : t R} periodico di periodo T = 2, ad energia finita su [, T ], con coefficienti di Fourier a k }. Si trovino i coefficienti di Fourier b k } di y(t) = e jπt x(t 4). Si osservi anzitutto che y(t) = e jπt x(t 4) = e jπt x(t), visto che x è periodico di periodo 2. Anche e jπt è periodico di periodo 2. Ne segue che anche y è periodico di periodo 2. Ha inoltre la stessa energia sul periodo di x visto che e jπt 1. Infine, b k = 1 2 Esercizio 8 y(t)e jkπt dt = 1 2 e jπt x(t)e jkπt dt = 1 2 Calcolare i coefficienti di Fourier a k } del segnale di periodo T = 2 1.5, t < 1, x(t) = 1.5, 1 t < 2. x(t)e j(k 1)πt dt = a k 1. Anzitutto osserviamo che il segnale soddisfa le condizioni di Dirichlet e quindi ammette serie di Fourier con convergenza puntuale eccetto che nei punti di salto dove la convergenza è all emivalore. Il segnale ha valori reali ed è dispari. Quindi i suoi coefficienti di

4 Fourier sono puramente immaginari e dispari. In particolare, a =. Si tratta di un onda quadra abbassata e traslata temporalmente. Quindi i suoi a k si possono ottenere da quella canonica con T 1 = 1/2 e T = 2 che vale su [, 1) e su [1, 2). L abbassamento incide solo sul coefficiente di indice zero che vale appunto a = 2T 1 = =. Per gli altri, osserviamo T che ω = = π e che la traslazione temporale è di 1/2. Otteniamo T a k = sin(kπ/2), k pari, e jkπ/2 = kπ j, k dispari. kπ Lo stesso risultato si ottiene dal calcolo diretto. Esercizio 9 Si consideri il segnale x(t), t R, periodico di periodo T = 2, così definito per t [, 2): a. Tracciare il grafico di x(t). x(t) = 2(1 t), t < 1, 2, 1 t < 2. b. Calcolare la derivata generalizzata y(t) = d x(t), t R. dt c. Determinare i coefficienti di Fourier del segnale (Attenzione) y(t). d. Determinare i coefficienti di Fourier del segnale z(t) = sin(πt)y(t). a. Grafico di x(t) 2. x(t) t b. Anche la derivata (generalizzata) y(t) = d x(t), t R, è un segnale periodico di periodo dt T = 2, espresso per t [, 2) come y(t) = 2 δ(t 1) + 2, < t < 1,, 1 < t < 2. Notare, in particolare, l impulso delta di area 2 traslato in t = 1, corrispondente alla discontinuità di ampiezza x = 2 del segnale x(t) in t = 1. c. I coefficienti a k, k Z} del segnale y(t), di pulsazione ω = = π, rispetto alla T famiglia di esponenziali φ k (t) = e jkπt, k Z}, si possono calcolare direttamente tramite le formule integrali. Infatti, si trova la componente continua a = 1 2 = y(t) dt ( 2) dt δ(t 1) dt = =,

5 mentre, per k, In definitiva, a k = 1 2 = y(t)e jkπt dt = 1 e jkπ jkπ ( 2)e jkπt dt e jkπ = ( 1)k 1 jkπ, k =, a k = 1, k pari, k, 1 2, k dispari. jkπ d. I coefficienti di Fourier b k } di z sono dati da b k = 1 2j (a k 1 a k+1 ). 2δ(t 1)e jkπt dt + ( 1) k. Esercizio 1 Sia x(t); < t < } un segnale a valori reali, periodico di periodo T e ad energia finita su [, T ]. Siano a k } i suoi coefficienti di Fourier rispetto alla famiglia di esponenziali jk φk (t) = e T t, k Z }. Sia z(t) = x(t)+cos( t) e siano b T k} i suoi coefficienti di Fourier rispetto alla stessa famiglia. Si dimostri che se x è un segnale dispari, allora vale b k 2 = a k 2. Ricordiamo che, per un segnale w(t) periodico di periodo T, ad energia finita sul periodo, con coefficienti Fourier c k }, il Teorema di Parseval fornisce E w (T ) = Nel caso di w(t) = cos ( T t) = ej segue che T T t e j T t k=1 w(t) 2 dt = T c k 2. 2, si ha c 1 = c 1 = 1 2, tutti gli altri c k sono nulli. Ne E cos( T t)(t ) = T ( c c 1 2) = T ( ) = T 2.

6 Osserviamo ora che E z (T ) = E x (T ) + E cos( T t)(t ), in quanto il segnale x(t) cos ( T t) è dispari ed integra a zero. Osserviamo infine che, essendo x dispari, così è la sua successione di coefficienti di Fourier, cioè a k = a k, k e a =. Concludiamo che 1 T E z(t ) = Esercizio 11 b k 2 = 1 T ( ) E x (T ) + E cos( t)(t ) = 1 T 2 + a k 2 = a k 2. k=1 Si consideri la famiglia dei segnali x periodici di periodo e ad energia finita sul periodo. Siano a k } i coefficienti di Fourier di un tale x rispetto alla famiglia di esponenziali in relazione armonica ϕ k (t) = e jkt, k Z}. Cosa si può dire degli a k, k Z} se x è anche periodico di periodo π? Necessariamente, a 2k+1 =, k Z, cioè mancano le armoniche di indice dispari. Infatti, detti b k i coefficienti di x(t + π), dalla proprietà di shift temporale, vale b k = e jkπ a k = ( 1) k a k. D altra parte, visto che x(t + π) = x(t), vale b k = a k. Quindi a k = ( 1) k a k e l asserto segue.

SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon (a.a ) IIIo Appello 24 agosto 2015 SOLUZIONI

SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon (a.a ) IIIo Appello 24 agosto 2015 SOLUZIONI SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon a.a. 04-05) IIIo Appello 4 agosto 05 SOLUZIONI Esercizio [punti 4]. Discutere le proprietà di: a) causalità, b) linearità, c) tempo-invarianza,

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione Esercizio 1 [punti 4] SEGNALI E SISTEMI (a.a. 003-004) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 003 Testo e Soluzione Per ciascuno dei seguenti segnali dire se è periodico e,

Dettagli

1 La trasformata di Fourier

1 La trasformata di Fourier SEGNALI E SISTEMI (a.a. 2010-2011) Prof. M. Pavon 1 La trasformata di Fourier Indichiamo con L 1 (R) o L 1 (, + ) lo spazio vettoriale normato dei segnali assolutamente integrabili sulla retta cioè { }

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 10 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 10 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 2009-2010) Prof. M. Pavon Esercizi risolti 10 Attenzione: u(t) = 1l(t) 1. a. Calcolare il segnale x(t), antitrasformata di Laplace bilatera della funzione X(s) = 6, 1 < Re s < 2.

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Risposta in frequenza dei circuiti TD Rappresentazione nel dominio della frequenza,

Dettagli

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione p. 1 Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 8 last update Nov 20, 2004 c 2004 Finesso, Pavon, Pinzoni 1 RISPOSTA IN FREQUENZA SISTEMI LTI CONTINUI Motivazione rete elettrica in regime sinusoidale

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari

Dettagli

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003 ISTITUZIONI DI ANALISI SUPEIOE B Prova scritta del 7/3/3 Sia f : C la funzione così definita: { se t

Dettagli

ESERCIZI DI TEORIA DEI SEGNALI

ESERCIZI DI TEORIA DEI SEGNALI ESERCIZI DI EORIA DEI SEGNALI EX. 1 Si determini lo sviluppo in serie di Fourier del segnale cos[ m(t)] dove m(t) = m(t) = m(t k ) [ π 2 2π ] ( ) t t rect. EX. 2 Si siderino due segnali x 1 (t) e x 2 (t)

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - Corso di Laurea in Ingegneria Meccanica Segnali e trasformate DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Segnali e trasformate

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

Cenni sulla Serie di Fourier

Cenni sulla Serie di Fourier Cenni sulla Serie di Fourier Note per le lezioni del corso di Controlli Automatici Prof.ssa Maria Elena Valcher 1 Serie di Fourier Osserviamo preliminarmente che la somma di segnali periodici non è necessariamente

Dettagli

Come rintracciarmi. Orario di ricevimento: Martedì dalle 9:00 alle 11:00. Telefono:

Come rintracciarmi. Orario di ricevimento: Martedì dalle 9:00 alle 11:00. Telefono: Come rintracciarmi Orario di ricevimento: Martedì dalle 9:00 alle :00 Telefono: 0432-55-827 e-mail: bernardini@uniud.it Pagina web: http://www.diegm.uniud.it/ bernardini/didattica/sis/ September 25, 2003

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

e jk( 10 t), t 2 R, è : a) periodico, e se sì identificare il suo periodo fondamentale; b) reale; c) pari o dispari. n 1 X k n x(k) i + x(n +2),

e jk( 10 t), t 2 R, è : a) periodico, e se sì identificare il suo periodo fondamentale; b) reale; c) pari o dispari. n 1 X k n x(k) i + x(n +2), SEGNALI E SISTEMI Pro. A. Beghi, N. Benvenuto e M. Pavon (a.a. 2011-2012) Prima prova di accertamento 27 aprile 2012. Attenzione: u(t) = 1l(t) Ogni a ermazione va giustificata con un minimo di ragionamento

Dettagli

Sistemi LTI a Tempo Continuo

Sistemi LTI a Tempo Continuo Capitolo 3 Sistemi LTI a Tempo Continuo 3.1 Proprietà di Linearità e Tempo Invarianza 3.1.1 Linearità Si indichi con T [.] la trasormazione ingresso-uscita, o unzione di traserimento, di un sistema S 1,

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Elaborazione numerica dei segnali: si occupa della

Elaborazione numerica dei segnali: si occupa della Introduzione al corso Elaborazione numerica dei segnali: si occupa della Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione delle sequenze per stimare i parametri caratteristici

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNLI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risolti 6 ttenzione: u(t) = l(t). Si determini il periodo fondamentale T e i coe cienti di Fourier a k del segnale a tempo continuo x(t) =3 sen t +4cost

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata di Fourier Ø Risposta impulsiva e integrale di convoluzione Ø Rappresentazione di segnali nel tempo e in frequenza Ø Filtri idealmente e fisicamente realizzabili, stabilità Ø Trasformazioni

Dettagli

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta SEGNALI A TEMPO DISCRETO Impulso e altri segnali canonici discreti Trasformata Zeta Sviluppo di Fourier discreto Trasformata di Fourier discreta Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

COMPITO DI SEGNALI E SISTEMI 25 febbraio 2016

COMPITO DI SEGNALI E SISTEMI 25 febbraio 2016 COMPIO DI SEGNALI E SISEMI 25 febbraio 2016 eoria 1. [5 punti] Si forniscano le definizioni di stabilità asintotica e stabilità BIBO per un sistema LI e causale descritto da un equazione differenziale

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - 1 Corso di Laurea in Ingegneria dell Automazione Segnali e trasformate DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

COMPITO DI SEGNALI E SISTEMI 9 Gennaio 2003

COMPITO DI SEGNALI E SISTEMI 9 Gennaio 2003 COMPITO DI SEGNALI E SISTEMI 9 Gennaio 00 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: v(k v(k + v(k = u(k u(k, k Z

Dettagli

In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di

In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di Appendice F Proprietà della trasformata di Fourier In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di Fourier per segnali TC e TD. Inoltre, sono riportate

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

Controlli Automatici LA Segnali e trasformate

Controlli Automatici LA Segnali e trasformate - 1 Corso di Laurea in Ingegneria dell Automazione DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Controlli Automatici L - 2 Segnali tempo continui

Dettagli

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità

Dettagli

Laboratorio II, modulo Segnali periodici (cfr.

Laboratorio II, modulo Segnali periodici (cfr. Laboratorio II, modulo 2 2015-2016 Segnali periodici (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf) Alcune definizioni (1) Segnale periodico: x(t) = x(t+t 0 ) per qualunque t Segnale

Dettagli

Rappresentazione dei segnali con sequenze di numeri e simboli

Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione numerica dei segnali Digital Signal Processing 1 Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione delle sequenze per stimare i parametri caratteristici di un segnale;

Dettagli

Esercitazione sulle serie di Fourier

Esercitazione sulle serie di Fourier Esercitazione sulle serie di Fourier 3 novembre. Calcolo dei coefficienti di Fourier e di somme di serie speciali Esercizio. Si consideri il segnale u : R R, -periodico, definito nell intervallo, π, da

Dettagli

COMPITO DI SEGNALI E SISTEMI 7 Gennaio 2004

COMPITO DI SEGNALI E SISTEMI 7 Gennaio 2004 COMPITO DI SEGNALI E SISTEMI 7 Gennaio 2004 Esercizio. Si consideri il modello ingresso/uscita a tempo continuo descritto dalla seguente equazione differenziale: d 2 v(t) 2 + π 2 v(t) = d2 u(t) 2, t R

Dettagli

Sviluppo in Serie di Fourier

Sviluppo in Serie di Fourier Capitolo Sviluppo in Serie di Fourier. Proprietà della Serie di Fourier Un segnale reale tempo continuo e periodico di periodo, per il quale sono valide le condizioni di Dirichlet vedi pag. 4 [], può essere

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali Luglio 2014 Esercizio 1 Si determini la risposta totale nel dominio complesso e si studi la stabilita asintotica e BIBO del sistema descritto dalla seguente

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea Specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Cenni alla sintesi di Circuiti TD Generalità sulle tecniche di progetto. Filtri

Dettagli

Comunicazione Elettriche L-A Identità ed equazioni

Comunicazione Elettriche L-A Identità ed equazioni Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

COMPITO DI SEGNALI E SISTEMI 15 febbraio 2010

COMPITO DI SEGNALI E SISTEMI 15 febbraio 2010 COMPITO DI SEGNALI E SISTEMI 5 febbraio 00 Teoria. Con riferimento ad un sistema lineare a tempo di screto descritto da un equazione alle differenze del tipo n m a i yk i = b i uk i i=0 i=0. Si ricavi,

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Compito di Analisi Matematica II del 28 giugno 2006 ore 11

Compito di Analisi Matematica II del 28 giugno 2006 ore 11 Compito di Analisi Matematica II del 28 giugno 26 ore Esercizio. ( punti) Calcolare il flusso del campo vettoriale F (,, z) = (z, z 2, z 2 ) } uscente dalla frontiera di D = (,, z) R 3 : 2 + z 2, z,. Svolgimento

Dettagli

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003 SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Formule di Teoria dei Segnali

Formule di Teoria dei Segnali Formule di trigonometria Formule di eoria dei Segnali L.Verdoliva cos(α + β = cos α cos β sin α sin β sin(α + β = sin α cos β + sin β cos α cos α = + cos α sin α = cos α sin α = sin α cos α cos α = cos

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 7 Gennaio 2003

COMPITO DI CONTROLLI AUTOMATICI 7 Gennaio 2003 COMPITO DI CONTROLLI AUTOMATICI 7 Gennaio 003 Esercizio. Si consideri il sistema a tempo discreto ( ) y(t) + a y(t ) + a y(t ) = u(t) u(t ), t Z +, dove a è un parametro reale. i) Calcolare, al variare

Dettagli

ANALISI MATEMATICA L-C, B-S

ANALISI MATEMATICA L-C, B-S ANALISI MAEMAICA L-C, B-S 25-6 SERIE DI FOURIER MASSIMO CICOGNANI Per la pubblicazione in rete di queste dispense si deve ringraziare Marco Frison che le ha trascritte interamente in Latex 1 Lo spazio

Dettagli

Definizione di Segnali e loro caratterizzazione

Definizione di Segnali e loro caratterizzazione Definizione di Segnali e loro caratterizzazione Definizione Un segnale è un modello matematico che descrive la variazione di una o più grandezze (fisiche) in funzione di altre grandezze (fisiche). Non

Dettagli

Corso di SEGNALI a.a Corso di SEGNALI. anno accademico Trasformata di Fourier: esercizi d esame

Corso di SEGNALI a.a Corso di SEGNALI. anno accademico Trasformata di Fourier: esercizi d esame Corso di SEGNLI a.a.008 009 Corso di SEGNLI anno accademico 008-009 rasormata di Fourier: esercizi d esame. Successivamente si calcoli il valore di () per 0, ±/ e ±/. Per calcolare la trasormata di questo

Dettagli

Esponenziale complesso

Esponenziale complesso Esponenziale complesso Paola Rubbioni Analisi Matematica II - CdL in Ingegneria Informatica ed Elettronica a.a. 2016/2017 1 Serie nel campo complesso Per fornire il concetto di serie nel campo complesso

Dettagli

FILTRI NUMERICI. Sistema LTI H (z)

FILTRI NUMERICI. Sistema LTI H (z) x [n] FILTRI UMERICI Sistema LTI H (z) y [n] Un sistema numerico LTI è in molti casi descritto con un equazione alle differenze lineare a coefficienti costanti: M [ ] = [ ] a y n k b x n r k k= r= Z {}

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

Concetti di base: segnali - Classificazione dei segnali -

Concetti di base: segnali - Classificazione dei segnali - Corso di Tecnologie per le Telecomunicazioni e sviluppo in serie di Fourier 1 - Classificazione dei segnali - Le forme d onda di interesse per le Telecomunicazioni possono essere sia una tensione v(t)

Dettagli

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga Gruppo N Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti utilizzati. Esercizio (1) Si ponga (a) F(x) = ln(3 + sin t )dt. Giustificando

Dettagli

Introduzione ai segnali determinati

Introduzione ai segnali determinati Teoria dei segnali Unità 1 Introduzione ai segnali determinati Introduzione ai segnali determinati Sviluppo in serie di Fourier Trasformata di Fourier 005 Politecnico di Torino 1 Introduzione ai segnali

Dettagli

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli. Si esprima la pare reale di x() = e ( +j) j, R nella forma Ae a cos(ω + ϕ) con A, a, ω, φ reali con A > e π < φ π. Svolgimeno. Applicando la

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

Sinusoide a fase aleatoria

Sinusoide a fase aleatoria Sinusoide a fase aleatoria x(t) = cos(ωt + ϑ) ϑ U(,π) Caratterizzazione di primo ordine. Fisso un istante di tempo arbitrario t. Siccome ω è costante, posso porre ωt = Φ Ottengo la V.. (Variabile leatoria)

Dettagli

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizio Sia T > 0 e f : R R la funzione reale T -periodica la cui restrizione all intervallo [0, T ] vale f(t) := t(t

Dettagli

(s + a) s(τ s + 1)[(s + 1) ]

(s + a) s(τ s + 1)[(s + 1) ] Controlli Automatici B Marzo 7 - Esercizi Compito Nr. a = b = 5 Nome: Nr. Mat. Firma: Nr. Negli esercizi che seguono, si sostituisca ad a e b i valori assegnati e si risponda alle domande. a) Sia dato

Dettagli

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) =

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) = ANALISI MATEMATICA - Traccia di soluzioni Commissione F. Albertini, L. Caravenna e V. Casarino Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Esercizio, Tema [9 punti] Vicenza, settembre 06 Si

Dettagli

Correzione dell Esercitazione 3

Correzione dell Esercitazione 3 Correzione dell Esercitazione Stefano Angioni novembre 005 Esercizio Il testo dell esercizio fornisce il modello di un sistema lineare e stazionario in termini di relazione ingresso uscita d y(t) dt +

Dettagli

Analisi Reale e Complessa - a.a. 2008/2009

Analisi Reale e Complessa - a.a. 2008/2009 Terzo appello Esercizio Analisi Reale e Complessa - a.a. 8/9 Sia (a) Si provi che f L (R); f(x) eix x i. (b) Si calcoli con metodi di variabile complessa la trasformata di Fourier di f. (a) Si osservi

Dettagli

Elenco dei simboli 9. Prefazione 10

Elenco dei simboli 9. Prefazione 10 Indice Elenco dei simboli 9 Prefazione 10 1 Analisi nel dominio del tempo 11 1.1 Segnali tempo discreto... 11 1.1.1 Segnali notevoli tempo discreto... 13 1.1.2 Alcuni criteri di classificazione di segnali

Dettagli

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1)

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1) ESERCIZI DI ANALISI MATEMATICA II Equazioni differenziali ED 1 Stabilire se l equazione integrale f(t) 1/2 0 sin(tv) v f(v) dv = (1 + t) (e 1/t + 1) ammette una soluzione nello spazio C([0, 1/2]). (Suggerimento:

Dettagli

1 Finestratura di una trasformata di Hilbert

1 Finestratura di una trasformata di Hilbert 1 Finestratura di una trasformata di Hilbert Considerando la sequenza a n = 1 ( 1)n ;

Dettagli

x(t) = p(t nt ) p(t) T 2 -A Figura 1.1

x(t) = p(t nt ) p(t) T 2 -A Figura 1.1 Esercizio Calcolare la potenza media del segnale x(t) = p(t nt ) n= dove p(t) è riportato in Fig... p(t) A T T t -A Figura. x(t) è periodico di periodo T. Quindi, indicando con E p l energia del segnale

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

Circuiti per la multimedialità

Circuiti per la multimedialità Università di Roma La Sapienza Laurea in Ingegneria delle Comunicazioni Circuiti per la multimedialità Raffaele Parisi Capitolo 2. Sintesi di circuiti a tempo discreto a partire da circuiti analogici.

Dettagli

Premesse matematiche

Premesse matematiche Premesse matematiche 2.8 Trasformata di Fourier Sia f(t) una funzione reale, o complessa, di variabile reale t, che soddisfi la condizione di Dirichlet 1, e sia a modulo integrabile, cioe : f(t) dt

Dettagli

Formulario di Teoria dei Segnali 1

Formulario di Teoria dei Segnali 1 Formulario di eoria dei Segnali Parte : Segnali determinati his documentation was prepared with L A EX by Massimo Barbagallo formulario di teoria dei segnali Proprietà dei segnali determinati Energia,

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaboraione di segnali e immagini: modulo segnali Giugno 2014 Tempo a disposiione: 3 ore per il totale, 2 ore il pariale. Eserciio 1 Si determini la risposta totale nel dominio complesso utiliando la trasformata

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

Svolgimenti esami del corso di Teoria di Segnali

Svolgimenti esami del corso di Teoria di Segnali Svolgimenti esami del corso di Teoria di Segnali versione.4 - ultimo aggionamento 0/03/209 Autore: Gabriel Emile Hine mail: gabriel.hine@uniroma3.it (per segnalazione di eventuali errori/refusi) Esame

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 009-00 p. /35 SISEMI DIGIALI DI CONROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace -

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Alpigiani Cristiano 17 novembre 2005 Introduzione Scopo di questa esperienza è quello di familiarizzare con alcune proprietà

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Quantizzazione;

Dettagli

Lezione n. 4 (caratterizzazione dei segnali e analisi in frequenza)

Lezione n. 4 (caratterizzazione dei segnali e analisi in frequenza) Lezione n. 4 (caratterizzazione dei segnali e analisi in frequenza) 1 I ruoli del medico e del bioingegnere nell analisi di segnali biomedici MEDICO Quali segnali misurare Quale informazione possono contenere

Dettagli

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Convergenza puntuale ed uniforme delle serie di Fourier

Convergenza puntuale ed uniforme delle serie di Fourier Convergenza puntuale ed uniforme delle serie di Fourier 8 aprile 009 In questi appunti prendiamo in considerazione funzioni di variabile reale che possono assumere però valori complessi. Una funzione F

Dettagli

Esercitazione del 6 Dicembre 2011

Esercitazione del 6 Dicembre 2011 Facoltà di Ingegneria dell Università degli Studi di Firenze CdS in Ingegneria per l Ambiente, le Risorse ed il Territorio Complementi di Analisi Matematica A.A. 11/1 Esercitazione del 6 Dicembre 11 Attenzione:

Dettagli

Parte II: Sistemi Lineari Tempo-Invarianti (LTI)

Parte II: Sistemi Lineari Tempo-Invarianti (LTI) Parte II: Sistemi Lineari TempoInvarianti (LTI) Simone Fiori Facoltà di Ingegneria, Università di Perugia Email: fiori@unipg.it Pagine: 17, Figure: 6 Dispense per il corso di: Analisi di Componenti e Sistemi

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 4 last update Oct 22, 2004 c 2004 Finesso, Pavon, Pinzoni 1 GRADINO UNITARIO A TEMPO CONTINUO Èilsegnale u(t) = 1 se t 0, 0 se t

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 giugno 29 - Quiz Per ciascuno dei

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Compito di Analisi Matematica III. Compito A

Compito di Analisi Matematica III. Compito A c.d.l. Ingegneria elettronica e c.d.l. Ingegneria Informatica (M Z) 7 gennaio 2008. Determinare i residui nei punti singolari e nel punto all infinito della funzione z 2 sen z + 2. Determinare la trasformata

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 5 last update Oct 22, 2004 c 2004 Finesso, Pavon, Pinzoni 1 MODELLO MATEMATICO DEI SISTEMI (da lezione 2) Un sistema è una mappa Σ:X Y x( ) y( ) =Σ[x(

Dettagli

Esame di Analisi Funzionale e Trasformate Primo appello. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Primo appello. 12 Luglio 2017 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Primo appello. Luglio 07 A.A. 06/07. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere a

Dettagli